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ABSTRACT

We sketch an alternative picture of éosmological
phase transition and study its implications to the formation of
structures in the very early Universe. We show that thé
condensation of walls at high temperatures leads to fluctuations
which are in accdfdanée to all necessary conditions to the
formatién of structires in the Univeﬁse. Furthermore the number
of aglutination centers is foughiy equal to=the numbers of great

structures observed in the Universe today.
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INTRODUCTION

After reaching some remarkable successes such as
the prediction of the microwave cosmic background radiation,
the quantity of primordially synthetysed light nuclei, and with
the Grand Unificatioh_Theories being able to explain the net
predominance of matter over aﬁtiméﬁter in the Universe, the

Big Bang Standard Cosmology seems to face two categories of |

difficulties. On one hand the cosmological constant proﬁlem(1)

that urges for a solution, on the other, conundrunis such as

(2T, horiZon(BJ, flatrnéss or ‘age 6f the
and even the excess of magnetic monopales ®! ‘which

the izotropy-homegeneity
Univérse(4)
would have been produced in the very early stages of ‘the Univérse,
that are all solved by the Inflationary Cosmology in "its ‘two

{6} {7)

versions . This model that is based in the existence of & phase in the
history of the Universe dominated by the vacuum energy density, actually
makes the cosmological term suggested by finite temperature field thecry to
be an essential ingredient of Cosmology, rather than a problem. It is worth
pointing out that some suggestions which consider the guantum gravitational
effects during the "Planck Era" have some potentiality to solve
the mentioned'problem in ‘a unified maﬁner(B).
{9}

Besides, the

work of Starcobinskii- shows an alternative possibility of"

using the cosmological constant to isotropise the Universe.

The purpbse of this work is to outline some non
orthodox ideas which can give some insight intofthe solution of
the first category of difficultieé with some other interesﬁing
consequences such as the -solution of the domain-wadlls

(10} and suggest a consistent mechanism to generate

problen
barionic structures in the Universe. As the key point of this
proposition is based on an alternative approach to this study of

the Cosmological Phase Transition, we will sketch cur new methodology
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parallel to the traditicnal point of view on the topic(11).

The discussion will be brief and the cosmological conseguences

will be presented reviewing some well known facts.

I. PHASE TRANSITIONS IN FIELD THEORY

1. EFFECTIVE POTENTIAL METHOD

Phase . transitions in field theory are studied
bearing;inmmind‘that,the:theories_which describe fundamental
inte;;qtions_among;elementary particles, are spontansously
broken_throughout the development of a non-zero expectation
value of the fields in the vacuum state.

. Let. us, illustrate with the simplest possible model
the.real_sgalar field with self-coupling ¢ and wrong

sign.for the mass term. Its Lagrangian density is¥:
L= 2 (3 gMx}IZ 4+ L u202(x) - 1 g % (x) (1)
2 u 2 ’ 4

and has the discrete symmetry dix) + -P(x) . The extremal

values:. for VI(¢) are:

& = 0 {unstable) . (2)

¢='¢/§ (3)

therefore one has to-have a nonvanishing vacuum expectation

value of ¢,

<0|d(x) o> = ¢ /ng R _ (4)

*The unit system dHi=c=k_ =1 will be.adupted._ 

.3

The perturbation theory must be built up in terms
cf creation and annihilation operators of the field guanta, so

that the latter annihilates the vacuum. 8o we define
$r{x}) = ¢(x) - <0fep(x)|0> (5)

which breakes the  ¢(x) + -¢(x) symmetry when replaced in (1).

Classicaly, the field energy density is given by:
Hig,my = L2+ 3 7012 « vig) . (6)

The spentaneous symmetry breakdown that occured may be
understoqd in terms of energy.becggsg from (6) the configuration
b= (4). is less energetic than the configuration +¢=0 (3) ,
being thus preferable to it.

