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ABSTRACT

In this work we discuss the significance of the
concept of “optimal®™ path in the framework of Classical Mechanics,
Our derivation of the local harmonic approximation and self-
consistent collective coordinate method equatijons of the optimal
path is based on a careful study of the concepts of local maximal
decoupling and global maximal decoupling respectively. This
exhibits the nature of the differénces between these two ﬂuxm&es

and allow us to establish the conditions under which they

become equivalent.

*Partially supported by CNPg.

I. INTRODUCTION

In a series of papers many authors (Rowe 1976,
Rowe 1982, Marumori 1980, Sakata-1983, Villars 1977) proposed
self-consistent theories of large amplitude collective motion.
The starting point of all these developments is the Time-
dependent Hartree-Fock theory (TDHF)} and therefore they are-
semiclassical in character. This makes it possible to cast
all these theories in a classical language and we confine all
discussion in this paper to the case where the corresponding-
classical Hami%%oﬂian is at most quadratic in the momenta:
Subject to this restriction and considering the case ‘of dnly
one collective degree of freedom we can state that the basic:
theoretical problem zddressed by these authors is to -find an
"optimal" céile&tive path in:configuration space. ‘This "optimal®
collective path gives rise to a two-dimensional subspace of
the whole phase space and collective motion is identified
with the motion of the system congtrained to this subspace.
The basic difference between these approaches stems from the
distinct decoupling properties of its "optimal" collective
path. In the lgcal harmonic approximation- (LHA) (Rowe 1976,
Rowe 1582) one determines the "optimal" path by reguiring
that, at eaéh point on it, there exist a maximally decoupled
local degree of freedom. On .the ‘other hand, in. the selficonsistent
collective égofdinate méthbd_jSCC}, (Marumori 1980, Sakata
1983} one imposes that Fhef"PPt?W?l" path_define_.a?maximally
decoupiled sﬁbspace_df_the whole phase space. This_maxiﬁally
decoupled sgbspace is ;n_inva;iantﬂtwgfdimensional,surface in
phase space (Da Providéncia énd Urbano 1982, Sakata 1983)..

As a consegquence of these developments, much progress
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hag been made on the understanding of the concept of "optimal" path which led
to the appearance of applications to nuclear collective motion (Goeke 1983).
In despite of this, many points deserve . further clarificaticns, The ones
which we believe to.be the most importants are: i) a better understanding
of the. concept .of local maximal decoupling, ii) to explain the nature of
the difference: between the. two. approaches and to establish the conditions
under , which they become eguivalent. This is dene in our paper in the
framework of Classical Mechanics.

In section It ﬁe:present our derivation of the IHA which is
based on a careful study of the physical meaning of the concept of local
maximal decoupling. Our discussion shows clearly that, to be well defined,
this concept depends on an & priori choice of a metric comnection in the
configuration space manifold. In section III we present ovr derivation of
the S0C method based on the concept of global meimal decoupling. In section
- IV we.discuss: in what respect these.two. approaches differ and establish the
conditions under which they.haxﬁe-eqyiyalentf In section V we present our
concluding remarks. We think that a detailed investigaticn of these concepts
in the framework of Classical Mechanics, as is done in our paper, give useful
insights to future applications of these theories to quantum mechanics and
many-body problems. One warning before starting: the mathematical level of
our paper will be the simplest one compatible with a clear discussion of
the concepts. involved.

IX. LOCAL MAYXIMAL  DECOUPLING. AND .THE LOCAI, HARMONIC APPROXIMATICN

The configuration space of a classical system of N degrees
of freedom is a manifeld, C, of'diménshmn M. In the Hamiltonian formalism
a dynamcal state of the system is a point in the phase space which is the
cotangent oundle TC of C. If ga= (qG,q1,...,qN'1) are the local
coordinates of a point C and p=(p0,p1,...,pN_1)thecauponentsofa

co-vector at this point, the 2N numbers q = (qo ,q1 P ,qN‘1)

4.

and p={py,... B ,) are the canonical coordinates in T*C.

The N numbers p are the momenta associated to the

coocrdinates gq.

