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ABSTRACT

The three-dimensional expansion of an initially flat
and hot disc is studied, by using the previously developped
formalism. As expected, the results show that the "trivial"
region is much more important in the case of transverse flows,
unless the total energy M is much larger than the presently
available values. As M increaées, %% increases at the same

time that its maximum moves cutward giving an increasing <E>

which is close to the value estimated by Milekhin.

I. INTRODUCTION

The purpcse of this note is to present some reéults
which have been obtained by solving the hydrodynamical eguations
applied to stﬁdying the transverse flows of an initially flat
and hot disc.‘ Our version of hydrodynamics is the most orthodox
one (1], except that the total energy of the system M need not
to be equal to the incident energy, but rather it is an event—
dependent fraction of the latter [2]. .

Mapy important guestions should certainly be
clarified if the results of.such a study are to be applied with
confidence to some realistic problem. Some of them would be
a) What is the nature of the fluid? b} Is there local thermal
eguilibrium? ¢) Is hydrodynamics applicable to high-energy
collisions, especially to hadron-hadron‘collisions? d) Which
are the initial conditions? These guestions are by themselves
very complex, requiring each of them a thorough investigation,
and we hardly expect to find satisfactory answers in a near
future. So, for the time being,.it is worthwhile asking a less
fundamental although equally important guestion about what
happens with a well defined fluid with equélly well known
initial conditions.

Why.an orthodox version? First, because the model
is simple and well defined enough that without additional
hypotheses the initial conditions are determined and the hydro-
dynamical equations lead unambiguously to the solution. In
some recent works [3] in.which the initial conditions are
medified by taking intoc account that the thermalization may
occur at an instant T »>»> 4, where A is essentially the

Lorentz contracted thickness of the incident particles, it is




assumed that v-:%— for t<1y (which is an approximaticon val%d
for Khalatnikov's solution [4] for one-dimensional flows) and
the energy density €, at T=71, 1is guessed by using the
experimental %g. Evidently, this prescription gives the same
final result as the orthodox one, although different in concept.
This coincidence suggests, however, that in such models the
temporal evelution of the fragments before their materialization
could well be simulated by a fluid expansion for T < 1, ,
including here both the longitudinal and the transverse flows.
Transverse movements of such fragments should always exist.

An additional argument for using an orthodox version
is a good description it furnishes for several data. In a
series of works {2,5-7], we have carried out comparisons of
theoretical results cobtained with its application to hadron—
hadron collisions (where we always take the event-by-event
fiuctuation intc account by considering the missing mass M
instead of the total énergy) arnd the corresponding experimental
data.. Other comparisons have bheen done by other authors?®,
giving nice agreements. These results encourage us to continuing
the use of hydrodynamics to hadron-hadron coliisions. However,
it is clear that, if the present results are applicable to
hadron-hadron collisicns, then with some modificati§n§ they may-
also be useful to studying hadron-nucleus as well as nucleug-
nucleus collisions. .

The nature of the fluid is not clear, but according
to the currenﬁ view it could be a guark-gluon plasma (many
pecople accept its formation only in nucleus-nucleus collisions).

In such a case, a phase transition should accur, before arriving

*See for instance the review article [8],.

at the final products and, although we do not know any study of
this kind, we believe that the effects such transition would
cause to the f£fluid flow is of importance. Despite the uncertainty,
we recall that, once hydrodynamics is accepted, both longitudinal
and transverse expansions will always exist and results of a
simple model like ours will always be useful to understand the
general behavicur of the phenomenon.

In what follows, we will describe in the next
Section the problem we have treated and a summary of the
formalism which has been developped in a previous paper [9}
and used here. In Sec. III, we will report some results we
have obtained by the use of the above prescription. Conclusions

will be drawn in Sec. IV.