Quantum effects might introduce significant corrections
to the résults discussed above (based on the classical enargy
(6)}. At the Quantum level we should look for the minima of the

effective potential which generates all one particle irreducible

graphs (TPI) at zZero momenta. That is

I 2 ™ o000
n. ’

i

T(p)

Actually, we compute explicitly only the first
Quantum dorrections which are obtained by summing up the one
iloop graphs.

The generalization to finite temperature through

the extension of the usual Feynman rules (Jdkn + 2t T 3
n=—%
and so on) leads to the idea of phase transitions(11). That




.4,

happens so because tlie minima of the effective potential is now
temperature dependent o =0{T) (thus playing the role of an
order parameter} and it gets smaller as temperature increases
and vanishes above a certain temperature - Tc - thus leading

to symmetry restoration.

2. ALTERNATIVE METHOD FOR THE STUDY OF PHASE TRANSITIONS

Model (1) admits the existence of macroscopic
solitons. These soluticns ihterpolates between different vacua
of the theory,and consequently divide the space into domains,
functioning therefore as Bloch walls,

At first sight one has the impetuous of discarding
these solutions since the partition function asscciated to
such a configuratidn is proportional to axP-%% where A is
the soliton area and E the enefgy pér unit area, and it
becomes zerc in the thermodynamical 1limit (V+®, A+ o} ,
Consequently the soliton seems :not to be thermodynamically relevani.
Nevertheless the emergence of a scliton alters the entropy of
the system and consequently if we want to decide whether or not
a soliton is thermodynamically favored the correct analysis is to
consider the free_ehergy associated to such a Bloch wall per
unit area, that is

£,011(T) = E-Ts(T) . {7)

At low temperatures fw(T) is positive and a Bloch
wall will not appear in the system. As the'temxmahme increases
the entropy term in (7) takes over the energy term and, in
accordance with Peierls arguments, walls will sprout in the

system. One then expects that there is a critical temperature

.5,
Tc , Ssuch that
a) T > Tc fwall <0
(8)
P) T < Tc fwall >0 "

E#p?éS?ionéIIS—b) indicates that-configuration with
one domain wall is thermodynamically supressed for T < T
whereas (8-a) means that for T T, configurations full of
domain walls are favored.

.As argued in refs. (12-14}, T_. is the critical
temperature of the phase transition.

The Hamiltonian densiﬁy of model (1) is: _

s l'A[ﬁ)z cl e S et D

2 03t 3 - 4.

and the sclutién describing a soliton at rest'paraléli to the

¥z plane is.

tan£X {10)

pix) = E
i z

whose classical ‘enetgy density is given by:

Eclas

B . _.' RTE -
- 'J Hax = géz B (11)
(peint zero corrections to this energy are proportional to u?
and therefore irrelevant to interesting situations in coamﬂcgy,_
e.g., when T>>qu). It is also good to remember that here we
take g<<1, which is necessary to validate our semiclassical

argumentation.
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. The free energy per unit area of the wall is given
bY(‘iz)

1 &
1(T) = F + B2 (T) - (Fvac-bF {T)) (12)

fwal sol

where F -F =E and F*T), F°(T) are free energies of
sol vac

excitations in the soliton sector, and the free energy in the

vacuum sector respectively. It may be shown that in the limit-

T>>n one gets(13’14y

(V2 ?  pr?

wall = Iq a3 {13)

The. critical temperature. refers to the fsol(Tc)=.0 situation

ang.so.. . . .
/8 1 )
T = 3 - B - (14)
c 3 /5 _

which is guite close to-tha;c:itical-temperatnre_ Tc = 2 _%r
obtained by orthgdox;proceéurestlj{;

Up to. now wgnﬁaVé shdwn.that solitoné will.emerge
in the system but nothing has been said on .counting them. At
first sight one might thing.that.there will be produced an
infinite number of domain walls. However, as pointed in refs.
(12),113),(14) this is not so. In ref. (i4) we have shown how
to count walls for temperatures very close to Tc' We will
repeat here the proposal for éoanting domain walls discussed
in refs. (12) and (13}.

The theory is defined for the volume V=AL=1L?
and the Nth configuration contains 3N solitons (N solitons -

parallel to each of the volume faces which involve the. system).

The system tends to produce many solitons, because they are
thermodynamically favoured configurations and that could make
it collapse. Collapsing does not occur because of soliton
interactions which are supposed to be proportional to the inter-

15y ¢

secticns between them, that is, oau?/gL with o ~ 1
A is the distance between neighbouring solitons and 4 =1L/N,

then the system's free energy of noninteracting walls .shall be

3L° (Ty . ' (15}

Ty = =5 fuan

F_N = 3Np_‘-fwa}.}.

But,. if we take into account interactions occurring in the
intersections and remember that there are 3N? intersections

to the proposed geometry, we get:

i~
o

[
w

Eal
1
t
2
[
=1
[
[
Q

(16)

=
jte]
[ls]
]
o

F o= 3V |—p o = (17

the sfability is obtained with 3N, solitons (3N, = L/fAg) ,
which_minimize_(17). It is easy to show that in these
circunstances the average distance between neighbouring solitons

is given:by:

a4 ey _
w7 d [[Tc] - 1] _ : (18)

with




o . ‘ - ' C(19)

We see that the average distance between the solitons

must obviously be greater than their typical width which is

approxinately %1f1- This fact establishes a limit temperature
. 1
to the validity of the proposed approach, T, = {1+ 3VZ a) /2 T,
F, (T) P :
N s %[(T)z - (Tc}{l. for T T, . £20)

The energy density of the solitons maf easily be calculated by:

_ Ewall - AE 3Ny 3Eclass (213
Pwall ~ v - class L3 - Ay
and  sc-by using {18} one: gets
u? 2 . 2| . 5
— e — - 1. > -
Pya11 (™ = 33 [(T) (Te) ™ T2 T (22)

'The symmetry of the system is recovered at T> 'I‘c because the

solitons that come up split the space into regions sometimes

with ¢ = + Yu?/g , others with by = Yui/g , so that
'<¢> ;'&. .Thé'éYmmétry'restoratiOn as a result of condensation

" of domain walls is é&Sily understood by looking at figure J-a.
The discussion above can be summarized as follows:

this theory describes domain walls (solitons} with a natural

thickness -~ %. This means that for TE'I‘c the average

distance between two neighbour walls cannot be smaller than

Ay - 1 (otherwise the soiitcns are so superimposed that one

[
can no longer speak of domains or domain walls). Then for

. 9.

T-Tc one has an estimate for the number of domains in the
system. If the Universe underqgoes a supercooling,. this number
of domains ié going to be preserved till the system reaches

the lower:temperatures, at which it starts decaying and
reheating agaiﬁ. Withiﬁ this picture one then expects that the
number of structures in the Universe should be equal to the. .
number of seeds that generate them {(which we call aglutination
ceriters) . _E#om the countings of domains one can predict the
number of'aélutinétioﬂ centers. This calculation and others

cosmological implications will be discussed next.

IT. COSMOLOGICAL IMPLICATIONS

The electrdmagnétic=and weak inte;actioﬁs aré
nowasdays déscribed by a theory which ﬁnifies the description
of these interactions. The theory of Glashow—Weiﬁberg—éalém
makes use of the mechanism of spontaneous breakdown of Gauge
symmetries. .

It is believed that_the electromégnetic, weak and
strong interactions may be aeécfihedrélthogethef.by meéns of a
unified'thedrf whose symmefry éroup is G: In ordef to get
the low energy pﬁenomena déscribed by the.mxmp SU(BiXSU(ﬂ fﬁ(ﬂ
one has to break the symmetry spontaneously.

One c¢an argue easily that theories whose symmétry
is spontaneously broken would exhibit symmetry restoration for
temperatures higher than the scale at which symetry is broken. One .
then expects, if the system is coélea;a phase transition whose
critical temperature is of the order of the order parameter at

Zerc temperature T, - oi0).
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The verv early Universe consisted of a very hot
soup of elementary particles whose dynamics was described by
these unified theories. As the Universe expands it must have
gone under a series of phase transitions (depending on the

Unification Group}, until it reaches the known low-energy

symmetry SGC(3)X U(1} . That is
G, *G _ T eee. *G R SUC(3) _><SUL(2) XUy(‘l) e SUC(3) *Ug . {1

T - 10° Gav

1. EXISTENCE OF DOMAINS

‘Unification theories that have § > —¢p symmetry,
have regions at a temperature lower than Tc with expectation
values as many as *g and could therefore be separated by
walls. In the Effective Potential Method this fact is a problem

because the superficial energy density of a GUT wall(16) is:

_ 3 _ by _ 4 ~32
Ewall = Goyp - MH {10 10" )geom (23}
and if these walls are expanding as fast as the horizon(17), it
follows that a wall would have a size of the order of our
' present horizon (dH(U,tp}), that is
-~ - 28
Rwali dH(O,tp) 10°° cm (24)
which implies that the energy asscociated to one wall divided
by the energy of Universe is given by:
E E L 82(0,8 )
11 1 !
wa- - class H - P - 70%% - 1050 ) (25)
univ P dH(O,tp)

.11,

where p. 1is the critical density emergy, o @ 107 2% gem™?® .
Therefore, the discrete symmetry cannot be accepted in these
appreaches {a term = Tr #*® is usually introduced in the Higgs
potential so as to break the symmetry by hand, and in consequence
forbid the existence of walls). However, walls can be very
interesting to the formation of structures in the Universe, as
we will see.

Within the alternative approach there is a natural
solution.to this problem since the walls are the solitons which
can appear only above the critical temperature, as discussed

aiiove, and ave {orbidden below Tc'

2. THE COSMOLOGICAL CONSTANT PROELEM

In the usual approach it is possible to show that

- (1)

9 and considering the GUT and Weinberg-Salam
vacuum c

vhage transitions, we have:

1073 gcm™? .GUTS
~ L
p T, {(26)

102° gem™® G.W.S.

In the present the energy density of the vacuum is estimated by
supposing that it does not dominate the dynamics of superclusters

of galaxies* and so:

* pnother avaluation leading to the same comstraint as (27) can be carried

out with the values extracted from observations of the Hubble constant

(Hp), desacceleration parameter (qp) and the density parameter (Q = éL) .
T is possible te show(18) that at present ¢

Op = 29+ 2A h AZ 8

,pw.qp 3 , where Z87Gp

IH vacuum
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pvaé < Pge T 1072 gem™* o (27}

then, assuming that oy, saturates the bound in (27) one gets

B i ¢
vGUT _ 4,107 or SYW.5. 450 4y, (28)
pvac pvac

and these huge differences have no explanation within this
point of view.

in the alternative apprcach the energy density of
the condensate of walls may be interpreted as a "cosmological
constant" and as we have seen, the contribution of solitons is
small and tends to zeroc below the critical temperature according

to (22).

3. FORMATION OF STRUCTURES IN THE VERY EARLY UNIVERSE

The standard cosmolﬁgy based on Friedmann's model
assumes that mattér and radiation have been homogeneous and
isctropically distributed during all the history of the Universe.
Consequently the formation of nowadays observed structures of
the Universe such as galaxies, clusters of galaxies and super—
clusters, demands - the occurrence of small fluctuations in the
uniform energy density.

(19 has shown that density and pressure

Lifshitz
perturbations in an expanding Universe increase in accordance
to a power law with time + ,

8p n
o0 L 29
t (29)

as long as the perturbations are greater than a critical length,

.13,

which is called Jeans' length- (X > AJ):

1
) 72
Az T Vs [G_p} (30)

where Vg is the speed of sound in the determined medium given
by the well krown-expréssion in terms of the derivative of the

pressure (p} with‘réS§éct to'thé'density (p)
1
/2
v, - [32} . _ (31)

The perturbations become effective when they enter into. the

horizon, i.e., in region casually connected, that is:
Agle) < ggo,e . o . 132)

For a Universe domihatea-by tadiation (p =T , P = p/3,

v = 1/¥3 (c=1) , so that:
Ay - dH(o,.t') B . o (33

and besides, the photonic viscosity due to Thomson's scattering
freezes the fluctuations, not-pérmitting them to Increase.
Conseguently, the gravitational irstability mode is only
triggered after the recombinaticn when the Universe has its
energy density dominated by ﬁon relativistic matter. Assuming
that in the latter situation matter behaves as an ideal gas

{(p=0T , p<<p), then it follows that:

1
Ay o= 2.9x701°® Slp_/z cm {34)
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where 8 =p/pc. The corresponding mass {(Jeans'® mass} is given

in terms of the solar mass Mg by:

ar
5 3 Prec

1

1
19°% M Q;/Z (35)

3
J\.Zl' e}

that is very close to the mass of globular clusters‘zo),
nevertheless inferior to the known spectrum cf galactic masses

M., 105 M

< < 12
- o = MG < 10 M@ .

The magnitude of the primordial density fluctuations

was established by Zel'dovich(21)

throughout the compatibility
with the barion-photon ratio that is presently evaluated as
r = (nB/nY)? ~ 107%*Y yith temperature fluctuations observed
in cosmic microwave background radiation (8T/T - 107%) and

with the guantity of primordially synthetised elements

{consistent with r),
@1 - 10-%
[o 10 . 36)

On the other hand, density fluctuations may be:
1} Isothermal (6T/T=0) , when only barions fluctuate.

2} Adiabatic, when the ratio nB/_nY is meintained constant,

that is, barions and photons fluctuate. These fluctuations are

(22)

subject to strong damping so that no fluctuations envolving

masses smaller than M, -~ 1012 My, for @ =1 or M, - 101 M

o D ®

ﬂp: 0.1 can survive(23),
Although in general fluctuations contain both
patterns we guoted above, the following scenarioc derives

raspectively from them:

.15,

1) Hierarchical, where the small structures are formed
first and the larger ones are built up by gravitational inter-
action. In this picture, for example, the rotational velocity
of galaxies is due to tidal forces among neighbouring galaxies,
which consequently have opposite angular velocities and the
covariant function for galaxy distribution does not present any

: , , 4
characteristic mass scale(2 ).

2) Ffagmentary, where due to dissipation the larger
structures come up first, and the smaller ones are attained by
fragmentation due to shock waves that would cause the structures
to rotate. In this kind of model the covariant function must

show some characteristic mass scale of order M holes and

{25)

D r
strings of matter can be explained
It is considered a strong argument in favor of the
adiabatic fluctuations the fact that proposed mechanisms to
generate barionic number within the frame of GUTs freezes out

the quantity r = nB/n# being consistent only with adiabatic

fluctuations{zﬁj, fact which has been considerably well

exﬁiorea(27){28)(29).

A propesition on the formation of structures in the Universe

The use of elementary particles spectrum to generate
priméfdial density fluctuations and solve galactic dynamics
problems is almost a sort of tradition. The list of examples
is very wide and includes massive neutrinos(30) (3”(32),
(33)’ {34}

(36)

; gravitinos

(35)

photinos axions and topological cbjects as strings

and also domain walls in spite of dramatic estimations as
(23). Following these steps we propose that the remnant of the

walls that emerged from the alternative conception to the study




e

of phase transition should work as structure seeds.... The
following conditions must be fullfiled for the proportion to be

congistent:

1)} The étructﬁres that act as seeds should not aissipate
until recombination. This is possible if we keep in mind.that:
a} topological conservation laws assure the non-dissipation

" of strictures such as walls (solitons) ;
b) although the behaviour of walls becciés unknown below T_ within
" the éq&ilibfiuﬁ tﬁérmodynamical apprqéch, it is believed
that the walls would close as "bubbles" with a diminishing
radius until zéroitemperaturé:when-fhe system reaéhes a
unique phdée. A rough-:epresenfation of the real situation

would be that giwven by figure (11.

'2) The presence of walls should not alter significantly
Hubble expansive flux. This can be demonstrated if we suppose
that the "bubbles" are uniformly distributed and integrating
Friedman's_cosmologic dynamic equation in the presence of
solitdns, thaﬁ is: ' .

'é- -; 811G S -é.
R. (F) ko= 3 (ppa;ticles+pwall_s)_ R (¢} i (37
The relation between' R(t) and T is obtained
from the covariant conservation of the matter and radiation
ehefgy-momentum tensor and from this it resulted that RT 1is

(17,. This relation is a véry good approximation when

constant
solitons are present because their contribution is subdominant.
In order to see this one has to extend expressions (20) and {(22)
to GUTS and. to the Weinberg-Salam model. Explicit calculations

(37}

in Gauge theories indicates that, roughly speaking, the

extension of -these expressions to Gauge theories are given by

17,

o, . , L _
p(T) = 35 n(M)T" + niT) - (7%-72) (38)
i _

p(T) = 35 n(T)T* + n(r) 3L (r?-12)° (39)

where u is the "wrong mass" term in the Higgs potential =a(T)
is the effective number of degrees of freedom at the temperature

T, For a GUT such as 8U{(5) Bogp ~ 160 whereas for the

Weinberg-8alam model Rye ~ .97 . {One just recall that one has

to introduce a convenient spin degrees of freedom factor

7).

counting In order Lo see how the présence of domain

walls affects the evolution of the Universe we make the

{15}

approximations, a=1 and

niTig ~ 1 . - ' - . {40)

The hypothesis {40} is perfectly compatible with the semiclassical

approximation. -From the explicit integrations one gets -

2,3 M 3,7 M oomr? o
e =1 {.1072 R, | x1mﬁ.2+_2£_%mfg+_“
3,0 T* 7:9 N Prgt | -

(41}

whare MP‘ is the Planck mass (MP==G_%Q) and the uppéf numbers

in brackets in (41} represent -the result for minimal SU{5)
whereas the lewerlnmterg_Eep;esgnts_the_gontribution of thg/,
Weinberg-Salam medel. Thus one can see that thg presence of
domain walls just represents 3:subdominant_gontribution to th;t:
rredicted by the standard Friedman model {the first term in the

right hand side of (41}).
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3} It becomes necessary to satisfy Zel'dovich's {36)

condition for the preoposed scenario:

(9.10"" GUTS

) e
wall = wall - (42)

total p;m:ticles

Se .
a T p

16 107% w.s.

which is consistent with (36). This ratio has been computed

for T= ZTc .

4) The length of fluctuation must be greater than Jeans
length, so as to enable it to trigger the gravitational mode

(29) when recombination occurs.

The length of fluctuation that is proposed here is
essentially the distance between two walls and it is given by
(32} when is close to ’1‘c . This dimension can be evaluated
supposing that the remnants of the walls below Tc ;. expand
conformally(10) keeping the ratio between the distance between

solitons and the horizon distance constant and so during

recombination:
oS ' ve .
& - x g (0,5.) = — x 2 10% years =
4,(0,2.10 2.2 10‘”seg
z 1.4 102 em . _ {43}

that is larger than {(34). So the fluctuations generated by the
objects produced during the GUT phase transition obey all
necessary conditions to the formation of structures in the

Universe. The corresponding mass to {43) is:

GUT _  Am 3 ~ 10 : .
M = T e Loy 10 Mo szp- (44}

.19,

which fits very well in the galactical mass spectrum and is
probably consistent with all of them if the dynamics of the
"bubbles" below Tc is considered.