N

The canonical transformations which preserve the

cotangent bundle structure of C are the point transformations,

defined. by:

N-1 k
- i af -
Ve th Py = 1 T3 By
k=0 b8g
and its inverse
. N-1 k
: i, — — 3
=g@ . B =1 22 p
k=0 Bq
N1 aft ng i
z -—k- _j = 6 J .
k=0 3qg ag

{2.1-a)

(2.1-b)

These transformations, egs. (2.1), will ke the only ones

considered in this paper.

The time evelution of the system in the phase

space is given by the Hamilton equations:

§ = om/ap, By = - aH/3ag"

where

B = -;- 7 Bty p.p. + Vig)
s . = j =
1,3
is the Hamiltonian of the system. The transformation

changes the Hamiltonian {2.3} to:

{2.2)

(2.3}

(2.1}




1ap) = 5 ] Bl@ Bp. + V@ (2.4)
- i’j J -
where
Vigr = vigg
(2.5)
=ij = = gt ooafd e
B W {g) = 7 (9] = (g(g)) B " ig(m)
k,£ 3q 7 3g - T

The equations (2.1) and (2.5) show that, by a change of

cocrdinates, the potential V(gl transforms as a scalar, the
Bij(g) transform as the contravariant components of a tensor,
the mass tensor , and the momenta transform as the components

of & ce-vector.

Using the expression (2.3) of the Hamiltonian, the

Hamilton equations can be written as:

ik
= ]E B (q) P,

(2.6}
i . .
g . v
g o+ f { }qjqk = - 18 ==
ik ok ] éq

’ i
In equation {2.6) { } are the components of the
. ik

metric connection {Christoffel symbolﬁ_induced by the mass

tensor Mij {Synge and Schild 1969) :
i iz 1 Bsz(g} 3Mpy (q) ank(g}
= 1B 3 ra S 2
jk £ - aq ag aq
(2.7}
v il i
% B {(q) Mpfad = 87 k .

.6

A possible interpretation of what we have just

shown is that the trajectory of the system in configuration

-space is & curve in-a riemannian wmanifold whose metric tensor

is the mass tensor.

Our next step is to study the dynamics of the

system in the neighbourhoocd of an equilibrium point, P0 . In
this case one has:
[B—Vl] =0 ®, =0 ,  i=0,...N-1
g g:(glp o . .

0

where (q)P and (p)P are the coordinates and the momenta
o T Yo i
of the equilibrium point. Near PO , the Hamiltonian (2.3)

can be written as:

L 1 : 13, . i
H (o, 8) = (V) + 5 [2 (B77), B:B. + (K, .) o or.] + 0.
~' e Py 2 175 PO i"3 i3 ?0
(2.8}
where
i i i
L S - |
o
Bi = Pi ’

g and p being the coordinates and the momenta of a point in

the neidghbourhood of PO . In eq. {2.8) (V) , {819 and
Fy o
(Kij)P are, respectively, the potential, the contravariant

0

components of the mass tensor and the covariant components of

the elastic tensor at P0 '

Vrp = tV(g))EF(g]P ‘ C{2.9-a)

0
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ij, o _ ij ' : 2.9-b)
(B )Po = (B (g))g=(g)P (
2
3V
(K: ) = [ — {9 . {2.9~c)
=1 Fp CaLl U PR

0

NBotice that {Kij)p ; given by eguation (2.9-¢), is
0
& tensor only at an equilibrium point. Furthermore, the eq.
(2.8) defines the loca)l Hamiltonian at the point P0 . Given

{2.8) the Hamilton equations near PO can be written as:

-3 i3 . . |
& = § ey, B - B..= =L (Kyz)y o . (2.10)
3 L : & 5 ey
It is well known that the Hamiltonian {2.8) can be
diagonalized by a linear transformation which defines the

normal modes at Po:

k
gy 1 Ay B
{(2.11-a)
nl - z d}ii) G.k
x
if
Ad = DA = 1
AT RE = X = A& {2.11-b)
- ij I 7i3 .
ATHEA = 1 .