IT. SUMMARY OF THE FORMALISM

The object of our study is the transverse expansion
of a flat disc of uniform thickness 24£ ;, radius R>> £, with a
constant initial temperature Ty >> ‘I‘d » wWhere TdismTT is the
dissociation temperature., Due to the axial as well as the
forward-backward symmetry of the system, the expansion will
equally be symmetrical. The equations of relativistic hydro—

dynamics are
v
s o™ - g, {2.1)

where

™ = (erp)ufuY - pgtV

2.
b ofe (2.2)




5.

and we take a .constant sound velocity ¢y here.
As explained in Ref. [9], following Milekhin [10}, .
we use the fact that the asymptotic one-dimensional solution of

(2.1} is given by

f 1 t+x
e En.EiE_ ro
4. , : e S e
{ _ T 2 VETx?
LY = dng o= -l B2
o2
where A = 11f° £ , to introducing the coordinate system
{
T o= Yeiox? ,
Gy = th—lx N
(2.4)
r = ¥y ©+z '
¢ = tan~* 2
L Yy
If we further assume that
o6 o= oy ., . : (2.5)

which is approximately verified as shown by eq. (2.3} (here we
are implicity assuming that the transverse flows do not modify
the longitudinal ones), then the trénsverse flows are separated
from the longitudinal ones, resulting for the former the
following eguations which are to be solved within the boundaries

indicated in Fig. 1.
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3y _ _ gfeh®r cﬁshgch57+
3T T r ’

(1-c2) shEchE —g%

. (shzi.- ceh?e) % .

“(2.6)

3y _ cishEchg . c&iPZE _

s L (ch?€ - cfsh?E) 32

T

- (1-c?) shichE g—i

(Here, £ 1is the transverse rapidity of the fluid}.
The boundary conditions that the solution of our

interest must satisfy are

H
I
8

a) 'y :
{ (2.7a)

E = ® r

along the straight line r

R+‘f;r

b) vy = -cfeag e L
{ S S {2.7b)

aleng the straight line r = R-cpT for .t <.~£~; ; and

c) E = 0 ) (2.7c)
along the symmetry axis r=0 when TS% . 

To solve the system {2.6), we first subtract the

longitudinal part from y , by introducing a new variable Y, or

Y = y, -ctén (2.8}

B

Then, we rewrite {2.6} in the canonical form



'TT
2 —
( _3_1_!1_ vV, +Co _a_'wli . T, Vy l = -
E 3T Tecyv, 8r & 1+ ¢V, r T =
{ (2.9)
i 2
igi+v'|._cu ﬂ*_co‘ﬁ l+E*Qj|=0
{8t 1 —-egv, 3r 1—Cev, r T '
where
| Y = ¥, o+ ced '
(2.10)
¢ = Y, - CQE ’
and
v, = th ‘g;‘f . (2.11)

Now, we may integrate egs. (2.9) along two families of

characteristics which are given by

[ ar VL+CQ
foa) == m — ’
| dar T+ vy
) {2.12)
E ' Vi=%Co
ipy & o 1
dt 1-cov,

In applying this procedure, there appears a
difficulty which is related with the fact that every characteristic
(b) as given by (2.12) starts at the point (t=0 ,rxk} , where
both % and ¢ are undefined. One possibility to overcome -
this difficulty is to round the sharp edge at r=R as has been
done by Baym et al. in a recent work [11], so that every point.
of the axis 171=0 (or of a straight line t=1, in their case)
becomes the initial point of a particular characteristic line

(b). All the fluid begins to expand radially at that instant.

We have instead solved the problem, by using the ultrarelativistic

solution
cd R~ co(1-r) [{1+co)t]®?
v o= 1+C, tn {(1+cglr [ R+T-r } ] !
' (2.13)
cl R=-Cy(T=r) Ret-r |0
¢ = T-Cy & I: {(1+colx [(1+CD)T] :

in the neighbourhood of {(1=0, r=R) as the initial walues.
Once the hydrodynamic equations are solved, we can
now compute the transverse rapidity distribution of the fluid
and the inclusive particle distributions. These quantities
are calculated on the hypersurface T:Td , where the final

particles emerge free of interaction. We have

dv = nudtde , (2.14)

where, in our approximation,
u" = (chg, 0, shi, 0} (2.15)
and the components of the surface element dGu are given by
dcu'= trdood¢ (-dr , 0 , d1 , 0} (2.18)

(here, we included in dcu the factor v“g=1r which arises
because of the curvilinear coordinates}).

