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RESOLUTION OF HYDRODYNAMICAL.EQUATIONS

FOR TRANSVERSE EXPANSIONS — I
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ABSTRACT

The three-dimensional hydrodynamical expansion is
treated with a method similar to that of Milekhin, but more
explicit. Although in the final stage we have to appeal to
numerical calculation, the partial differential equations
governing the transverse expansions are treated without
transforming them intc ordinary equations with an introduction
of averaged guantities. ‘The present pPaper is concerned with
the formalism and we will report the numerical results in the

next paper.

I. INTRODUCTION

The hydrodynamical wodel for high-energy nmltnxutiéle
preduction has been.proposed by Landgu {11 a long time ago and
revived by soﬁe modern researchers, under a more current point
of view, which has been vauiied'with recent progresses in
particle physics®*. So far, due t§ their large mathematical
complexity, the'complgte hydrodynamical equations have never
been solved, unless in a very important case of one-dimensional
motion for which Khalatnikev found an elegant exact solution [3].
That this solution is approximately valid in actual high-energy
multiparticie production (evidently here we afe not questionning
the validity of- the hydroedynamical model itself) follows from

the flatness of the initial fluid due té;Lozéntz-contraction

‘of the incident particles, -so that the expansion occurs mainly

in the incident direction. However, since the transverse
dimensions of such a state of fluid are, although large, finite,
transverse expaﬁsion certainly exists and there are indeed
some empirical evidences of this phenomenon. Thus, in previous
works [4], we havé shown that within the.framework of hydro-

dynamical description, the observed flattening of the large-p,
do

dol
Pl

might well be attributed to the transverse expansion of the

inclusive pion distribution E with the energy increase

pre~hadronic gas, which would.be;larger;the larger were the
energy. In Ref. [5}, as' a byproducf of our large missing-mass—
—cluster analysis, we concluded that the .influence of the
transverse expansion on the longitudinal-momentum.distribution

is not negligible. This influence appears because it causes

*See, for inrstance, a review given in Ref. [2].
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an additional cooling and so smaller acceleration along the
longitudinal direction before the dissociation takes place.
Finally,; an analysis of recent pp ébllider‘s data [6] showed
that the observed strong correlation between the averéée .
transverse momentur <p_ > and the multiplicity j.s. well understood 7]
in terms of the transvérée expansion of an initially flat
quark-gluon plasma.

. The_consi_deraticﬁé above indicate that it is of great
inteiesf to obfain solutions of the hydrodynamical eguations
whicﬁ:take into.éccouﬁt also thé.transverse motions. In the
sxistent literature first we could £ind the old Milekhin's
work tS], in:which he'dqééﬂnot éroéerly solve the system of
partial differenfial eguations, buﬁ aﬁoié the mathematical
complexiﬁieé by transfoxming it ipto a system of ordinary
equations, with an introduétion of averaged guantities. 1In
Ref. [7}, we used one of his result cbhtained in this way, which
gave a good accouht of the empiricél béhaviour of <p1$ as a
‘function of the mﬁltiplicity. It is clear, on the other side,
that ﬁis treatment is incompiete in the sense that it cannot
evidently provide a more'detailed. p, distribution. Besides
the introduction of the avefaged gquantities, Milekhin's method
consists fundaméntally in éeparating out the transverse
expansion from the longitudinal one, by assuming that the latter
may be approximated fy the asymptotic one-dimensional solution
and- that the transverse expansion gives but a small change in
the longitudinal motion*. Some years agoe, Yotsuyanagi has

studied the same problem, by developping Milekhin's idea [9].

& - - . - .
Observe that even though, the final particle distributien may
be quite different, due to an additional coeling as mentioned
above. . . . .