In egs. (2.11) iT means the transpose of A and
A, D, K, M are matrices whose elements are, Aij~= a%j) .
Pij T 43 0 Byy o= WKiglp o and My = ()

] Py

.B8.

are tensors at P the

As  (Kjjlp and (M o ¢
0

ij)y0
proper freguencies li are independent of the systam of
coordinates and the a}:i) r k=0,.,.,8-1 (i fixed) are the

contravariant components of a wvector at the peoint P0 , which

is the i*® 3ocal normal mode vector. Using the transformation

(2.11f, the Hamiltonian and the Hamilton equations near PO

are given by:

=1, 1. 2 : 2

B, = (W, + 5§ (g5 + &, ni®) + ... (2.12)
AL PO 2 i i i

‘i . i
= %y g = - XAon (2.13)

The eguations (2.12) and (2.13) show that the local normal modes are

-deéoupled degrees of freedom at PO' Besides, each pair ;i ,nl i=0,...,8-1

defines, at the point PO + an invariant plane in phase space.
EPO is an invariant plane at the point P0 if, given that
Qger §0 is a peint in this plane, a(t} , B{t} remains on it,
where a{t), B(t) are solutions of the Hamilton equations
{2.10) wifh the initial condition 2y = ait) =

=0
A degree of freedom which at a fixed point is decoupled and

r = t .
8o gle) £=0

defines an invariant plane at this point will be called a
maximally decoupled local degree of freedom. Therefore, the
normal modes are maximally deccupled degrees of freedom.at an
equilibrium point.

The question now is to see if.one can find maximally
deccoupled local degrees of freedom, in the sencse discussged
above, cutside an eguilibrium point. We will answer this
questién_usinq an approach identical to the cne used previously .

In doing so we should take into account the. fact that the concepts of
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local normal modes and proper frequencies must have an intrinsic
character. It is clear from our previous discussion that once
the coefficients of the gquadratic term of the local Hamiltonijan
are tensors, the above properties are guaranteed to hold. The
immediate conclusion from the above observations is that to
define the local Hamiltorian at a given peint PO we should
use a system of coordinates for which covariant derivative is
equal to partial derivative at PD' A coordinate system with
this property always exists and it is called a geodesic

coordinate system at the point P, {(Rowe 1982). However the

0
concept of covariant derivative depends on the metric comection
and it is possible to consider several metric connections in
the same manifold. Each one will give rise to different
definitions of covariant derivative and so different definitions
of the local Hamiltonian, Thus, to define the local Hamiltonian
outside an equilibrium point cne has to choose, 3 pricri, a ‘
metric connection. In our case the natural choice is the
metric connection induced by the mass tensor, eg. {2.7).

Under the coordinate transformation, egs. (2.1),

"the metric connectien transforms according to (Synge and Schild

1969) :
i i oL io.24
{ } - ] 3,39 a9 { } e TR
jk Z,m,n ag - ¥g] aq m n £ 3g aqjaq

A geodesic coordinate system at a point P is such that

0
(Synge and Schild 1969):

1
} = 0 . {2.15)
kip

L0,
The property (2.15) guarantees that covariant derivative and
partial derivative are equal at the peint Po.
Given that the coordinates § are geodesic

coordinates at the point P0 we define the local Hamiltonian

as bhefore:
BB = @, + (&) g1y @, 5E
0 i ag/p, i.3 0 ’
+-'€"ﬁij1po_=3-la3“+ oL o {2.16)
where
@ o 7 - ah,
0
B = by - -(Ei}.P‘O. =B
and
(—E’;‘-’E} = {2.17-a)
g™ ey
B i 3 .
@), [‘—’f—k] [ﬁz] B ), {2.17-b)
0 k,2 lag P, ‘3g P, 0
_ 25 x £
(Kij)p =[—£VT]'] =] ['B—?E] {EE—-] (‘Kk_e) {2.17-c)
g 8g k.2 laglp  lagllp %o e
0 o :° o
2 m
¥v -
(K0, = [—__i j} - Z{ } [——3‘;} : (2.17-4)
0 8q 3g g W 1 3°p, “og P, i

The eqguations (2.17) deserve several comments. Firstly equation

(2.17-d) shows that the generalization of the elastic tensor
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outside an equilibrium point is the hessian, where the hessian
is the second covariant derivative of the potential. Secondly,
since PO is not an equilibrium point, a linear term appears
in the expression of the local Hamiltenian, eg. (2.16). This
term depends on the potential gradient field at PO , as expected.
Finally we see that a different choice of the metric connection
will change only the definition of the local elastic tensor,
the mags tensor and the potential gradiént field@ being the

same. Given {(2.16), the Hamilton eqﬁations near P0 can be
written as:

8v

+ 1 F)o w L (2.18)
1] E i3 P,

i =i3 = &
=1 (B}, B.,-B =[
P 3 i 25 Py

] 0

As before we diagonalize the guadratic term of the
Hamiltonian (2.16) by a linear canonical transformation which

defines the local normal modes:

i ={i) =k
nm = @
£k
- _k -y
;1 - E a¢i) Sk
if
k .
k. = 7 {ng] al,
(i) 5 Laq3 2, (1)
- {2.19)
(i) [a 1 qli}
I § o=y 3

and. the' - a

%i) .and dgi, satisfy the eguations (2.11-b},

“at P

.12,

remembering that now (MlJ}P0 and (K13 PU are, respectively,

the mass tensor and the hessian, eg. {2.17-d), at the point

"R

‘O.
Urider the transformation (2.19) the local Hamiltonian

(2.16} and the Hamilton eguations (2.18) can be written as-:

=L _ i o1 2 i2
Tomeg) = (W o+ DR T e 5 F (gl e Ay nity o
¢ i i
{2.20)
. . _ i
2 gi -t = Ki +_Ai n. . {2.21})

In. these equations Ki is the compcnent of the gradient vector

field at PO in the direction of the ith local normal mode
vector:
K, = I [—91](] k. _ (2.22)
k ‘agip

0

The equations (2.20} and {2.21) show that the local

normal modes are decoupled degrees of freedom at P However,

0 -
since the gradient vector field does not wanish at PO , in
i

genéral the pairs Ei' n i=0,...,N=1 are not invariant

‘planes at FPy- A local normal mode defines an invariant plane

a only if the gradient vector field at this point is in

"the direction of this normal mode. Denoting this maximally.

decoupled local degree of freedom by no, CO : the above

condition gives

K, = I{a_\;} a¥i) = o if0 . {2.23}
i kK lag 2 .

50 a maximally decoupled local degree of freedom
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exists at the point Pd

satisfied at this point:

only if the following equations are

k £
kgz 21 ‘Kkﬂ’pa 25 = r Sy (2.24-a)

k L
kgz R (Mkﬂ)Po 3 7 Sy {2.24-b)
v ) {k) _ )
Py - - 24—
IZ [aqkjp a(i) 0 i£0 (2.24-c)
0

The first two equations define the local normal modes and the

last one shows that the Oth

normal mode is maximally decoupled,
These eguations are the local harmonic approximation equations
of Rowe and Bassermann (Rowe 1982). To proceed in our discussion

we can easily see that the equations (2.23) are satisfied gnce

one has:
[iﬂ%] = tgrad vy, al® | (2.25)
397 py 0 :
From egs. (2.24) and (2.11-b) it follows:
Iy, 889, {iﬂ%] = %, [iﬂ%} . (2.26)
k,2 0 0 ‘ag PO g PO

Thus we can state that a maximally decoupled local
degree of freedom exists only at the points where the gradient
vector field is a local normal mode vector (Rowe 1982). It can
be easily shown that the points in configuration space where
this condition holds are the anes in which (Rowe and Ryman 3982) :

§,grad v'z = 0 '

.14,

in an equipotential surface. The curves Wthh follow these

points are called statlonary curves (Rowe and Ryman 1982}.

Theréfore we conclude that a maximally decoupled local degree

of freedom exiéts only at points in a stationary curve.
Physically we are 1nterested in the stationary curve. whlch is
the valley of the potential (1f it exists). In this case the
stationary curve is a minimal curve which goes through the
point of minimum of the potential and when we leave fhis point,
AO is the smallest proper freguency which becomes the only
unstable one at_large_amplitudea; .So, the minimum curve is a
valley if (Rowe and Ryﬁan 1982):

Toh, xh, > o (2.27)

(Ki')
i3 PQ 3 PO Po

i

where {X IP is a vector perpenﬁicuiaf to the gradient field
Q

at a point P0 in the stationary curve:

z (xi)P:. [ja%]. ;_ 01”.: . .J. -:: :.(2.28}
i 0 g PU

Definlng the equatlon of a,statlonary path by
i

a (n ) . -one has, u51ng eqs.-(z 26)-
AN [av] T g '[av]" o ot
(K, ,) {B™-y ="A.AnT) — {2.29}
k?ﬂ 18750 n0 0 00 aqtl 0T

