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ABSTRACT

Properties of the elastic excitation function at
180% produced by deviations from the usual strong
absorption S-matrix are studied. We consider deviations &
with the shape of windows in £-space, centered around a value
f c¢orresponding to a peripheral cellision and concentrate our
analysis in the interference of the partial waves neighbouring
£ . The conditions for censtructive and destructive interference
and the effect of odd-even staggering factors are investigated,
in the presence and in the absence of Coulomb and nuclear
refraction. The consequences of such interference on the anomalous
behaviour of the 180° excitation fuﬁction for the elastic
scattering of some n-a nuclei are discussed, in connection

with results of other works.
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1. INTRODUCTION

The archalous ‘behaviour offthe:chSSrseptipﬂsrfpf e
1}

collisions“beEWeen‘nﬂu.nuclei {e.g.

328, etc.) has been 1ntensively studied. in the last seven years

Contrastlnq with the typ1cal optlcal model 3ike patbaﬂ1cbsenmﬂ

in most Heavy ITon colllslons the

and the 180° egﬁitétibﬁtfﬂnctidn isﬁﬁominatédiﬁf,Pt nounded
oscillations. Similar abhoriial cross sections are atso. observed '
in inelastic and a~transfer: channels. -

~ Although the dynamlcal orlgln of such - anomal;es has
not yet been- satlsfactorily establlshed it has been shown2 3)
that the main tendencies of the large anqle—elast;c-scatterlné
data can frequently be reproduced by the addition of UW)ammahxm
contributions &(£;E) and 51 (F. E) to the normal s-tz:ong absorpm
S—matrixz). These contributions have the shape of w;ndows in
L-space, representing per;pheral colllslons, and S'M,E) axﬁaﬁm
an odd—even staggerlng factor k—lﬁ. as that appearlng “in ekﬁﬁlc
transfer processes. Thls factor affects ﬂrast;cally the

contribution of 5 Whlle the relevant

_partial waves usually 1nter_ere &estructively, produ01ng _
cancellations, the factor ‘Teigt changes the rehﬁzxe phﬂﬁs beumxm
consecutive f~values and may lead to constructive interference.

In the present paper we: study in- detall the inter—
ference between the partial waves descrihlng perlpheral
collisions which contribute to the elastic crOSSasectlon through
the anomalous terms 8(£,E) and §' {£,E). We discuss also how
the results of this study affect the conclusions of other

2,3,4,5)

papers in which the anomalous elastic scattering of n-a

nuclei is attributed to peripheral processes. In Section 2
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we stablish our notation and introduce some useful analytical
expressions based on the Poisson series. In section 3 we study
the influence of the details of S(£,E) and S{£,B) on the
interference of the pértial waves. In sectionr4}we shoﬁ'hpw
cancellation: or enhancement effects pesdlting@fqdm3the:inter;
ference'of'peripheral waves-m&y affect the trends of the 180°
excitation. function. Finally a summary of the main conclusions of
the present work is presented- in section 5.

Throﬁéhout”this paper we will consider exclusively
180° excitation functions. This choice is justified by the
facts that the information it éontaing are mﬁéﬁ?richer than
those contalned in. angular dlstrlbutlons and that analytlcal

expreSSlons become: much,slmpler at 180°

2. BASIC NOTIONS, ANALYTICAL FORMULAE

;. We write the: partial-wave" Eﬁbjgpted 8-matrix

2 (Blher + SV ) @

wﬂefe' EN'.is_ﬁﬁe usual "strong absorption pxofile"Z) cmmeagxﬂing
to: strongly absorbing. optical potentlals and S (£,8) 15 an
anomalous contrlbutlon assoc1ated with peripheral prccesses.
Assuming that the 18¢° excitation function is not affected by

S5(£,BFY we may write

‘J'c'(lro;E) l Z@M’z)() e Fan (2.2)

=

. classical -relation
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In- the above equation g, are Coulomb 'phase shifts, %k “is the

rélétive~wave_nﬁmben and the factor (412' correéponds to the

Legendre Polynomials at 180%°. It is CﬂnvenientstQ'Write'QN(Z'E’

as

S%ue) = deey wea- i (2.3)

where @4(E} ig an qverali energy dependent strength and
m(&ez)',repxesents-a-window in £-space centered at -&;:Z with
the-ndtﬁélizatign w{0) = 1. The guantity £ characterizes

the pe#ipheral nature of the process and is given by the semi-
: 2}

(2.4)