.4,

In his paper, he obtains an analytical scluticon of the system of
partial differential equations in the large transverse-rapidity
limit. However, as will be discussed in section III, we think
his choice of boundary conditions is not correct. While we
were writing this paper, we took notice of a.recent work by G.
Baym et al. [10], where one of the ‘topics treated by them is
precisely the £ransverse expansion accompanying longitudinal
flows in nucleus-nucleus c¢ollisions. Although it is not clearly
referred in their paper, fundamentally they follow Milekhin's
preécription described above, so their method is similar to
the one we are goin§ to describe in this paper. As for the
choice of the initial conditiéns, we see some ambiguities
there, beside those characteristic of Bjorken-Kajantie's version
{11] they follow, with respect to the longitudinal distribution
of ¢,T7,s ,;.. Namely, we are now considering also the
traﬁsverse flows,.so we must knqﬁ how to specify the transverse
distribution of thermodynamic gquantities at T =T,? Apparently,
they neglect any transverse motion of fragments for << Tq ,
but since they assume a non-zero probability of forming
fragments entirely at rest, so with large mpmentﬁm—transfer, it
is. hard to understand why transverse motions of fragments are
forbidden. 1In our work,_we prefer to be more orthodox . and to
state without ambiguity all the initial conditions and.then to
solve the equations. There will appear some differences in
the final results (which are not reported in this,péper} which
follow from the difference in the choice of the initial conditions.
The purpose of the present paper is to present the
formalism used by us to solving explicitly the system of
hydrodynamical equations including the transverse motions,

applicable especially in the large-angle region. The method.



.5.

we nave employed is fundamentally the one proposed by Milekhin,
except evidently Zor the final part, where we have explicitly
integrated the system of partial eguations. Although our method
and the results which follow apply to the original Landau's
model, we have in mind a model which we have been studying [5,7,12,13],
in which during a collision one or two large fireballs with
masses M; and M; are formed, around each of the incident
particles*. So, we will specify everything with the mass M

of such a fireball, which is reduced to the total energy s

in the case of Landau's model.

An additional remark regarding the applicability of
hydrodynamical concepts to hadron-hadron collision is in order.
Several authors criticise the use of hydrodynamics in processes
such as hadron-hadron collisions, but others advocate its use
even without local thermal eguilibrium. One of the latter is
P. Carruthers who says "hydrodynamic behavior may exist without
thermodynamic equilibrium™ [14}. He argues that local thermal
equilibrium is not a prerequisit to the use of collective
variables, so formal hydrodynamic structures may exist even in
the absence of this equilibrium and could provide useful
information. 1In a recent paper [15]1, B. Lukacs and K. Martinis
have shown how to extend the thermodynamic formalism for
situations where the distribution function deviates from
equilibrium in momentum space. They conclude that the results
are compatible with continuum mechanics. We accept these

opinions in the present paper for our hydrodynamical study of

*One may imagine each incident hadron as a superposition of
virtual states with a variable number of components, but
having a definite mass. During the collision, one of these
states would be materialized with a larger mass M . We think
this is a way to take the event-by-event fluctuation of n,

- do .
<Py Eﬁ’ P ipnto account.

hadron-hadron collisions.

in what follows, we present thé method of resoluticon
by starting from the choice of the coordinate system given in
the next Section. In Sec. III, we write down the equations of
motion for transverse flow in terms of it and discuss the
boundary conditions. In Sec. IV, these eguations are solved
both in the "trivial" as well as in the "non-trivial” regidns,
by reducing the eguations to canonical form. Contrary to the
case of longitudinal expansion, the trivial region in the
transverse expansion is much larger due to the initial dimensicns
R>»> A and so much important in the latter as compared with the
former case. We explain, in Sec. V, how to compute the
physically observable quantities such as the inclqéive distribution

E Qg from the knowledge of the =olution of the hydrodynamical

dp
equations obtained above. We give additional remarks in Sec.

VI and some mathematical details are gathered in the Appendices.

IT. COORDINATE SYSTEM

The object whose expansion we would like to study
is a flat disc of thickness 2£, radius R>>{, initial
temperature T, >>T,, where T& is the temperature when the
dissociation intc the final particles takes place. The expansion
is assumed to be axially as well as forward-backward symmetrical,
just for the sake of simplicity. This is a guite natural
assumption in terms of the large-cluster model we have been
studying [12,5,7,13}. So, in the center-of-mass system of the
fireball, the four velocity may conveniently be parametrized

in terms of rapidity variables {c¢,£) as
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a"(x) = (chachf , shachf , shicosd , shisend) . (2.1)

where ¢ is the azimutal angle around the symmetry (x~} axis.

The. eguations of relativisti¢ hydrodynamics are [1]

uv
= r 2.2
BHT o ( }
where
f HY . (e+p]upuy - pguu and:
(2.3)
P = cit .

which have been exactly soilved by-Kha;atpikov_in the case of

the one-dimensional expansion. If

¥* - cie? >> v and:
(2.4)
y* »> o? .
where
- T
Yy = 4£n T_IJ r (2-5,
his solution may be approximately written as
[ @ = 4 tn BX (2.6)
% V-3 X - e

i}

: ' L
; 2 2_2 42 2_.2 Lo
Ly - 1+:n n EoX +_-1 fa [En_z tézx _ #n? %—%:I L 2.7

where A = £ - : (2.8)

I/E 2
If g << £n —ETEE_ , we may rewrite (2.7) as
y = -cfntEX (2.9}

Here, eq.-(2;6) and. (2.9) appear as the solution of
(2.2}, showing an agproximate'scéleginvariance_ In Ref. [11],
the éqale invariance is instead;i@posed as an external conditicn.

Now,. in accordance with Milekhin's method, we
introdqce tﬂe féllowing system of coordinates, which is suggested
by the solution above for the one-dimensional motion and will

show useful in solving three-dimensional problems:

] _ (2.10)

r = Yyiiz? o,
.¢ = t_a-n—1§ r

.in terms. of which we have

-t = T.chaog ’
X = T.shog .
{(2.11)
¥ = rcos¢ . : .
z = rsené¢ .

In (2.10), wy represents the rapidity of a fluid element in the
absence of the transverse expansion and T is the corresponding
proper time. The introduction of these variables reflects our

expectation that the radial motion is much smaller than the
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longitudinal one and so does not modify the latter in any
considerable amount. Actually, we will assume a=ap in the

derivation of the radial equations below (3.2). The metric
uv

tensors ¢ and guv in the new coordinate system write
1 1
guo =1 , gt = - — g®? = =1 , g3? = - —3 and
T r
(2.12)
t g”"J = 0 for no#E v
and
[ oo = 1 , G121 = -T2, gzz = =1 , gsz = -r? and
{ : (2.13)
i = £ - .
L Tuv 0 or uE v .
So,.
g = det[gﬁv] = ~rfp? ©(2.14)

Let us now rewrite the four velocity given by (2.1}

in the new coordinate system. We have

w0} = (ch(e—ao)ong , SE=Rek opp | ong | 0y
and _ {2.15})
uu{x} = guvuv = (ch{n~ay}chE , —téh(n-qn}chﬁ » =shf . 0) .

ITI. EQUATICNS QF MOTION AND BOUNDARY CONDITIONS

EQUATIONS OF MCTION
In curvilinear coordinates, the equations of

hydrodynamics (2.2} must be rewritten by replacing the

.10.

derivatives which appear thers by the covariant derivatives.

More explicitly, the generalization of (2.2} is

By, .
1 Pr=g T) -1 2 HA o . (3.1)
g et 2 3x” )

By putting egs. (2:3) into this equation and using thermodynamical

relations, we may rewrite it as

z
1)

elu r - 2 ”'u A Bg o
e ] :u"] e N & 2
ax S S L DX 3%

In the gpecific cagé'of ‘our interest, if we assume
G = oty . {3.3)

as discusséd befiore, the iatrodudtion of {2,710}, {2.13=15) into

eq. (3.2) leads to

Wbt coshbeht | (4 ofyenecht 32 + (sh’E-chafn s,
3y _
ET P 0 '

By _ CRShECGRE  GRSREE a2 BE o o i3
3= SRR R (d:f‘g—coshgi T {1—cfyshf chi 3

=

. ' _ 3.4

The second 6f egs. (3.4) is actually not entirelly
compatible with (2.6,7) in the one-aimensioﬁal flow limit and
the origin of this inconsistency is traced back to our
assumption (3.3). However, the main part of the entropy is

concentrated in the region ay; ~1 and one may show that there
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1

T
£n 2

{3.5)

A
region, we may neglect, in this pager,,theFSmgll;difﬁg;ence

when £n % >> x, . Since we will mainly. be. concerned. with: this

given above. . .
The.éﬁstem-of.eqﬁﬁtions—(344) répresents an enormous
simplification: as compared with- {3.%). We have now a system of
two equations,in-two-indépendent variables: {T,r) and the
unknown functions are vy and £. Thus, the transverse motions
have been separated from the longitudinal ones. In order to

solve this system, we must now specify the boundary conditions.

