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ABSTRACT

An'extended form of Noether's theorem enable us to
identify the. colour guantum number with the eigenvalue of the
invariant of the algebra of 5(3). In the gentilionic approach,
the composition of the 5(3} colour with the symmetric guark
model seems to constitute an exact symmetry of Nature. It is

also argued some general propérties and the universality of

Gentile statistics.

1. INTRODUCTION

Within the framework of guantum mechanics and
according to the Principle of Indistinguishability, other kind

of particles could exist in nature(T).

They have been named
gentileons to make a clear distinction from the usual bosons
and fermions. Thus, the possibility of existence of three
kinds of particles embodies the fundamental quantizations found
in guantum mechanics. These are related to the representations
of the symmetric group in terms of Young diagrams. Bosons and
fermiops correspond, respectively, to the horizontal and
vertical shapes, whereas the intermediate shapes would be
associated with the gentileons. The associated wavefunctions
are one-dimensional for bosons and fermions and multi—&ﬂmmsﬂxﬁd
for gentileoﬁs. We have also seen that the gentileons could be
understood as "confined entities” with saturation properties.
It must be remarked that these features are not "physical" ones
but have their origin in the geometrical and topological aspects
of the symmetric group. The physical confinement, for instance,
that is relatedrto‘the physical dimensions of the system, would
arise from the dynamical features_éf the particles. We could
expact this confinement to be related'with.the geometrical one
but, in this paper, ne effort is made to directly connect them.

In this work, ian.Secticdn 2, ”We_interpret the
invariants of the symmeﬁric_group aigébra-in terms of Noether's
thecrem. Séme important;physical_resplts-Such as the appearance
of new conserved quantum numbers arise from this analysis.

In Section 3, assuming our gentilionic guark model’,
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we show that the baryonic mass spectra and charges get clarified
if a guantum number associated with an algebraic invariant
obtained in Section 2 'is identified with the colour guantum
number. A brief discussion.on meson constitution is also given.
Finally, in Sectibn’4 We present some general
conclusions -on gentilionic statistics. The universality of

its:validity is suggested and: some consequences are drawn.

2. NOETHER'S THEOREM AND THE ALGEBRA or SEBy

ALL symmetry properties of a system can be described
as groups of auwtomorphism which carry over the system into
itself. By Noether's theorem, if a system is invariant under
a certain group of transformations. then, from this symmetry
property there: follows: the conservation of a physical quantity
of the system. _However, in. quantum mechanics we are not
restricted to céntinugus:symmetxy groups or even to ccordinate
transformation groups. Indeed, the underlying fundamental
group'contained in. the principle-of Indistinguishability is the
symmetric group SﬁNi‘ which does: not appear to be directly
rekated to space: time symmetries. We then state Noether's
thHeorem &S(ZY: “associatedrﬁithnevery'5ymmetry principle there
exists a unitary opexator=tf in Hilbert space relating state
vectors and observables at two.different physical points".

To make this statement more precise we will develop

an algebraic approach related to 8(3}. Let us call AS(3) the

4.
alqebra(B) of the symmetric group 5(3). It is spanned by six
vectors {ni}, i=1, 2, ..., 6, 1In this algebra we define a
class operator K(p) as being the'gum of the h(p) permutations

with the cycle structure (g):

= : P _ (1)

(o} : a
P, € {p)

where gach Pé .corresponds te a vector Ng -« As iIs well

known, the class operators'form a maximal linearly independent

(3)

set of elements of AS such that

ET, K.(O)_—J =0 with neAs‘3 (2)

In our case (N=3)}, the class operators are K I,

1%y
K(Z,T)_= ¥ (#jF. ana Kygy = } (ijk) , where each group

- operator is indicated in the usual notation of substituticnal

analysis. Now, since the group 5(3) admits two generators a
and b, we can consider Ast3) as being an associative
polynomial algebra generated by a and b: {n1 ,n2 PR ,nG}

= {I, ba, ab, a, aba, b}. Calling L{a,b) - this last algebra,
it is easy to see that the commutation relation corresponding

to it is
ab +.ba = ~1I ) . {3}

It is not difficult to show that L{a,b) contains

only the primitive idempotent defined by Eg. (3) itself and
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that the closure relation (3) also embraces all relations (1),

These definitions of AS{3)

and L(a,b} in terms

of a2 and b also reflect the fact that any permutation can be

obtained from transpositions. Thus, in our algebraic approach

a prominent role is ascribed to the class {p) = (2,1). To this
class (2,1) do correspond the algebraic invariants K[13]

(2,1) *
Eg:l; and KE;{]) with eigenvalues given respectively by

K
-3, 0 and 3. The upper square brackets refer to thé three
representations: [13] = fermionic, {2,71] = gentilionic and
[3] = bosonic . It is alsoc important to note that the
4-dimensional symmetry adapted state vectors which describe
gentilionic states correspond to a 2% 2 representation of
AS(3) with the representative matrices taken as EKronecker
sums. since (5(3))2 ~ 5(3).

Usually, for continuous groups, we define the
Casimir invariants Ghich commute with all of the generators
and are therefore invariants under all group transformations.
These simultaneously diagonalized invariants are the conserved
quantum gperators associated with the symmetry group. In our
discrete problem-we use the same.idea; The class operator

KE§'1} which corresponds to the genuine gentilionic repre-
L

(3)

sentation of AS is identified with & gquantum operator

which gives a new conserved guantum number related ta S(B).
Cur algebra Li{a,b) is a special case of an anti-
commutative algebra Gy studied long ago by Schénberg(4). He

has shown that Gn. is associated with a kind of affine geometry

of the Hilbert space. An affine algebra of dimension n contains

.6,

. a unitary algebra of the same dimensionality as a sub-algebra.

From this point of wview, it is to be expected that the richer

affine structure will ensble us to infer some properties more

" general than those contained in a metric unitary sttucture.as

will be seen in section 4.

3. QUARKS AND COLOURS

IA the symmetric guark model for baryons(s)"whére

only (SU(6) x0(3})

.= representations exist, the
symmetric ¢ epr TTLONS BX3 i

restriction of the wavefunctions ¢ being totally.symmetiic'
implies the "édﬁhoc".iﬁf}éductibn of ‘a new threéfold.dégree of
freedom for eaChﬂquark'flaﬁdur called.?éoiéur", Wie have_tfied
to explain thé baryonic MASs spectra Wiﬁh'ah fuﬁdoioﬁféd*i
gentilionic model. That is, we have assumed that tﬁé'ﬁérybné
would be described by a 4-dimensisnal state function.défined
only on the 8U(6) x 0{3) space and wé follqﬁed the standard
calculation procedure: adopted.in the su(g)g d§3)..model(5)._
Since in our caicu;étiog,.the. SU(S) 30(3)___wavefunqtipn was
alsc found to be given'by.¢ . oﬁf attémpt was unSