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We show that in spohténedusly broken A" theory the
percolation temperature coincides with the temperature at which
the semiclassical (loop) expansion of the effective potential
{free energy} of the system around a uniform field configuration
fails. This allows us to extract the percolation temperature
directly from the effective potential. The addition of fermions
or gauge fields does not alter the result as long as they are
weakly coupled to the scalars. The coincidence holds in the
high temperature limit at every oider in the ioqp expansion.

* Work partially supported by CAPES, CNPg, FAPESP and FINEP.

I - INTRCDUCTION

The qﬂesfion Qf-whether:a"field*theorétical model
at finite temperature.exhibits spontaneous symmetryvviolation
may be studied with the help of the flnlte temperature
effectlve actlon, T (g, M bﬂ). This quantlty is . the Gibbsg

free energy of the system-and may be-defined:through eguations

! 3L[§¢]exp{-j[: ar jaﬁﬁggff -;f_:ﬂ«b(g)}} am

Z(8,J(x)) = N

P80 = ~87" gn Z(8,T(x)) ' B T (1l.2)
: - . _ S5{BF) .
M(x,J(x}) = M_(X) = -5-3%7 (1.3)
B o, _
Tey60) = FGe I+ 87 e [ak mpee oo (1.4)
o = T ' (1.5)
M (x) . _ _ -

T(B,MJ(x)) is the generating functional for one-
particle irreduciple_G#ee@ﬂs functions, In the case of A$"
theory, whose Hamiltoniaﬁ procésses the Z(Z}-wsymmetry.@+—@
one should expect M=0  at- jﬁo if the symmetry is
realized in the S§ace of states. Spontanecus symmetry violation

is characterized by a nonvanishing:value of M{x} at J=0, ie,

[1]
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for which (1.5) is satisfied with J=0. We may take gj(x} to be x-imepen—
dent or, equivalently, restrict the analysis to x-independent external
currents, J#J{X), as translational invariance is not expected to be
broken. Thus, one looks for solutions. of:

av(s, M) |

=40 (1.6)
aM .

M =M (8)
where V{8,M) = [gx(spatial volume)]‘1 T {(g,M) and the bar
denotes x-independence.

Thedriés whose symmetéy ig spontaneously broken at
Zero temperature can have this symmetry restored at higher

temperatures. One should then expect:

M_(B) < ﬁv(sz) for B,<8, - (1.7)

so that there may be a critical temperature at which:

MV(BC) = 0 {1.8)

The situation described by (1,7) is the one that
emerges when one analyzes the behavior of the minima of the
effective potential as’ a function of temperature. Property
(1.8); which: determines the critical temperature, has been’
claimed: o~ be: obtainable from a' one-loop analysis of the
effective potential..

In this paper we make a detailed analysis of the

remark made in referxence (2] that there exists a- limiting

temperature, T;, beyond which the semiclassical (Loopwise)
evaluation, based on uniform background fields, of the minima
of the efféctive ﬁotential.bécomes unreliable. Unﬁqrtuﬁately,
estimates of the critical temperéture obtained from one-loop
calculations of that type yield values greater than TL:and;
therefore,. lie outside their expected domain of wvalidity.-
The shortcomings of fhé loop expansion of the
effective potential in the broken phase around uniform
backgrounds had already been noticed by several authors who

[3 - &)

investigated the T=0 problem . Recent suggestions to

overcome them may be found in references [4 - &} , This

point was also made in our analysis of the finite temperature

2)

cage where we presented an alternative way of calculating

n

transition temperatures within the semiclassical framework.
Most of the attempts to remedy this situation,:oﬁrs included,
make appeal to ﬂontrivial extrema of the action as background
fields for the semiclassical expénsion. In our qase,-a spatially-
dependeﬁt kink seolution describing a domain wall was used to
estimate a “"percolation" temperature, through a Peierls-type
argﬁment,in a calculation analegous to the one done by Ventura in ref. [71.
Our basic claim is as follows: if one computes the
free energy aifference per unit area of a déméin‘wall with’
respect to that of a uniform background, by calculating the

effective action in a semiclassical expansion around this




nbn»uniform background, one finds that it is posiﬁive at low
temperatures but vanishes at the percolation temperature, TP;
this temperature coincides with the temperature TL' defined
before, at which the minima of the effective potential reach
the boundary of the region where the semiclassical result is
complex (this occurs because the zero-loop potential is
nonconvex). The coincidence survives the addition of fermions
{Yukawa coupled) and gauge fields (minimally coupled) as long
as they are weakly coupled to the scalar bosons.

The paper is organized in five sections. Section II
shows how a singularity in the effective potential emerges in
a one-loop calculation and introduces TL. In Section III the
free energy per unit area of a domain wall is used to obtain
Tp. Section IV analyzes the coincidence of TL and Tp and its
dependence on the high-temperature limit, the presence of
other fields, the nature of the background field and the order
in the ioop—expansion. Our conclusions are presented in Section

v,

II - THE "INSTABILITY".OF THE UNIFORM BACKGROUND

Let V(B,ﬁa) be the free energy per unit volume
corresponding to the magnetization ﬁJ ,ie, the average
value of ¢ (x) in the presence of an x-independent external

current, J. If we subtract from this quantity the value of its

zero-temperature, zero~current minimum, V(m;ﬁv) we obtain

the finite temperature effective potential;
Vage (B/M3) = V(B,ML) = Vi(=,M;) {2.1)

We shall analyze the bebavier of this potential at
the one-loop level for a A¢% model of a real boscn field
coupled to a massless fermion field ¥ through a Yukawa

coupling. The Euclidean Lagrangian density is thus:
=2 2 X 2 _,2,2 - A
@ SBud}” + I (¢ o) U Yu3p¢+ ige v (2.2)

with @é = 6mi/A . In three spatial dimensions the

semiclassical approximation to the effective potential is (up

to one-loop and for J=0):

(2.5 A= 5.2 i adk 7B'k2*m§)
v Bro) = 7+ (9 -9} + T - in(l-e -
off 4 v J (27) (2.3
—B /R 2 m?
Zap dsk . Brk +mF ) .
3 n(l+e )+{zero pt energies}
(27}

The first term represents the claésicél'(treei approﬁimation,
the second is the témperatﬁre:dépénaeﬁt'pért of fhe'ﬁason loopé,
while the third is the temperature dependent part »f the
fermion loop. mB($) and mF($) are, respectively, .

the boson and fermion effedtive masses in the backgroﬁhd

field 4 (which coincidées with M in zero-loop)[l]:




mé(?:) = 2m2+_%($2-¢§-) = % 33— m? {(2.4.a)
m2(3) = g2§2 ' (2.4.p)

The zero-point contributions can be found, for example, in
refergnce {2} . As they do not depend on temperature, they

may be discarded in the so-called high-temperature limit, Tssm,
that is often used to simplify the analysis.

One immediateiy notes that, although mF is always
nonnegative, the same 1is not true for mé. In the interval
|€£<(2m2/l)£é the squared boson mass is negative, and, as
a consequence, the effective potential develops an imaginary
part.

Imagiﬁary contributions to the free energy are normally
asscciated to instabilitiesigl. Here, however, what we have is
an instability of the uniform background as the basis for the
loop expansion. As we shall argue in Section IV, the semi-
classical approximation to the effective potential will
be complex for 15[‘(2m2/1)%&' in every order of the
expansion. This does not mean that the effective potential,
calculated in an entirely nonperturbative way (ie, through
MonteCarlo calculations on a lattice), should be complex.

Nevertheless, the use of uniform backgrounds in a semiclassical

approximation to the potential does lead to complex values
énd, in this sense, we may say that such backgrounds become
semiclassicaly tinstable for |t1->[<(2mz/>\)1/2 - independently
of temperature!

As discussed before, the minima of the effective
potential, : ¢, (g} : are temperature dependent. Furthermore,
this semiclassical approximation has been shown[S] to\yield
very good results as long as we only consider the region
cutside such minima~ _(|$]>¢v(s)) +  PFor T=0, ¢€,(w}'=¢€,=(6m2/a)
which is greater than the value 2m%/A where the potential
becomnes complex, However, there will be a temperature P, for

which the minima coincide with that value:

2imy - g2
¢V(TL) = 2m°/x (2.5)

Beyord this temperature (-T>TL) the effective potential minima
- 1

would fall inside the forbidden region|¢!<(21112/7\)/2
Thus, for'temperatures in this range the use of uniform
backgrbunds in a loop-expansion of the effective potential
should certainly be avoided.