BOUNDARY CONDITIONS

AYl our approximation schene iS-based.'on' a
fundamental_aéSumption_Fhat, as far as the central region .of
theﬂdisc.is.qogqg:ne@_éndufor t<R, the one-dimensional
sclﬁxiqn_is a@goéé,desqﬁigtion of the phenomena and that the
deviation from: this appears.first at the boundary of the disc
and it propagates from outside to the center of the disc. This
is Milekhin's picture and, in our opinion, is.poth an intuitive
and.cor;ect image of the éhehomenén. Aécordinglﬁ, the flﬁidt

in three-dimensional flow_ﬁould_be bounded. by the surface
r = R+1T - : " §3.6)

on- the vacuum side and would centact the one-dimensional flow

region on

¥ = R - CoT (3.7} -

(see Appendix A for the derivation of this equation, although

.12,

it is more or less self-evident). We illustrate this picture
by Figs. 1 and 2.

However, Yotsuyanagi in his paper [9] gives another
ve:sion;fér the.bound;;ies. His argument goes as follows. _At'
the moment wheg_thg'fi;eball is formed, a weak discontinuity
Leavgs;the initial sﬁrfacé-and goes. to thé.insiée the fluid. .
At a-very early stage t-l% , this discoﬁtinuity reaches the
symmetry plane x= ¢ and vanishes so that 1t cannot be the
surface of sep;ratlon between the region of one-dlmens1onal
and three-dimensional flows. Notice that if one asspmes_a
very flat spheroidal fifeball as- he .did and obse?ve.the_motion
of the above mentioned discontinuipyzat 900 in.the,cénter of
ﬁéss frame, eg. (3.7} would déscribe its-mdtion.‘ﬂis proposal
is then taking the surface .of sepafatian as stérﬁing from the:
origi#, r=0, at t-é%., which would travel outward in
transverse direction as .t- increases. We cannot, neverthgless,
agree with this view( because we think it is in cdntradictiﬁn'
with the very basic assumption which lies under this kind of
approximation and ﬁhich has been stated at the top of this
subsection. Fox, acéording to his version, all the fluid would
be in three-dimensicnal flow at the beginning (here.we neglect
a7§ery'small intervél of time t-4A). As t increases, thé_
buxély one-dimensional-flow region.would appear behind-é
su;faée-cf discontinuity and would incpease.ihdefinitely.

. In our opinion, t 2 A << R is a too_small interval
of time where we do not even know whether it is justifiable
treating our fireball using eqg. {3.4}*7 We would reserve theif

use only for t©2A. Observe that the weak discontinuity

*
As mentioned in the Introduction, there are crltlclsms to
applying bydrodynamics.even at t-R.
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mentioned above does not reach the center of the spheroid in As referred to in the Introduction, the initial

the transverse direction but in the longitudinal direction conditions are not clearly stated in [10], but it seems that

(because 4 <<R} and along the axis, so when it reaches the they assume transverse expansion starts only after = 1q -1 fm,

symmetry plane, a new discontinuity begins to travel outward in when the materialization would occur and, at that instant, §
the longitudinal direction. It is clear that in this treatment, and y would approximately be distributed as in our case, given
a small transverse inhomogeneity is, as usual, completely by (3.8) and (3.9) at T-4.

neglected and within this approximation, the central fluid will
continue to expand longitudinally, until the surface given by

eq. (3.7} reaches the fluid element in question. Remark that IV. RESOLUTION 6F HYDRODYNAMICAT, EQUATIONS

what we are considering is not a discontinuity in mathematically

strict sense but has a certain width -4, which is neglected REDUCTION TO CANONICATL FORMS

for mathematical simplicity of treatment.

We are now ready to selve the system of eguations
The boundary conditions of our problem may now be

(3.4), satisfying the boundary conditions spécified in the last

written
Section. This will be done by the method of characteristics.
E = w and _ First of all, write
(3.8)
y & -@ ' . -
Y = y,-cfeiy |, (4.1)
when r=R+7T ,
and which separates from y the purely longitudinal contribution
£ o= 0 and as given by eg. (2.9%). The new variable y; satisfies a
(3.9} boundary condition
¥ = —cf in %
¥, =0 on T = R=CyT . (4.2}
R
when Y = R=CpT (TSE«»).
DR which replaces the gecond of egs. (3.9},
Along the axis and for T 2 — , we have : :
S Define now combinations of y, and &
£ =0 B {3.10)
¥ o= ¥y, + ook and
which we will see below in Sec. IV that implies _
{4.3)
. g . S (3.11) ' b=y -5,
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s¢ that

v, = 3 (y+6) . and

«; (4.4}

1
. = Zc, (h—g} .