By replacing u" and dou in eq. (2.14) by (2.15)
and {2.16) respectively and using the azimuthal symmetry and

our assumption (2.5), we arrive at




. [
ay ‘= = 2wn 1 'she 2X o _i] “dfda . (2.17)
L ar ERS J
a(E,v) T4
a{T,r)!

As for the inclusive particle distributions (with

fixed M), Cooper and Frye's prescription [12] gives
- u
. av _ q , P ddu
dp (27} exp (E/T,) *
_ _gm [ J 1r [shy,dt - chly,-a)chy, dzr | dods
(2m)® ] exp {%L [ch(yn-a)chylchg-shy*shicos¢]}i 1
qud d o

(2.18)

where g is the statistical factor.

III. SOME NUMERICAL RESULTS

In this Section, we report scme preliminary results
which have been obtained with the application of the preceding
formalism to hadron-hadron collisions. Then, the parameters

E and £ have been fixed equal to

f
:R:—L- R
My
{ (3.1}
e = Mg
i m
P
We have also taken ¢, = 2 throughout the present calculation.
a3 S

In order to study the energy dependence of the
transverse flows, we have considered in this paper two arbitrary
valies of M (M= 300 GeV and M= 1000 GeV), for which we have

obtained the transverse-rapidity distribution g% and the

.10,
mean rapidity <&> .
Since egs. (2.9) as well as the boundary conditicns
for ¢ and ¢ are independent of M, .the solution of this
boundary value problem depends only on the radius R. The M

dependence of the experimentally cbserved quantities, such as .

%% , &> , E gg s +++ appears only when the longitudinal part
dp

of y as given by eg. (2.8) is taken inteo account.

We show in Figs. 2 and 3 the radial distribution.
of T, = e¥L  and £, respectively, at different instants of
time. As can be perceived in Fig. 2, the contour of the fluid
expands gquickly and, at the same time, flrst the one-dimensicnal
~flow region decreases until its dlsappearance at T = é%, and
then the transverse "temperature” T, dJdecreases in the central
region, develepping a depression there, just like in the purely
one—dimeﬁsional—flow case. However, as expected the "trivial"
region is much more iméortant in the present case as comparea
with the one—diﬁensional—flow case. In Fig. 3, one sees a
rapid expansion of large-{ components, which is consistent witﬁ
the behaviour of T, as seen in Fig. 2; an initially fast
slowing-—down at r2 R followed by a gradual aceelerafion; and
at the centrai region_a less slow ecce;eration, which however
changes the sign at larger T

The same results ahove are shown in Flgs.‘4 and 5“
but this time as functions of T at dlfferent Spatlal POlHtS.
As can be seen in Fig. 4, T, {0) dlmlnlshes guickly after the
interval g% during which it remains constant. Ip Fig. 5, the
pehaviour which has been descfibed in connection with Fig. 3
appear more clearly, especially the rapid deerease of E_ at

r2R followed by its gradual increase, an inflection at a

certain value of T and a slowing down. In Fig. 3, this
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latter characteristic appeared only in the small-r region, but
now we can see that this is the general feature. If cne cmqmreé
Fig. 5 with Fig. 1 and Fig. 10, one notices that the change in
the sign of %% mentioned above occurs just along A of Fig. 1,
where the flow becomes non-trivial,

Until this point, we have shown only the transverse
"temperature" T, , but in order to compute the rapidity
distribution, it is necessary to consider also the longitudinal
part, which is, according to (2.3) and (2.8),

-cg £&n % Ca
T, STy e = Ty {—] . (3.2)

The distribution of T = T,T, depends on the mass
¥ of the system as shown by Figs. 6 and 7 for the two values
we have considered here. The f-distribution remains evidently
independent of M. One sees in these figures that, as expected,
the cooling due to the longitudinal expansion is mech more
important and it increases with M. These figures are similar
to those presented in Ref. [11}, although the objects are guite

different in size and the initial conditions seem to be unlike,

One can even see an approximate scaling in the variables %
T . s . .
and = , if the correct initial temperature Ty is taken in

R

each case. The scaling would be exact if the initial conditions
were the same in these variables, neglecting evidently small

discrepancies due to numerical approximations.