In the high~-temperature limit (T>>m) , the leading
contribution to Veff(ﬁ,¢) is:

P = Ag2is2y? 1,12 [ 2] -

Veff(s,cp)(?;m) gTie?=ed) + 735 11+ 35 2(52-92) (2.6)

<<]

In the broken phase,Veff will attain its minimum values at:




2e) = 42 g?|z® _ m? _ g’| o . '
¢V(T) ¢VIZI+3;:|3 5 T+ 3 T 5 (2,7)

From equations (2,4a), (2.5) and (2.7} we may conciude that

m2  results negative leading to v,

& complex for T>TL where:

f£

Lom?

2 -1 m =~
L= F; A )
'[}+3%€l .

IIT - NONUNIFORM BACKGROQUND - THE PERCOLATION TEMPERATURE

(2.8)

.we have seen that uniform backgrounds cannot be used
for temperatures higher than TL . Therefore we shall analyze
at which temperature nonuniform backgrounds might play .

a relevant role as far as thermodynémics is concerned.

Within the semiclassical approach we shall therefore

use as a Eackground the nonuniform (kink) golution of the

equations of motion given by[9]:

g () = @%t&nh(i%&'-—) ' _ (3.1)

where XL is a longitudinal coorainate. Just like a Block
wall, ¢, divides the system into (+) and {-) domains. These
domain-walls will be relevant as backgrounds for the semi-
classical exﬁansion at a temperature for which their free
energy diffefence per unit area, wiéh réépect to uniform

[10]

backgrounds, changes sign. Peierls' argument of Statistical

Mehcanics is the basic ingredient being used here.

10

In order to get the free energy per unit area of
the walls one compares the (Gibbs) free energies with respect
to two different backgrounds: i) the nonuniform kink solution,
#.(5) ; ii) the uniform bac-k'gy_:m;umi= = /6 (m//}). The free

ehergy per unit area is then:

1 1 . .
£{T) = i {T(T,¢k(xL))—?(T,Qv)} ' o (3.2)

where A is the-area of the wall, a cross ‘section of the °
volume of the system, )

The computation of .f(T) 115" €he éne~loop approximation
reduces to evaluating . Z(g) semiclassically for both back-
grounds. In both cases:we shall make ﬁse bf the identity (which
follows form charge cohjugaticn invariance):

(Getly,?, +1661)? = detly 3 +igéldetiy 3, ~igt] = detl(-D %> ~igy (2 o)1
(3.23)

Using ¢, as background one has:

~ Y 2 P s TEStE
Z,(B) = C det [—-_n--yzrn]s_det[yu-aﬂ--ug%js- e - C(304)

where one is supposed to-ﬁSeﬁperibdic bcun&a;y_conditiqns-inr
the first determinant and antiperiodic ones in the second.
Making use of identity (3.3) we arrive at:

—BS(¢V)

- _
z(8) = C det” 72 [-osam?), aet?[-n+92e2] (3.5)




-y
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We finally obtain r(T,¢ 1 by simply taking the log and
dividing by (- s]. -

(T, 5, =% (6, )+ -2};3- tr on[-u +2m2] - -ﬁ- tx_'rﬁn["ﬂ +g?¢§] (3.6)

Going through the same steps, using ¢ (X) ‘as background,

we obtain:

S 1
Tty (x)) = 5 (g )+ P el sln[ B +2m 2+ —(¢k-d>2)] = tr En[
2 _ =(s—1) 2 me 1 m s(5+l) 2 me
-n+-2— —'i"""—mZSBCh /5 ] Btrf.n[ 0+ 2= 1T12 ech :}
(3.7)

where we have used . i(}_Ft)anﬁ gs= / %% g ., Putting

togetiier {3.2), (3.6} and (3.7) we end up with:

_ . L
£(1) = § {[swk)—swv)] + % tr m[ﬂ +(-02m?) ! 2 (¢§-¢j)]

2
- T tx 2n£1~-(—ﬂ + E;EEJ—I Eiégal m? sech? (Ef%)]
: V2
- T tr gn[ﬂL —'(—D-lr E%D-}i)_l ELS;'H-IﬁZ sech? (m:;)] (3.8)

If we restrict oux attention to the high-temperature
limit, the results of reference [2] allow us to obtain the

leading behavior from:

-1

= T - T _ z Aeia_g2
E(T) (0 3 {[swk) st )+ T te[(-mazm?) > (82 ¢V)]