M

With the help of egs. (4.1) through (4.4) and after an appropriate
recombination, we may rewrite the system of egs. (3.4) in the

canonical form as

2
fag Ya* % ay 5% M1 e L,
P33T Y Tacev, 3r T T+ cevo lr T T | T ’
i (4.5)
; 2
;39 e T ae TV T3 oa]
« 3t T TTc,v, or 1~ cpvy T T - '

where

Y-¢
2Ce

v, = th . (4.6)

This is a hyperbolic system of guasi-linear equations. It has

the following family of characteristics, which we illustrate

in Fig. 2:

f Vi + Gy

@ EL 2,
T T+eopv,

1 4.7)

V, = C,

T
a- - cgv,

These equations are precisely (A.4) of Appendix A and may be
obtained directly from (4.5) using the same procedure (observe

that tne changes of variables, {4.1) and (4.4) do not affect

.16,

the results). From (4.5}, it follows that, along each family

(a) and (b) given by (4.7), we have

Cﬁ Vi Cy )l
along {a): d\[), = m —;'t" - ; ar ] (4.8)
Co v"' Cy 1
along (b): d¢ = - ."I-_—_E:‘;: -'_'r"' + ']j:" art . (4.9)

Therefore, our procedure in solving the transverse
part of hydrodynamical equations is to integrate (4.5,9} aloné
the characteristics (4.7), using the boundary conditions
{(3.8-10) and (4.2). This will be done numerically, so, in
principle, it is possible. However, as will be explained below,
it will present some difficulties in applying the boundary

conditions, requiring a special care.

ULTRARELATIVISTIC APPROXIMATION

Let us first consider the integration in the trivial
region or region II of Fig., 2. In what the ¢-integqration is
concerned, everything goes as indicated above since its boundary
value is well defined on the curve (3.7), where (4.8) is regular
except at T=0. On the contrary, the ¢-integration is problematical
because, as shown in Fig. 2, all the characteristics (b} start
at (t=0, r=R} , where the corresponding differential d¢ is
singular. They continue beyond the region II and end at (or
reflect from) the straight line r=0, T > é%—, where we do net
have the boundary walue of ¢. Thus, we cannot integrate in ¢
neither starting from =0, nor backward starting from r=0.

Some other procedure is required to treat it. For doing so,

we make use of the circumstances that, due to their form given
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by (4.7) and illustrated in Fig. 2, the most part of the curves.
(b) pass through the ultrarelativistic region at the beginnihg
of the expansion. So we try to find the ultrarelativistic
solution of (4.5} to describe the initial flow. By putting

v, * 1, we may rewrite (4.5) as

—

nJIQJ

e
+

it
[=]
-

W, e [1_e
! ar T+c, r T

{4.10)

Qz|
Ale
+
n
o
.

3, e 1,
ax T—cy rt T

that is, in this limit the equations become decoupled in Y
and ¢, so are easily integrated. The solution which satisfies

the boundary condition
=0 =20 on r =R-cCyT . (4.11)

which follows from (3.9}, (4.2} and (4.3) is, as will he

computed in Appendix B,

( . et hﬁﬁco(Twr) {(1+ce) 1) 50

i L T+e, £n {(T+c,)T [ ReT~T ] !

{ (4.12)
j - C% R=~Cy {T-xr ) r R+T=x Co

L ¢ = 1-cq tn {T+cg¥r ((1+cu)T] "

Strictly speaking, since egs. {4.10)} are ultrarelativistic,
- they are not valid close to the curve (3.7) where E£=0 and

so imposing the condition {(4.11) to their solution is actually
not correct. It is however a good approximation, which we will

take as the boundary conditions close to (3.6), replacing (3.8).

.18.

Anyhow, from the physical point of view, it is intuitive.that
in solving the system {4.5), influences coming from the entire
boundary {(3.7) is much more important than those coning from

=0 region, or in other worths from the vacuum side boundary,

thus justifying our approximation.