In order to study the interference between the partial . waves.

neighbouring £ it is convgnienf to put eq. (2.2) into the form

4 100° £) = arer 1 sent® |
1) Cig0’, €) —3(5)]4{5;] .ace) (2.5)
witﬁ
g = (—;—\v-)z = ﬁ,’z(;{,-f_!) ' : ...('2;.6}
k €’ -
- % el 20 g LR |
N - .

g(E) 1is .a purely geometrical factor which tends to the limit
&% as the scattering energy increases. The interference factor

aE) , on the other hand expresses the interference aspects. of - the
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partial waves. In the simple case that wi{f,f) = §(£,f) omne in the whole region of i-space where ¥ s relevant, Frahn

gets afE)=1. If w has a finite width a(E) will have shows! that
contributions from other partial waves and the net result may - .

: - LA RETEEA) -
be cancellation or enhancement. In the former case a(E) < 1 :F ( l80°) = -—Z-!-k\f e - d.CE')/V .

and in the latter al(E}> 1.

' o IRy} R a _

In our study of al(E) we will use two différent » e . ’ H[ﬁk 7‘-(2”"75,) 71‘_] t2.12)

shapes. for m(ﬂ,ﬁ). A gaussian shape (GP} m’—""'” . S
) with
. o el T .
Y : afd=A ' :
Wil-2) = ex)b[—- (ﬂ--,t’) /,za-z_] (2.8) _ -H(z) -_—fd',‘% (A.A} e _ (2.13)
_ o _ . v, W
and the derivative of a real Ericson_functions) (DEP) ’ ) and
& (48> = 2 [14cosk( B-A) T (2.9 W= [wca-i)da 2190
e - | |
As we will see below, these shapes have the advantage of leading The interference factor takes the form
to analytical expressions for .aig). )
_ . . 7) 2) & iutamsnd ~ 2

To calculate al(E) we_ will follow Frahn''. Bas a ACE) = \Af ’Z é H[%ﬂam-f-/)t] I (2.15)
starting point we write the Poisson formula for E(6=180%) MW=—po
~ e e | - o |

A FE(N Por the DEP (eg. {2.9)) one finds' . :
'PCI‘?UQ)':—"'LEZQF( 'f‘/z) . . . or the q ey e
m=-o s . &'dﬂz-
00 : ' 1 T A 2 : (2.16)
s . H(-E') = e
: & 2{RT(A (L EN) : . ~
. quﬂ §%a) exp[t (200 427 0n+ 1 N)]  (2.101 Aink(w K 2)
b
1 =N . . . and
where R=£+—2- and S (A} and o(i) are analytic continuations
=N . .
of s (£,8) and o, . If the Coulomk phase-shifts can he expanded ~
£ \Af’ = 4 A . (2.17}

linearly around it .

For the GP of eqg. (2.8} it can be easily shown that

207 E 8, (A-F) +20d) ; %: %(ﬂ");gfk;’(g) (2.11)
A

Hezy = expl—~ o* 2% /e ] - (2.18)




and

W = 0 Jar {2..19)

We are also. interested in the odd-even staggering?

with these parametrization, i.e.-

~ TA " _ S
LWCA-A) = e.rs DCA-A ) (2.20

with B8.=.-1** . In. these cases it‘is-straightforward:to-show that-

the normallzathn

‘ié unchanged and the function H'(z) can

be: exprassed: ln,terms of:. B{z)  through the relation

Y 'u,-fi o . i
H(z—_): = e%ﬁrA”P/_(_a,-,g-.ﬁz) ' (2.21)

The above relation holds not only for odd-even staggering but
also in any case where the difference of phasé between W' (A-A)

and w(i-K} depends: linearly on X .

3. STUDY OF THE INTERFERENCE,EAGTOR

In:this,s&ctioh—we-will-studyjﬁhe,intérfenepcer
factors a(E} and a'(E}.ih-different situatiohs..'wefwill-'
consider the DEP and GP shapes of m(i—ﬂ), 'the effects of
refraction on af(E) énd'_a'(El_and-also the effect#.of aswn&ﬁzy

of .w(i-A) with respect to A .

*We will adopt the notation that primes are always assoc1ated
with odd-even staggering.
**Clearkiy a B=1 is also pessible. However we choose the

negative sign. so that even~odd staggerlng nay ‘be v1ewed as a
form of nuclear refraction (negative).

a) No refraction limit

Let us consider first the limiting, hypothetical,
case where both Coulomb and nuclear phases are neglected
=N thi B 20 . and no .o ; ‘ .
(01"5£f‘°" In. this case .BR 0. and noc expan;lon of o, is

needed. The Poisson series is strongly dominated by the terms

Cm=-1 and m=07(except when ¢ or A<<1) .and we get

RE) = O cos (72',6(5)) (2.22)
AE) = C” 7 | (2.23)

where. C and C' are the energy independent quantities

2._”

Grife ™" © . . for de DEP
e = ¢ ' : . _ (2.24)
ez . .
| gxe? e"'"- . , .for de GP
and
Y 2;?‘ . for the DEP
ol = S _ ' ¢2.25)

3.1;71:0__‘?-' ’ - for -the GP

For the purpose of comparing the:DEP.and the GP it‘is»cqnvenient

.to- express the“parametgrs _E and ¢ in terms of . the half—width

P.
= F /118 - (2.26)

~

A -.=l_'h"/1_-?_a_’ ' (2.27)
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The constant €' gives an energy independent upper

limit for the odd-even staggering interference factor a!

(E)

the presence of refraction. In the no-refraction case the

in

contributions from all partial waves are aligned along the
positive direction of the real-axis. The presence of refracticn
introduces energy dependent relative phases among the partial
wave and the coherence is weakened.

On the other hand, the mno-refraction limit in the
absence of odd-even staggering gives the strongest cancellaticn
possible. Thé interference factor shows strong oscillations
resulting from £he terms m=-1 and m=0, which have the same

amplitude, with the "natural® period

PO |
P (e) = 42:&)) _ (2.28)
de

determined by the condition SE(EI=1. Although the period of
oscillation depends on E , the maxima of a(E} are tangent to
the energy independ quantity C.

A cvomparison between the interference factors
resulting from the two parametrizations with the same half-
width T indiéates that the DEP produces stronger enhancement
in C' while nothing can be said about cancellation in al(E) as

the comparison depends on .

b) Pure Coulomb refraction

To perform calculations with Coulomb refraction it

is necessary to specify a system in order that E(E) and

can be evaluated. We choose 160-+2851 for which there

°p

is a lot of information available. It should be menticned,

.10,

|
i

However, that the main features of a(E) and a'(E} are

qualitatively the same for other n-o systems. For 160+288i

A is given by eqg. (2.4} with

~ ' '

R =#.26 fm _ . {2.29a)
E = I17.8 Mev : . ‘ . _ o {2.290)

B

If the width is not too small and the energy not
too high (too low), the factor a(E) (a'(E)) is. dominated by
m=-1 {0} in the Poisson series. . Keeping only these leading

terms we obtain

as N w2 . ~ e A

a(e) :[ﬁﬂ'@—ﬂj;& /m,uR(;rA(%-,r))] (2.30)
Ko [enfE fuperg) ]t o«

E) =l 4 Ac A L) ' " {231}

[ BE friklrE8) ] g

for the ﬁEP; and

_ 2z - S : 2.32)
Q) = 2wyt exp[-a (8,-7)" ] (2.32)
a'e) = awclexp(-ocig ] (2.3
One should keep in mindfthoﬁththat these are approximate

expressions based on the condition T << A and on a Llinear

expansion of the O(A) around & , -which may become inappropriate

ag R+ E in which case A-+0.

B 7
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In figs. .1 and 2 we show alE} and a’(E} in the.
cases of DEP (eq. (2.9)) and GP (eq. {2;81), regpectively.
Interference factors obtained by the numerical summation of eq.
{2.7)} (full lines} and by the approximate expressicns (2.30}-(2.33)
{crosses) are-given for [=1,2 and 3. The no-refraction
limits ¢ and c¢' are also indicated in each case. Firstly
it should: be noticed that the approximate expressions (2.30}-
(2.33) give the interference factors with very good accuracy.
The shortcoming: of missing the large energies osecillations for
F=1. can be easily eliminated by the inclusion of the m=0
term in the Poisson series. Besides, the figures show some

interesting features of a .and a'.