V2

- T tr {&-B+2m21_1 515511 mzsechz( )] -

nx .
- T tr [(—_D +2m2) 1 5—(5~§£ mzsechzﬂ——/%—)]} : {3.9)

12

<

This expression becomes:

~ T A
E{T) = = {|S{g, )~5(¢_) +—J 2(x) ]TEJ #*
R [ k vJ 2 L2[¢ L (2")3
' mx | [a _
—hn—fui—:—————+ A {de szmzsechz[ L] T J |d k L —
(27nT)? +k? +2m? ! /27 n j(2m® ((2ne1) 0y 24 K2 250
{3.10}
Taking T»»>m we arrive at:
3 >3 2 f
£(m) = 4/2’“7-"2—’;?— (1+3ﬁ;-) (3.11)

The percolation temperature is defined as the one that makes
{3.11) vanish. We immediately see that its value coincides

with that of T, given by (2.8).

IV - THE COINCIDENCE OF TL AND-TP [

The results of the two previcus sections show that,

L and TP coincide for a model

of scalar bosons interacting with fermions via a Yukawa

in the high-temperature limit, T

coupling. In reference [2] such a coincidence had already
been observed for the model without fermions. The persistence
of this intriguing eqguality has led us to analyze in detail

the several ingredients used to derive it.
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Let us consideér the lagrangian density .(,2.2) . We
nay iﬁt_e.grate over the fermions and obtain an effective
Lagrangian for the bosons. Following the usual steps we may
arrive at T (8,M(x)} , thé generating functional for one~
particle irreducible Green's functions, which adﬁits the
expansion:

>
aaet X
1 n n)

(4.1)

. bt n B n
T(EM(x)) = § Eow J_". . V] () . 2
SRS “--‘j=1i[o ary Jaky Lo I e %

We may trade M(x) for B(x) =

taf >

M2 (%) and write:

T(8,B(x}) E 1 g JB jav.[: . ]n(n) * -+
T Bix = - . CBix. 3= g - .
P e e R L Bl % K

j nn
4.2}
It is straight forward to relate T (%) and -{%n) and

we refer the reader to reference [2].
The effective potential'may be obtained from (4.2)

by simplky taking a B independent of the coordinates (Tj,§'j):

n.

o B
= 1 : v (n) , = -~ -
r(s,By = .._.{ J J gt o } .
) nzl_- . t 10 dTJ._de ‘9' (Tlxl"'rnxn) (B Bv) (4.3)

L=l

{n)

If we use the Fourier transform of '% , given by:

-

ﬁgn)(f £ ...t %) =

11 nn
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where w, E 21T.N£B’*1 y Wwe may rewrite (4.3} in terms of zero-
momentum transforms:
. Lo (_n)
. By - 1 p - n
T(E,B) = ] ——_ﬁ {({0}) (B~B) {4.5)

Translational symmetry allows us to - put:

~ () N . _,(n) - . .
- & y e - B
RS TIN5 $2ay) 6 (ik;)‘%' o, X, 1) (4.6)

If we now use the fact that Bi{x) in (4.2} is féindep'endent,

(4.2) and (4.5) .become, respectively:

_ -1 = ;0 [ d_\’k._ ~ ={n) ) -y
0 {8,B{k)}= N = = —_— . 7L R
{8,B{k)}=(RA) “T(g,Bk)}=7} iy B(-!_){'J)? ({kj g 0HA 7§ (E.kj)

Y

n=1 ™ 3=/ (2w 3
(4.7.a)
. . » R = gm _ n : .
(8,8) = (Bv) ™' 1(8,B) = nzl =9 wonGEey (4.7.b)
o L S z{n} .
The graphs that contribute to’ . will involve
sums over the discrete mj which, once performed, yvield

a term indepéndent of temperature plus one which has the
full T-dependence, An example is the identity:
1

z(eBz

(4.8)

-1 . 1 U
B ) - == _y

One may then split %(n) into two parts:
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-~ —(n)

fg(“’({i{i,mfo}) -4 (E D+ G0 (Eu =00 (4.9)

where the second term has all the T-dependence. Puredimensional

analysis yields:
. N ;
_ R k.
?}n)({ﬁi'mi}) - g4-2n 3, (7% , 7% , %) (4.190)

where gn is dimensionless. Putting together (4.8), (4.9%) and

(4.10) =

mme)snommn+

w A w, ¥ '
- 1 2-2n B i, K 1 vop
+ TZ{ I =T I J —L B(-k.)g |2,=BvT sV k)
pep B¢ j=1! (m¥ 3 | TTTIT ; J
: (4.11.a)
3y = =1 am2d 9_-}- 2-2n T W= o0
2(T, B) _QO(B)-i-T {nzl. ar. T T g, (0,0, (B-8) } (4.11.b)

where the expansions inside the curly brackets are supposed

to be well-behaved in the infrared as discussed by Weﬁing[ll]
and the terms Qo_ .are just the zero-temperature values of
QT .