3q

where we used the notation -

(Kig) o = Kip (glng)) .
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in éonfiguration épace, we consider a normal
coordinate system (Synge and Schild 1969) such that one of the
orthogonal trajectories is the valley line, gq- = g+ (n®),

where nn 'is the ar¢4length. In this case the eguation.of the

two-dimensional surface in phase space is:

i i o 3g
g =g () p; = I (M.,) Ly {2.30)
T LS T _1Z.n0 3no. 0

In the LHA the optimal bolléctive'path is the valley
line, the collective metion is the motion of the system
constrained to the surface (2.30) generated by the valley line,
and thé collective v&riables,thE;pait of canqniﬁal variables

which span this surface, no, CO .

ITI. GLOBAL: MAXTMAT, DECOUPLING AND:- -“THE: SELF CONSISTENT GXIECEHE

COORDINATE METHOD (SCC)

In the approach of Marumori and'collaborators
(Marumori- 1980 Sakata 1983) the 1dea lS to flnd a max1mally
' decoupled subspace of the whole phase space. In the case of
one. collective degree of fraedom thlS subsPace is a two‘
dlmen51ona1 phase . space which defines an 1nvar1ant surface in
the whole phase space (Da Providéncia and Urbano 1982). By
definition | is an invariant surface. in phase space if,
given that the system is initially in this surface, it remains
on it. In other words there exist solutioﬁs of the Hamilton
equations such that if q; and p, are in T g{t) and

pi{t) wemain on |} , where plt) and g(t)} are solutions of

.16,

the Hamilton eguations with the initial conditions
g0 = g, ' pl@) = pg .

To establish the conditions which define the'

maximally decoupled .subspace in our case, consider the point

transformation:
g < gt ot = £h(q)
k wok
af ] :
P; = L= & z, = L L= p (z.1)
i i aql k i ¥ ant k -
i koo .
J2 2 ehy
kK an®™  agd -

Under (3.1) the Hamiltonian transforms to legs. {2.4) and (2.5}):

Rig,n} = 2 v B J(n) ity + VM
i,3
44 i J
B - 1 g 2E gm) 8™ (gin)) (3.2)
© m,n g g "
T = vigh

A two-dimensional subspace of the whole phase

space is defined by the equations
n = L, = 0 140 . (3.3}

The egquations (3.3) of the two-dimensional surface in phase

space can be written as:-

=




o

17,
ql = (gl) 0 = gl(no) i=0,...,8-1 {3.4-a)
n . .
N i)
af
p* = [——I] £, {3.4-b) -
ag’ nO
k i
d of
PR, - s
n nO dq nO
where we use the notation
(a£° (agf
L;—l 0 = la—"]’: 0 etc..
9 9 nx(n’,0,...,0)

Now the requirement that (3.3) is a maximally decoupled sub-

space imposes that:

[%%J , = [%é] S0 . i=1,...,8-1 (3.5)
an n 1 HD;EO

where we use the notation,
[aﬁ} _ [ag]
i . - i *
a0, g, M= (2g,0,...,0)
: = (n%,0,....0)

Purthermore, the evolution. of the system in the

-maximally decoupled subspace is given by:

70 o | 2K -t = |2 . {3.6)
325] o ¢ [an?% o

The eguations (3.5) are the Marumori equations of

the maximal decoupled subspace (Sakata 1983). Given (3.2)

.18.

these eguations can be rewritten as:

@19 0 = 0 id0 ' C{3.7-3)
o S _
[ﬁ%] =0 i#0 ' . (3.7-p)
an ﬂo o B S : :
00
[§§—r} -0 B0 e (3.7
amt/ 0o -