The computation of g% (as well as E ég ~ which
dp

will not be reported in this note), is performed over the
hypersurface T=Td . In Figs. 8 and 9, we show some of the
isotherms for the values of M we are considering. The curves

indicated with ¥q are those which correspond to the dissociation

12,

temperature, which we have taken %:ﬁ in this paper. One
sees again in these figures the importance of the "trivial"-flow
region,

In Fig. 10, we show some of the curves with
constant transverse rapidity £ in the <tr plane. The transverse
rapidity distributicon %% is then computed with the use of
eg. (2.17) and Figs. 8 (or 9) and 10. The results so obtained
are finally given in Fig. 11, One must recall that, due to our
approximation expressed by eg. (2.5), the particle distribution
as given by eq. (2.17} is independent of &, which is not
exact. BSo, in the last step of computation of %%, one may
either consider an approximate o-—dependence through the one-
dimensional solution or just ignore the o—-dependence and
renormalize g% using the average multiplicity. Here, we have
chosen the second alternative.

Figure 11 shows that, as M increases, %% increases
in height and at the same time the position of the maximum
moves outward, just as expected on the intuitive ground. We

have calculated the average values of £ and <g>» , which are

compared with Milekhin's results [10], in Table I.

IV. CONCLUSIONS

In the present work, we have studied the transverse
expansion of an initially hot and flat aisc, by using the
previously developped formalism [9].

As shown in the preceding section, although it is
by no means negligible, the transverse expansion is a small

correction to the longitudinal one, especially at the central
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region (r - 0), being thus justified our procedure. In opposition
to the longitudinal-flow case, the "trivial™ region is much

more important now, at least up to M= 1 TeV, which is one of

the values we have considered here. As expected, %% (and
indeed also E §§) becomes flatter when M increases, which is

dp
in accordance with Milekhin's estimate [10] and alsc with

pp-collider's data [13]. Hewever, in comparison witﬁ the
estimate in- [10], a slightly faster increase of sh<f> is
observed in our work.

Details of numerical computation will be reported

by one of us [F.W.P.] in his doctor thesis and further results

such as E Q§ will be given both there and in a separate
dp
publication.

.14,
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FIGURE CAPTIONS

Fig. 1 - Proper-time evolution of the two families of charac—
teristics given by egs. {(2.12). Regions of different
flow-regime are indicated with (I) cne-dimensional-flow
region; {(II) "trivial® three-dimensional-flow region;

and - (ITI} non—trivial three-~dimensional-flow region.

Fig. 2 - Radial distribution of T, = e¥t  at difﬁaxmt.instants
of time indicated. The spike close to the end of each
curve is due to the numerical approximaticn used and
has no physicalrméaning. Both r and T are expressed

in units of Gev ! (h=c=k=1).

Fig. 3 - Radial distribution of the transverse rapidity £ at
different instants. r and T are expressed in units

of Gev i

Fig. 4 ~ Time evolution of T, = e¥t  at gifferent points. The
spike close‘to the beginning of each curve (r>R) is
due to tﬁe numerical approximation used and has no
physical meaning. r and T are_exp;essed in units

of GeV '.

Fig. 5 - Time evolution of £ at different points. r and T

are expressed in units of Gev™l,

Fig. 6 - Radial distribution of T/T,  at &ifferent instants -
indicated for M= 300 GeV. r and T are given in

units of Gev™l.

Fig. 7 - Radial distribution of T/Ty at different instants indicated

for M=1000 GeV. r and T are given in units of GevV™?l,

Fig. 8 -~
Fig. 9 -
Fig. 10 -

Fig. 11 -

Some isotherms are shown in the tr-plane for M=300 GeV.
The broken line indicates the one with T::Td==m“.

T and r are given in units of Gev™*.

Some isotherms are shown in the tr-plane for M=1000 Gev.
The broken line indicates the one with T=T,=m_ .

T and r are given in units of GeV *.

Curves with constant £ are shown in the tr-plane.

Transverse-rapidity distribution at 2 values of M

as indicated.




<E> sh<g> sh<E> . .
(GeV) Milekhin
300 0.928 - 1.067 1.150
1000 1.143 1.409 1.365

vacuum

.
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