~ The interference: facteors converge to the no-refraction limits
as. the:energy: increases. This is a direct conseguence of the

_ fact that. 8

{2.34)

§g= 2 fam- ,(-2-) =

goes to zero as E-~+=,. and the non-Coulomb-refraction limit

is. apporached..

- The view that. al{E) is dominated by cancellation. and that
a' (E¥ by enhancement is not correct. The tendency of the
interference factor changes with energy. In fig. (1b), for

example, a(Ek<1 for E<31 MeV and al(E) >1 for E<19 MeV.

- The factar a(E) intercepts. a'(E) at E,=23.0 MeV, both
for DEP. and GP, for any F. EO is given by the.condition
seé egs. (2.30)-(2.33 5 = Ao = -
(see g ( b= B] dp=7/4, or A(E) gy - This

means that the introduction of an odd-even staggering factor

in. w(A-K) enhances the cancellation at energies below 23 MeV,

2.

We have alsc investigated the mecanism .through
which strong cancellation may occur in aJ(E)} . For this  purpose

we irnitroduce the gquantity

lal g . . o
Q'%é{j: Z g:t.l/z__) ezm';,_a)(;f.f) o (2.35)
= N o '
(0—42)

and similarly a.'(E) , which are represented in._-:f_ig.. 3 for

the DEP ;=1t 35 MeV wiﬁh F=2. It is shown that the cancellation
is an overall property of the partial waves around E. A naive
interpretation that such cancellation occurs among consecutive
partial waves for which the Legendre polynomial gives opposite
signs is clearly wrong. If tﬁis were the case: CZ@?E%).would

alternate from large to small values, contradicting fig. 3.

c) Coulomb plus nuclear refraction

Let us consider the simple case where

WA~-A) = e FE ol wea-A (2.36)

with [m(k-ﬁ)| given by the DEP or the GP. This is exactly
; ; o

the linear dependence of eq. (2.20) with e“ =BT  giving a

nuclear deflection. Analytical expressions for a(E}) and

a'(E) are then trivially derived and the results are .those of

eqs. (2.30)-(2.33) with the replacement of éR by o;
5=6,+8
A <-

In fig. 4 we show exact values of a(E} and a'(E)
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obtained with the DEP with [ =2. Results for the GP or
for other [ are qualitatively sinilar. The interference

factors were calculated for 5N = 0, =0,25w, =0.5%, -0.757 and
-7 . An interesting peint to be noticed is that the inclusion

of nuclear deflection shifts the no-refracticn limit toe finite

energies. In pure Coulomb refraction the condition 8_ =0 is

R
fulfilled as E—+ . In the present case, however the no-
refraction condition becomes 9=0, or

bt | o~
~ 14.0
68='?'-L-' [ ) — __gN (2.38)
E —I128)
£, (E, 178
The condition above is an equation for E. For example the

solution for gNé=-0.5n,- is r= 23.0 MeV, which is in perfect

EN
agreenent with fig. A4C.

A‘secondzpoint of interest is in connection with the
footnotes in p. 7. The factor a'(E) corrésponds to af{E) in
the presence of the nuclear deflection fupction 3” = =T . The
sequence of figs. 4a),b),c),d), and e} show how the interference
factors a and a' change into one another as 5& varies
continuously-from 0 to -w.

In all cases, afE) and a'(E) are contained within
the two corresponding no-refraction limits (except for the
localized m=0, m=-=1 interference oscillations). It is
interesting to remark that these 1imitslcorrespond to the
condi¥ions for obtaining forward (in a(E) ) and backward (in
a'(E} glory scattering. Qualitatively speaking, forward
(backward} glory implies refractive enhancement at forward
(backward) angles and a corresponding damping at backward
(forward) angles. These features are clearly exhibited in

Fig. 4.