The equations (3.7) are easily seen to be equal to villars
equaticns I, II and III, respectively (Villars 1977). To

establish the geometrical broperties of the maximally decoupled

. subspace we use the équéfiohs {(3.2) and (3.4) to writé.amﬁﬁﬁghs

{3.7) as:
C e . oo S e S
[JEL] [357] I if0 {3.8-a)
ag™ .0 ‘ant) o R . o
m 9y 7 . : s .
5 _ . : .
L:k: O I T it ) .{iﬁL} e (3.8-D)
an0 (grad V)qo n n0 aqm no
22 3 3 il n -
dlgn [{ } A Ay (3.8-c)
3302 m,n { ‘mn n0 370 an
where we set the scale such that .no is the arcflengtﬁ-along
the curve q- =:gl(n°) .. The equations {3.8-b) show that the
curve qi = gi(nO) is a gradient line and the equation (3.8i¢)

that it is a geocdesic line. Therefore the curve (3.4-a) is a
geodesic gradient. line (ﬁfamanifold whose metric-teﬁéor is the
mass tensor). The equations (3.8-a) only impose that the
coordinate lines 1+ (3 = cte j#i}, 1£0 , cross the geodesic

gradient line perpendiéularly and a coordinate system with this
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property always exists (Synge and Schild.1969). What we have
just shown tells us that a maximally decoupled subspace (when
it ex1sts) is such that the curve qi = g (n }  is a gecodesic
gradient line. However, from a physical point of view, not all
maximally decoupled subspaces are of interest, We
should add the boundary condition that near the minimum the
surface should coincide with the plane of the lowest freguency
normal mode. Besides,only the stable ones should he considered.
To see what that means, suppose that the two-dimensional sub-
space eq. (3.4) is méﬁimally decoupled. fhe pair of canonical
variables ﬂo ¢+ By which span this subspace will be ideﬁtified
w1th the COllECthE degree of freedom and the other pairs of
canonlcal varlables, ’ Ci‘ i=1,...,N-1, with the non-
collective ones. The stability condition of a maximally
decoupled subspace depends on the coupling properties of the
colleétive and non—collectiﬁe degrees of freedom. To study .

this coupling let us expand the Hamiltonian (3.2) to second

order in the non-collective degrees of freedom {Sakata 1983):

2—
= o 1 3°K
K(n,g) = B n,z,} +5. ¥ [ } SR AN N
: coll * -0 25 540 3L Ly 0.z 1°%3
’ 0
2— L 2— .
[—”—J JZ{J_KJ S
: .Bn-?n,“nolto a;ian.:np;tﬁ . :
where
i e B
Aozl 1Zg) = [RM.Z)] o =5 3°9 ;g NG
n-,cc
—00, .
B -
BN =1 (3.10)
(V)no = Vig{n’)) = ﬁn )

where no(t) and co(t)

.20,
— 2 N
3K w1J
Bc.i;:] = B {3.11)
RS nO.CO n
2 —00
Y 3B 2
an anJ ] an*and 0 [anlanj]no 0 )
_ B 2 (3.13
[ 3g,3n3 o and | o O 13

The equations of motion for the non-collective degrees of

freedom, to first order in these variables, are given by:.

» N-1 2= ] 3 ' .
W <7 [3;;;] ‘- [_M_J] o
3= n0=n0(¢) 9 om

#

Onlisy.
CO Co(t) 0= (t)
(3.14)
_&i(t) = NE1 [}_EEE_{} . + [}_iﬁi?J nj
I=1 L3nm 985 In0n0ge) ) on*anJ nP=nf¢x)
: Ly =Gt} Tp =Ty (1)

(3.15)

are the solutions of the Hamilton

equations constrained to the maximally decoupled sub-space,

egs. {3.6):

.0 N av
ATHE) = gg(e) Eolt) = _ﬁ(nﬂ)

A maximally decoupled subspace is stable if, given that

At ' i ; (e e
g, (e o0 and n”{t} =0 i#0 is small, then LY and

i
N {t} remain 2 ) i
1 small, where c_i(t) and n (t) are solutions of
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the eguations (3.15),

Finally notice that the equation (3.9} gives other
criterion to identify a maximally decoupled subspace: the
coupling of the collective variables and the non-collective ones

is at least second order in these last variables.

IV. GLOBAL MAXIMAT, DECOUPLING VERSUS LOCAL MAXIMAL DECOUPLING

The discussion in section II has shown that one
can find a maximally decoupled. local degree of freedom only at
points in a stationary path. However, in general, these curves
are not integral curves of the potential gradient field (it
is not a fall line), as can be seen in ¥ig. 2 of Rowe and .Ryman
{1982). A consequence of this fact is that different degrees
of freedom are maximally decoupled at each point in a statienary
path. To see this, note that at each point in a stationary
path, the potential gradient field points in the directioﬁ‘of
the maximally decoupled local degree of freedom. However, since
in general a stationary path is not a fall line, there is no
coordinate line tangent to these vectors. On the other hand,
when the stationary path is a fall line, at each point on it,
the tangent is in the direction of the'maximally decoupled

local degree of freedom. 1In this case the game degree of

"freedom is maximally decoupled along it.