In the high-T limit (r>>u, ,|1”<'j [,m  both

expressions will only depend on the zero“mbmentum character

16

of gh; The.leadihg term of the expansion corresponds to n=1
in (4.11). If_we restrict our attention to that term and,
furthermore, assume T to be high enough that ggantdm
fluctuations are negligible with respect to thermal ones (so

as to take Zerdélqopﬁfor RO); we end up with:

(T, Blk)) = as_, (B(k))+ ngl(o,ﬁ,mﬁ(m (4.12.a)
By — 2= 2 R ’

a(2,B) = s, (B)+ T?g (0,6,0)(B-B) (4.12.b)

whare AScE is the classical action densiﬁy {per unit area

or volume) with respect to ¢v and B(0)= J dx[B(x)—BV]
(12}

—0

The percolaticon temperature TP is the one that

makes (4.12.a) vanish for the kink background, ie, B{x) =

Z
i¢’k(XJ « Thus, in the high-T limit is is given by:
2 7 .

| "o fL[% )2 |
ALk A a2 eye 2|7 )
5 “A8qy Jdg \Z(ds <4 L “’-3] }

-

== (4.13)

{ J“ .d;E % [mi(g)- ¢‘21:|}g1 ({]'6'0)

-

B ﬁ-(O)ql(O.ﬁ,OJ

This expression is quite general and g'(O,ﬁ,O) ~ is obtained
(1)

from the renormalized one—point'function
2]

.  Its one-
loop value is 1/24[ . For the kink, B(0) is related to the

topological charge, QT H
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(4.14)
1 As

T2 (kink) = (4.15})
p 2/3% o gl(o,ﬁ,o)

It remains to analyze the instability temperature,
TL' of the effective potential. Let us first consider the case
without fermions. If we perform a semiclassical expansion
around a uniform background, § , the partition function

for J=0 may be formally written as[ll:

-Bvis B 2
Z(B} = e el 3£tDn]exp{ - J ar Idvx [%{Bun) +
0

3

Looro, A orz2 o 2vy 5 34 A%
+ Fi2m*+ 5 [¢ b )0t . n® + py n {4.16)
where we have set ¢ (x) =-JE + n{x}) ., Tt should bLe
v

clear that the quadratic part of the exponent involves the

Pourier transform of:

. -
1(m§,§2) wl + B2 + 2m? + 5(92-¢2) (4.17)

F(l]

The "effective mass" I(0,0) will become negative when:

18

2m2 .

)

2m2 +_%(;2_¢3jT< 0 =F2 < T (4.18)

: 1. =, _ 2m2
As a result; ‘for values of ¢2 < Y

the loop . expansion
around the uniform background ¢ will yield cumplex values

to the effective poténtial. This "inetability” of the uniform

‘background occurs at the same value of $ at every order

in the expansion, since the inverse of the operator of the
guadratic part is used as the unperturbed propagator in the
expansion, The tefms_in -n3 _and.. . n* are treated as per-
turbations and we are led to graphs having denominators like
(4.17). An explicit computation of the effective potential .
in Quantum Mechanics at~finite=température,-up to two-loops, -
supports our statemeht[13].

In order to obtain the-temperature'TL.all we have
to do is to impose the.conditibn-thatsthe minima- of the high-
T expression for the effective potential. (4.12.b) coincide
with ¢£ = (2m2/)) . Thus;: . for T < TL‘ these minima
will lie outsidé'the.complex_fegionfwhereas at. T they just

A 2
touch its boundary. Then,-using.ﬁsc£ = f¥(¢2—¢§) - we obtain:

A 22 w2 g 0,5, =0 9
o Wiy v g (0,8,0) =0 (4.19)

‘and, finally:
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! (2)
2
p2 21 T

(0,01
= £ (4£.20)
L g (0.8,0) g (0,3,0

The coincidence of Tﬁ- and ,T; © ig due to the equality:

- &S 2 . .
_ ¢ _ 2m . L (4.21)

sy
as can be verified by explicit computation, Thus, it depends
on the particular relationship between classical action and
field at zero-momentum (large-—distance behavior). The crucial
property of .the kink field used in our approach is the inter-
polation between two regions in different vacua. We then
expeet that another solution with analogous behavior will
have a similar B(0). In that case, the kink being of least
acéion will lead to the.smallest.T; r Justifying its use as
a -signal for the: transition.

' If we include other fields, such'as fermions or
gauge fields, the coincidence will still hold as long as they
are weakly coupled to:the scalars. As an example, we shall
return to the case of fermions interacting through the

Lagrangian density (2.2). The partition function becomes:

2(8) = 2,(8)2,(8) (4.22)

where ZB(B) is given by (4.16) and zF(ﬁ) is obtained by

20

integrating over the Fermi fields:
= ; i 4.

2,08 = dety, 3+ :Lg¢(x}l:l (4.23)
In the semiclassical approach we writes:

$(x) = ¢ (x) + /% n(x) (4.24)
Therefore:

| . 2

ZF(B) = det |AHge (x) +igh " n(x)] (4.25)

The loop-expansion will then yield

Fp(® ==L an 2,8 = - L erpn (71100 (x)]{if-+ - z(igmn[en]n} (4.26)
F B B k | =l

where G =z [zf + ig¢k-]_1. The trace properties of y-matrices

makes the series run over even n. The first correction is

then gquadratic in n:

F(8)= - L tren [#+i ¢ (X)]{i "‘gzrd% f&vx‘ [BdT ax SP[G‘(K X Inix }G{x -x }

F B e 1) e o2 e 12 2 Tz
r.r.(xl)] * 0'(;13)}'“(4.27) o

If we neglect the 0(xg2) term, we obtain the result of
section IFI which we derived under the assumption that ¢E
did not change from its value for a puré scalar theory. -

However, in the loop expansion of (4.25) the presence of
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the quadratic terms in n, coming from the fermionic detérminaﬁt,
adds to the quadratic kernel a term proportional to{%;)*lgz ~

~ g* . This is small compared to the %; term we had

already  obtained. If, however, we do not neglect this
correction, the value of ¢E will change by an amount

proportional to the fermion induced term which graphically is

(i;.) Z _S..VA_ 9\/.; Z < (4.28)

Once renormalized this will give the additional contribution
that spoils the coincidence. Nevertheless, in the small
coupling limit we may neglect this and the coincidence will
persist.

Analogous considerations for gauge fields coupled
to scalars will also hold. Again, restricting ourselves to

the interaction of these with only the classical background,

2
L

field induced corrections will alsc exist but, once again, are

T and T; will be identieal in the high-T limit. Gauge

negligible for small gauge-scalar coupling.

V = CONCLUSIONS

We have analyzed in detail the conditions under

22

which_the percolation tempérgture.,Tp, coincides with the
limiting temperature TL. This temperatﬁre is defined as the
highest temperature for which-a semiclassical expansion of
the effective potential around a uniform background yields
minima which lie ocutside the complex region.

We have concluded that the coincidence will hold
in leading order in the high-T limit and persist even if we
include fermions and gauge fields, as long as they couple
weakly to the scalars.

As we had argued previously, domain walls are a
very useful device to estimaﬁe the critical temperature,
whenever it coincides with the percolation temperature (as
should be the case for d=v+l=4), Here we conclude that in
the high-T limit we can obtain this percolation temperature
by just finding the limiting temperature for the validity of
the uniform background expansion, which we interpret as a
sign of "instability" of such a background -~ that is, above
TL {or TP) we expect the state of lowest free energy is described
by a condensate of topological deffecté (this phenomena is
wall knowp in spin systems[14]}a

We -end up-withya-¢ohgfént.picture which allows
cne to extract.?p:and;-ﬁhﬁgléﬁém;fﬁdm:eiiherVa.diréct
calculation, as done 4n reférence.I2T;36r.fr0m the .effective

potential. In either case, we never have to deal with
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extrapolations into complex regions which are undesirable.

A point which deserves tc be further explored is
.the analysis of how the coincidence is affected if we go
bheyond leading order in the high-T expansion. This, however,

will be considered elsewhere.
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