BOUNDARY CONDITION ON r=0, t>R/cy

In the last subsection, we.have explained how to
solve egs. {4.5) in the trivial region. Now, we shall turn our
attention to the region IIX, where the characteristics (b}
arriving at r=0 (t.axis) suffer a reflection and leave it as
characteristics (a). This domain has two boundaries, namely,
cne which separates it from region II {curve A}, where Y and
¢ are in principle known and the other which is the -straight
line r=0, T>R/gy, where £=0, according to (3.10}, but we
do not know which is;thg-valué of .y, . In terms.of @ and ¢,
this means that we know.@-particular combination. of these.
functions there, but not ¥ itself whose value is needéd'there
in order to carxy the y-inteqgration out. -

For treating this problem, rewrite (4.5) £for the

‘neighbouring-peoints of r-axis (r=z (), where Vy=E=0

4 +.ﬁu EE + Eﬁ;

[
O

9T 3r r ’
' (4.13)
2 _ oo 3, ok
FEI T P )
Now, along t—-axis {r=0, T >R/fcy), it follows frbm {3.10}
& L (4.14)

~
@)
~
|
-
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or with;therhelp of (4.4}, this is rewritten as

e
{ (4.15)
{ %% = %%- (for r=G, T.> R/cul.-

By subtracting egs. (4.13} from each other’and. using (4.15) we

_have alkso-

%% = - %% 4 (r=0, T>R/ce} . (4.16}

Now, making. use-of (3.10F and (4.14), expand £ in (4.13) in

pgwer;setigsra:ound;a_point‘{T,O):

E(g,x) = (t,0)r

2l
ol

g

2 2 (r,0r , 4D
valid up to the first o;der;__In;theelaét.step, we have used
(4.4}-and.(4L]6}. Add . (4.13)-each other and with the help of
{4.15) and {4.16) obtain finally
9y

=~ 25

= 2, 32 . (4.18)

32

(for r=0, T>R/ce). This is a relation hetweeﬂ-the timé
va;iatian-ofﬁ.w: andiﬁhe‘space;vaxiatidn.of. ¥ aor ¢, so once
¥ or ¢ is givén for a fixed 1 and in a small neighbourhood
of r=0, it allows us to compute its value in the vicinity
along T-axis. Thus, (4;18) is our boundary condition to be

used in. y=-integration..

.20,

V. TﬁANSVERSE RAPIDITY DISTRIBUTION OF THE HADRONIC FLUID AND
THE - INCLUSIVE PARTICLE DISTRIBUTIONS

In the last Section, we have shown how to:spive
the  hydrodynamical eqﬁations for transverse flows: and to obtain
¥ and ¢, and so y and £ by means of egs. (4.4) and (4.1),

as.ﬁunctiong.of- T and r -{in our .approximation, the solution

is inaépendeht of a, .and.of the azimutal angle $). How, let'

us obtain the momentum distribution of particles.to allew a:
comparison with the expérimental_da;a. ALthough it is.not
indispensable for this end, first we will derive thé-t:ansverse

rapidity distribution of the hadronic fluid and then the

“inclusive particle distributions.

TﬁANSVERSE RAPIDITY DISTRIBUTIONS-QFHTHE'ﬂADRONiC,FLUID.

In the original vers;on of hydrodynamlcal model
the initially hot, pancake—shaped bligb expands untll each part
of it reaches seme critical temperature. called dlssoc1atlon

temperature T after which particles appear as independent,

non-interacting: objects. In terms of a current view, we wauld

initially have a hot quark-gluon plasma which would suffer a

phase,tran31t10n as the fluid expands and the temperature:

decreases. In any case, the final particle distribution as
well as the rapidity distribution™ of the hadronic fluid must

be caleculated om the hypersurface where 'T:=Tdf We have,. thus

*He cbhserve, however, that in the expansion of the quark-gluon
plasma, an additiomal complication appears.which is related to
what happens with the system during the phase tramsition. It
will surely continue to expand but, as far as we know, this.
problem has not yet been treated in the literature.
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a8 = n u" V=g da i . (5.1)
' ulpag

where n is the particle density and dou are the components
of the surface element (inclusive the normal direction). The
meaning of eq. (5.1) is clear, especially if one uses the
Cartesian coordinates when +-g will be reduced to 1. In our
coordinate system, u" are given by (2.15) and, with the

-approximation (3.3), they become

u' = (cht,o0,sht,0) . 5.2
By using the usual procedure®, we obtain for dcp in the same

approximation
dou = doyd¢ (-ar,0,41,0) . {5.3)

So, by putting (5.2), (5.3) and (2.14} into (5.1) and considering

the axial symmetry of the problem, we have

dN = 2w n tr(shfidr - chidride, . {(5.4)
d
where the signs have been chosen so that {t1,r) integration
starts from the point (0,R}. It is convenient to rewrite [5.4)

in terms of dEi instead of dr and dr, because we are

interested in £ distribution. Then

AN = -2nn ——3E (sht 3L + che 2L, dfda . (5.5)
(9 (E,y) =T34
ia(T,r)
*See for instance Ref. [16].
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where g%%f%% is Jacobian of the traﬁsformatiéﬁ (E,y) + (T;r)
and we have also replaced o by o, with the help of eq.(3.3i.
It is clear that the distribution given above -is independent
of the longitudinal rapidity o , because of our approximation

(3.3). More correct a-distribution would indeed be an

approximate Gaussian as it follows from eqgs. {(2.6) and (2.7).

INCLUSIVE PARTICLE DISTRIBUTIONS (FOR FIXED M)

Ij order t0nobtain £he . (semi-) inclusive particle
distribution, one must further consider the-thermal.fluctuation
at T=Td. The correct receipt for this, consistent with
energy conservation, has been obtained by Cooper and Frye [17]
starting from the transport theory of a relativistic gas and

reads

'
P~ Y=g do
edl. ¥ — - (5.6)
dp (2m) 3 exp(E/Td) 1
where the integration :is taken over the hypersurface T="T4,

w is the stétisticéi'wéight and. p" is the four momentum of
the particle to be. observed, which may be written in our
coordinate system (with a=n, ~and using the usuval rapidity
variables ¥,.,¥y,) as

p¥ = m(ch (¥, ~alchy; ,'%-s'h(y,,-a}éh'yl , shy,,0) . {5.7)
The proper-fraime energy B -is eipiesséd in terms .of the center

-of-mass frame lof-M)wvariéble:aS“

E =m [ch(y”—a,-)_chy‘_ chi -'shy, shf cos t]):l . {5.8)
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By putting (5.3), (5.7) and (5.8} into (5.6), one

abtains

wm (rr ™ [shyj_ 4t ~ chly,~alchy, dr:l do g

= i1

(21} BRI e {Tﬂ [ch(y,,—oc)chyi chE - shy, shicos ¢:1} +1
T=Td a "

%dg

(5.9)

. .2
Despite the a-independence of g%ﬁ% as given by eq. (5.5}, the

integrand above contains c-dependence which predominates over

2
the actual c-dependence of é%j% ag discussed below (5.5},

U uecanse of its sharp form.

VY. CONCLUDING REMARKS

In: the present paper, we have developped an

" algorithm for solving the hydrodynanical transverse expansion
of an initially flat {A<<‘R} and hot (Tu>>tn“) disc of large
mass. M and obtained both the rapidity distribution of the
fluid and the. inclusive particle distributions which emerge
frqmvtheﬂgxpansiqn;. Although cur aim isgapplying; this
prescriptionﬁfirst-to-studying hadron-hadron collision, it may
evidently_bé.usédqalso-for nucleus-nucleus collisions.

The basic assumption of the presént receipt is. the
approximate -validity of the 6ne*dimensional gsolutien as given
by -eq. (2.8) [and eq. (2‘9)}, which allows to separates the
transverse from the longitudinal flows: The resulting couple
of eguations (3.4) for transverse flows. are .then put in the
cancnical form (4.5}, which allows.the . integration along the
characteristics, egqg. (4.7), with the use of egs. (4.8} and

(4.9} . This result is always valid as far as the assumption
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above remains valid.

As for the initial conditions, we have assumed the
fluid begins to expand at a time t=A=0, in accordance toc the
nost orthoaox vieéw. If one assumes a model as discussed in
[11], we think natural to include also the transverse rapidity
distributioh of fragments or of £ at T=74. Such a distrﬂmﬂﬁon
would probably be more.or less constant ever R, but with .a .
surface with a finite thickness which -would incfeﬁge,ﬁith Ty
(if. ¥ = const. , as_assumgd by thoseraﬁthors). A;though.there
is no apparent reason to being s0, the expansion for T< Ty~ 1fm,
as calculated he:e:may well simulate this thickness-widening
effect, Thi§ is_éértainl& the:case.in‘the.one-dimensional
approximation ta tﬁeating.nucleus;nucleus.collisiéns.iﬁzthe:
central rapidity_regiqn; when v==§" is usually assumed and .

t

then the soufce is guéssed by uéing- é%&' for nucléon—nucleon

13
collision [11}.