.14,

d) Bffects of asymmetry in w(A-i)

8o far, we have considered symmetrical shapes for
the f-windows. This is clearly a simplifyving assumption, which
does not generally corres?ohd to anomalous S-matrix deviations
associated with specific physical processes. In this Section,
we study the interference factors that result from asymmetric
shapes. For simplicity we will restrict the discussion to the

W = exp[—(’k—x)z/.zcg_zj (2.39)
. ,
o = bl (=R e ]

The above choice of the-shapé:fundtioﬁ-ha&é'fhe advantage of
leading to easily derivable énalytical expressions. It should
bhe mentioned however that we have performed numerical caloulations
with other asymmetric shape functions and the results were
qualitatively similar. Also for the~$ake of simplicity we will
neglect nuclear phase,shifis._ . . V

In fig;,S—we;shéw“"a{Efl'fbr.the parametrization of
and T

eq. (2.40) with the half widths T ~ taking the values

1 2
1.5 and 2 and alsc. the results with: f1_ and fz_ interchanged.

For comparison the interference faqﬂns for the symmetrical GP

with F«1.5 and 2 are'also shown. It is interesting to note

that the asymmetry leads to oscillation with the "natural”

period of eq. (2.28). The average value of a(E) decreases

with energy more slowly than those for the symmﬁ:ib parametrizations.

For energies above ~ 32 MeV the interference factor for the

f=1.5 GP is exceeded, showing that the asymmetry attenuates




.15.

the cancellation. The effects of interchanging f1 and fz
are not relevant. Results along the same lines for a'(E) are
presented in fig. 6. In this case the asymmetry dJdoes not
introduce any significant chanée. The interference factor lies
between those for the symmetric parametrizations and it has the
same trend.

The main features of a{E) and a'(E) for the

asymmetric shape functions of eg. (2.40) can be understood on

the basis of eg. (2.15). 1In this case we . get

N:f%— (01-#02) _ £2.41)

and
He = Hic_a-) - i Hzfi-) _ : (2.42)
Wiﬁh

— 2 -4
‘lﬁ" : —Xy - X, :
l‘l-t_Ca_-;-) = ‘/V[Z (ai e -3 + G’}_ e z) (2.43)

and

Hzfi‘) = ﬁ- [xn-:DCK,) - X, :D(x’_)] 2

were X!.-,z. = 'Z_GE,Z /JE' and :D {(X) .
X
—X%* £2 .
Dixy = e fe At {2.45)
)

is the Dawson functions). The term H1(z) corresponds simply

to an average of the H functions for the two symmetric

.16,

distributions with weights 01 and P The term H2(z) R ¥
on the other hand, is responsible for the peculiarities of
a{E) for-tﬂe asymmetric parametrization. The fact that the
Dawson.ﬁunétion varies slowly with x , it has a maximum at =x=1

and. for large {>5) x goes to zerc as

Dexy —> ..5-_.(1-,-_1_.{.--..)'1 , (2. 46}
x0" ax 4 o

has two conseguences. The first is that it is necessary to

consider a few m values in the Poisscn series for af{E) (eq.

{2.15)). This point is shown in fig. 7, where the egact al(E)

and a'(E) values are compared to those obtained with the use

of egs. (2.41)-{2.44) in eq. (2.15), considering only the

dominant m =-1 term., Although it reproduces very well a'(E)

and also the average behaviour of al(E), it misses the high

energy oscillations. We éould however reproduce these

oscillafions with good accuracy by including the m=0 and .

m=-2 terms in eg. {(2.15). The second.consequence is- that

B(z) 1in eq. (2.42) is completely dominated by HZ(z) for very

broad asymmetric shapes (both f1 and T23). In such a case

a (B) becomeé several orders of magnitude larger than the

intefference factors associated with the symmetrical GP with

half-widths [, anda T

1 2"

3. EFFECTS OF THE INTERFERENCE FACTOR ON THE 180° EXCITATION '
FUNCTION

In this Section we use several of the conclusions

Ak

reached above to. discuss informatiom about the anomalous.
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deviations which can be extracted "directly” from the experimental
180° 2 5° excitation function. As was done in the previous

section, our discussion is centered on the 160-+28

8i elastic
scattering system. We employ the DEP for definiteness. In
Fig. 8 we summarize our findings concerning the connection
between the strength d(E) and the width [ compatibles with
the data for different values of the anomalous piece of the

nuclear deflection function o These curves were constructed

N
by fixing J (180%) at E., = 35 MeV to be ~ 1072 , in
Ruth cM
accordance with the data, and using Eqg. (2.5}, namely
2 -2 ; Ul
a@)de| = 167 g 1es /g ce) (2.47)

which supplies d{E)} vs. [, the width associated with wif-F)
and conseqguently al(B) (see Eg. (2.7)).
8ince the unitarity condition of the S-matrix

imposes the constraint

de < 1 | (2.48)

the maximum values of [, T

Tax compatible with the constraint

are indicated by the intersection of these curves with the

dashed lines (d(E)} =1). We exhibit the dependence of Emax on

BN in Fig. b.