If the same path is followed for the Weinberg-Salam
phase tfansition, it is possible to show that the generated
fluctuations are non~relevant because LW'S' << AJ. As. the
walls do not_chénge the phetonic bath, the proposed fiuctuations
are isothermal and so consistent with the hierarchical scenario.
S legitimate cenclusion wéuld be that the number of aglufination
centers is roughly the number of great structures observed in
the Universe today. In fact, one can estimate the number of

aglutination centers. This number is roughly given by

1.9.x 108 . {45)

[

QuT, 4 3
dH(O,t }
a§vt

n .
‘aglu center #

The'greater known structures are the superclusters
of galéxies that consist of groups with an average of 105 galaxies,
that have densiyiesréipge to critical p_ - 10729 gem™® and
spreaé‘overfdiﬁéﬁéiSﬁé from 50 to 100 Mpes {from 1.5 to 3.0 1025 cm),
Thefﬁuéﬁéfrdf these structures {sub-clusters) may be estimated

by the ratio

a. to,e 3}°
n - | B P
‘sC d

5C

7.10%-6.10° {46)
because t_ - 10'° yea da d,(0,t ) = 3t_ = 2, 1e
o years an H( P} tp 2.7x 10 cm .
The results from (46} and (45} are quite close to
gach other. If it is taken into account that superclusters

have ppcul;ar speeds of 100 km/s , we may conclude that durlng

Hubble's period these structures must have moved just some
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Mpcs and that their distribution is. therefore cosmological

making thus the above ceincidence very interesting.

CONCLUSTIONS

We sketched in this paper an alternative picture of
cosmelegical phase transitions. It differs from the orthodox
one in many respects. This new picture is based on the idea
that symmetry restauration will take place as a‘result of
condensation of topologically non triwvial field cenfiguration
being thus very close to the Kosterlitz-Thouless picture of
phase transitions.

We have also studied some cosmological implications
of the alternative picture such as the cosmological constant,
the domain wall problem, the density contrast asscciated to a
condensate of walls and its role in Galaxy formation. Our
picture leads to a natural solution of the wall problem in
cosmology as well as to a small value to the cosmological
constant.

The most impressive results however, from the point
of view of cosmology, are concerned with the formation of
structures of the Universe. Up to now much efforit has been
made -in obtaining Zeldovich's contrast density. We have shown
that doﬁain walls provide the demsity contrast of the required
order of magnitude for Grand Unified Theories and the Weinberyg-
Salam Model. If one imposes further that the length of
fluctuations do exceeds Jeans' length then only the
fluctuations generated by GUT phase transition satisfies this

requirement. We have shown that fluctuations criginated from

makes this coincidence even more interesting.

.21,

GUT phase transition obey all necessary conditions to the

formation of structures in the Universe. Furthermore a rough
estimate of the number of aglutination centers is egual to
the number of great structures observed in the Universe today.

The fact that the distribution of superclusters is cdsmological

The proposed scenario is of course unable to cope

with a wide variety of important difficulties concerning the
ctandard Big-Bang model and it has the disadvantage of being
consistent with isothermal density fluctuations. It is an
interesting example of how some troubles in cosmology can be
solved even without a more fundamental approach invelving

guantum gravity corrections in the Planck Era.
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FIGURE CAPTIONS

Fig. 1 - Pictuie'of.symmgtry restbrat;on and breakdown as &

result of "defects" in the system.

Fig. 1-A - Picture of the system for T >-T'¢' . Under these
circunstandes”tﬁe'éystem restores the symmetry as a
résﬁ;f.of a condensate of domain walls.

Fig. 1-B - Image of the system:fdr'_TéiTc.

Fig. 1-C - Image of ‘the system for“'ﬂ?<?*TéLﬁf'
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