An explicit numeriecal computation will be. reported

in the forthcoming papger.
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AP?ENDIX A

In this appendix, we calculate the surface of
separation between regions of one-dimensional and ﬂuﬁeqﬁnsmsﬁxwl
flows. Such a surface is given as a characteristic surface of
the. system of equations (3.4), which describe three-dimensional
flows. Following the standard method*, the eguation of a

characteristic surface is written
Flt,r}) = 0 R (a.1)

where F is a function satisfying

: oF 3F
X - (1-c}) shgche 3E - (sh?€ - clen?g) 2
=0 .,
IF ' aF
% (ch?E - cfsh®€) 3= + (1-c})sht chf 2E

{A.2)

By developping this equation and factorizing it, we may rewrite

it as
[(chi—coshi.) 3F + (shf - cochE) %il:l
x [(ChE-FCQShE) %% + (shE + cychi) g% =0 ’
o
(chE + coshg) 2L = (coohnt + shE) g—z -0 . (3.3)

By dividing each of these eguations by %% » we obtain

*See for instance Ref. [18].
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dr  _ ' ©y £ thi BRI
at = *Tsgehe - _ (A4}

" 56, we have tvio characteristics of egs. {3.4), which pass on

each point. The first of these equations represents a surface
which moves outward, whereas the second one corresponds to the
one which goes inward (with respect to the fluid element). In
Sec. IV, the system of egs. (4.5), which is just another form

of (3.4}, will be infegrated follo&ing these. characteristics.

In the particular problem of surface of separation th$£'ﬁe are
considering presently, we choose the-minus_s;gn in (A.4) and,by
using the boundary condition,put £&=0. Taking alsoc the initial

condition into account, (A.4) may-be easily integrated and gives
r = —gt + R ’- (4.5)

which is our eq. (3.7) of Sec. IIXI. Although it is clear
enough that the other boundary of the three-dimensional-flow
region is given by (3.6), remark that it may be obtained in a
similar way, by taking the limit £-+= of {A.4) with plus

sign.
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APPENDIX B

Consider the equations

ar 1+cg r :

2 a B
(20,20, co [1 - _c_:_] -0, (B

Q

3t T3¢ ¢t 1+Cn'[r * "r] ’;0 ’ . (8.2)
whichvwe.wouldmlike.to_solﬁe'&ssuming-
p=¢ =0 - on I = R=CeT . " (B.3)

Take (B.1)} first. Its characteristic as well as it sclution ¥

satisfy the following system of ordinary equations (in g }:

de _d2 _ @ | ag . B.4)

J ok (1_ed)
I+cp ¥ T

Upon integration, this will give

T = g+ Ty '

L = q + ID r . {B—-S)

ci

¥ o= - Tre, .E£n(q+ro} - caﬁn(q+10}] + P

or by eliminating the_ auxiliary variable. g and now t'_a]_c'ing. T

as: the independent variable

Y= T~ Te+Lo '
{ » : ' _ {B.6)
1 . .
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_Due‘ to the boundary condition {(B.3}, we have

i Ty = Re-CoTy +
. , o . (B.7)
Y =0, when T=T5 0 :

From. (8.6} and’ {B,7) , Uit follows

" tB.8)

The insertion of this into (B.6)} gives finally

S L e o £ '-T;:. ¢6; :
_.oCan p o Reeedt=8) [ l{i+cola |7 C
ey E_n ['-(_‘i“;{c;ﬁjr _ .[_3’+ Tz 'r] ‘ :' * e (B.9)

The.integration of (B.2) is entirely similar. so. we

do not: repeat it here, The result is

oL ek -ﬁ‘—;éa.('&.-r) R+t " ' :
¢ = T, in [(1 -&-cb)r-"(‘(ﬂcb)‘r] :| . . (B.10)

tBiB}'andﬁtﬁgjoy aréuéfegiSely the ultfarelativistic solution_'

' given in Section IV.
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FIGURE CAPTIONS

Fig. 1 - Contour of the fluid as seen in the center-of-mass

Fig.

2 -

frameJQf M-,. at an instant t<R/cy. The broken lines
iﬁdibéte*the'bouhd&ry between the three-dimensional-
flow region (outside) and the one-dimensional-flow

region -(inside).

(Proper=): time evdlﬁtiongdffthélﬁﬁundaries~among the
vacuum, the "trivial® fhreeéaimenéidﬁal—flow region
{II}, non—trivial-three—dimensionéiuflow‘région {III}
and the-dne-&imensionaléflow_region {I). The two
families of characteristics given by egs. (4.7} are

also schematically shown.
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Fig. 2