Clearly the largest value of T is cbtained in

max

the case of complete even-odd staggering, which using our previous
considerations amounts to very strong nuclear refraction, or a
genuine physical process e.g. elastic transfer. On the other

hand the minimum value of fmax {~1.3) is attained under

conditions of forward glory i.e. 8. =8 The full curve

N c’

. 184

Fmax(_ﬁN) is symmetrical about this point. The dashed portion
of this curve corresponds to positive values of E; namely
short-range repulsion.

The above discussion clearly.shows. that an -unambiguous
determination of T Ezrom the ISUQJexcitation-function withogt
explicitly considering,the refraction effect of the window-like
anomalous deviations,?doﬁbtful; Of.céurse‘our;findiggs_are
based on the Ericson_parametriza;ion. ,3Qwever,liuﬂe qualitative
change occur if othe;}types of -.parametrizations are used, as
we have verified with_the GP.

A second point which. is worth commenting upon
as a consequence of the results of sec. 2.is the association of
the strengths J{E) _an.d__ d'{E) with the :3‘3— 4180°,E) .data.
Such an association iSumadexin:refs.Jé)-an&?S); In these papers .
a semiclassical multi-step a-transfer model was used to estimate

the quantities .d{(E} and 'd'(E} in the collision 160-—28

4}

Si.

These functions turpéd'out to have window-like behaviour in

E-space with a maximum at ED-ZS MeV ‘and exponential fall off

at higher energies. It:was.shownHlatgrs?'that with-a mere

realistic choice of thé impact.-parameters involved-in- the semi-
[¢]

The functions d(E). and: @'(E)} .of ref. 5) were then directly

classical model the'maximum of -d"{E}.was shifted to E!-32 MeV.

compared to the g2 (1809;E} data, as a test of the.model
used. Our stﬂdy-og the-interferenqe:factors shows, howsever,
that a direct comparison of this kindxmay be inappropriate. The
factor 9{E) (eq. (2.5)}.shogld not affect significantly the
gross structure of the excitation function but taking |d(E}|2
will make él rshafper in E-space and the presence of the

interference factor may turn the excitation function rather

different from the corresponding strengths d(E) and 4°(®),
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especially if the anomalous S-matrix is broad in L-space. To
investigate this point we calculated é; with the &(E) and
4'(E) of ref. 5) using DEP for uw{£-£} with different widths.
Onlty Coulomb refraction was considered: The results are shown
in fig. 9, together with d(E) and dJd‘(E) . The.comparison-
between -the energy Em (Ei) where éi (%é) has a maximum
with EU tEé) shows that- Em is.slightly shifted to a lower
value while: Eﬁ has.a more-significant shift towards higher
energies, specially: for broad- m(t;ﬁie.'The difference between

the half-width of the strength.' @(E} (d'(E)} and that of =

- R
is. of the order of 't MeV.' In fig. 10 we .show that the: excitation
functions obtained:with the ' DEP can be put in agreement with
the: gross:. skructure of the daka if-a rather broad (F % 5) w'{£iF)

is.used.  This of course, is:.elear from fig. 8b.

4. CONCLUSIONS

We-havefstudied-iﬁterference effects in the partial
wave: series. for: the seattering/amplitude associated with
ancmalous. deviations of the.:S-matrix, having the shape.of
windows -in. £-space. . Through.the introduction'of an interference
facto: a(E} we:. stahllshed a:eriterion to define whether the’

overall effect of: the; 1nterfe£ence is constructive or destructive,

This criterion. was tnen,applled ko the anomalous scatterlng
produced: in dlfferent 51tuatlons. Elrstly we have determined -

no-refraction Limits. for: a(E} 'and a' (B}, which give, naqmﬂtﬁmﬂy}
the strongest cancellation possible and the maximum cocherence.
We have then studied the effects. of introducing Coulomb