To see under what conditions this is accomplished
consider the equation of the stationary path qi = gi(no),
where no is the arc-length of the curve. Imposing that the
stationary path be alsc a fall line, gi{no) should obey %he

equations:
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agt 4 § ol {av] o
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besides eguations (2.29),

However (2.29) and (4.1) leads to:

.Z i i m i .
. IR { } 2 0 - g =0 R
dan® m,j m3il)]e e an . .

which is the eguation of a geodesic in -a manifold whose netric

tensor is the mass tensor. Thus we see that the same degree of

freedom is maximally decoupled at each point in a stationary

path only 1f this path is a £all line. In this case the
stationary path is necesszarily a geodesic line and 50, & geodesic
gradient line. When this condition is satisfied the two approaches

are eguilvalent.

V. COHNCILUSIONS

Schemat;ca;ly, two proposals of "optimal” paths .
appeared in the literature: ..one based on the LHA, the other
on the SCC methed. In this paper we. investigate the significance
of the concept of "optimal" path in the framework of Classical
Mechanics. The;fundamental,pqigt in our derivation of the LEHA
is the concept of lchl maximal decoupling. A careful study.
of its physical meaning shows_;hat[it depends on .an A priori
choice of a metric connection in the configuration space
maniifclid. EHach choice will give rise to different decoupling
requirements and,by consequence, differenp "optimal" paths.

In our case we argue that the natural choice is the metric
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connection induced by the mass tensor. ©Once this choice is
made we show how to derive the equations of the optimal path
by imposing that at each point on it there exist a maximally
decoupled local degree of freedom. The points where this
condition is satisfied are such that the gradient vector field
is in the direction of a local normal mode in a manifold whose
metric tensor is the mass tensor. It is also shown that the
curves which follow these points are stationary curves. On
the other hand,in the SCC method one tries to find a maximally
decoupled subspace of the whole phase space. This subspace
defines an invariant surface in phase space and in our case it
is the surface generated by a geodesic gradient line in the
configuration space. Thus one sees that in the SCC method cone
requires a global maximal decoupling. When this condition is
satisfied the invariant surface is an example of a Bérangeru_
Veneroni spaghetto (Baranger 1978). From our discussion it is
clear that the condition of local maximal decoupling is always
satisfied but not that of global maximal decoupling. The
difference stems f:om”thé-ﬁact that, in general, different
degrees of freedom are méximally‘aecoupledfat'éabh point in a
stationary curve - (the “optimal® path of the THA). When we
inveéﬁigate under’ what' conditions the same degree of‘freedomiis
maximallyi&ECQupledfat eaCﬁ peint in a‘stationafy curve &ne
sees-that this happens.only if this curve is also a gradient
line in which' case it becomes aTgéodesic_gradieht line. In

this" case the two. optimal péths coincide.

.24,

REFERENCES

Baranger M. and Veneroni M. 1978, Ann. Physics (N.Y.) 114,
123—200

Da Providéncia J. and J.N. Urbano 1982, Lecture Noteés in
Physics 171, 343-349

Goeke X., Reinhard P.G. and Grummer ¥. 1983, Ann. Physics
N.¥.) 150, 504-551 _

Marumori T., Maskawa T., Sakata F., Ruriyama A. 1980, Prog.
Theor. Phys. 64 , 1294-1314- _

Rowe D.J: and Bassermann R.. 1976, Can. J. Phys. 54, 1941-1968

Rowe D.J. 1982, Nucl. Phys. A391, 307-326

Rowe D.J: and Ryman A. 1982, J. Math. Phys. 23, 732-735

Sakata F., Hashimoto Y., Marumori T., Une T. 1983, Prog.

. Theor. Physics 70, 424-438

Synée,J;L. amd Schild A. 1969, Tensor Calculus, University of
Toronto Press

villars F. 1977, Nucl. Phys. A285, 269-296