and nuclear phase-shifts. The introduction: of Coulomb phases

.20,

was shown to lead to rather different interference factors.
Although &a(E) and a'(E) approach their no-refraction limits
as E-+=, the situation is dramatically different at energies

near the potential barrier E where the tendencies of the

B!
factors alB) and a'(E) are interchanged. It happens in this
case that the:introduction of a parity dependence in the ancmalous
S-matriﬁ-proﬂuces strong. cancellation in the back-angle
excitation. function. The main effect of congidering nuclear
phese—shifté ierthat the interference factors approach no-
feffaction limits at a finite energy for'which the partial wave
E(E) produces forward glory. The influence.of shapes and half-
widths of the functions w(Z-%) which describe: the anomalous
S—matrix_on_the interference factors was studied, The main
conclusions about.theee points is that the speed with which
a(E) ‘and af(E) change with eﬂergy grows as Iy increases and
that a(E) shows oscillations with the “netural“-period.of

q.. {2.28) for. small values of [ (Fs1) or very high energies
(E>> 40 MeV), The effects of asymmetry in w(f-f) were also
congidered. -We have found that it produces oscillations in

a{E) with the same "natural" period and leads to a weaker high
enerqgy fall: off in thls factor. ,Approximate mxﬂytnxﬂ expressions

for a.(E) and- a_ (E) based upon the Poisson -series, along the lines

- of ref, 8), ‘were derived in all cases mentioned above and were

shown to be in good agreement with the numerical. summation of

the partial -waves series. )
In_l;ght-of the: properties of al(E) and .-a"“(E)

some considerations abeut the studyz’B? of the. ancmalous excitation

functiens of. 1664-2881 were made. Our main conclusion is that

an unambiguous determination of the half-width T from the

180 -ex01tat10n functlon w1thout due. considerations of the miclear
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refraction effects  attached +to the undeflying anomalous
deviations, is doubtful. We have shown also that .al(E) or

&' (E} way play a very important role jn the energy dependence
of U(E,1300) and that a direct comparison between the

strengths d(E) or 4&'(E} and the ratio é1~ may be misleading.
. ’ . R
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FIGURE CAPTIONS

FIG. T ~

FIG. 2 -

FiG. 3 -

FIG. 4 -

Exact {full lines) and approximate (crosses) interference
factors in the PEP including Coulomb refraction. No
refraction limits are indicated by.dashed lines (for

F=3 c lies below 10_7). For details see the text.

Exact (full lines} and approximate {crosses) interference
factors in the GE, including Coulomb refraction. No

refraction limits are indicated by dashed rimes (for
-16

=3 C 1lies below 10°'°}. For details see the text.

Study of cancellations in the partial waves summation

feq: (2.7)), for §. in the form of eq. (2.9).

Interference factors with the DEP, including Coulomb

' plus;nucleg;-refraction. Figpres-a, b, c, 4 and e

BIG. 5 -

FIG.. 6 -

EIGL-?‘—

'ceirésEoné;':espectiﬁély. to 5ﬁ'= 0,-.257 , =0.507,

—I5m and - .
Interference, factor: a(E}  for asymmetric shape
functions. Full lines correspond -to the parametrization

1
__I-f'1.=_.2,._0 . fé_:_- T.3. Results for  symmetric: 6P with

ofreqe (2.15k with F,=1.5, T_=2.0 and with

[=1.5and F=2.0 are also shown fcrosses).

Interference factor a'(E). _Thefdétﬁils are the same

as Fig. 5.

Interference fdetors Eorvagymmetric;shape-funbiiéhs.

Full lines correspond to exact: partial-waves summation

{eg. (2.7)). Dotted lines correspond to approximaté

analytic expressions with the leading term m=-1.

For details see the text.

FIG. 8 -
FIG. 9 ~.

FIG. 10 -

Connection between d(E) and ' compatible with the

data and the unitarity constraint of § (see text for

details). The numbers attached to the curves in Fig.

Ba. correspond to the values of QN in units of w.

Excitation functicn for Y6 285 elastic scattering

at. 1807, calculated with the strengths of ref. 5)

{indicated by dots) and DEP with =2 and ['=5.

Excitation function for 160- 2831 elastic secattering

at 180°. Full lines are calculations with DEP with

F=1.4 and Fr=5.0 and- the'strengths of ref. 5).

 Crosses are experimental points from ref. 9}).
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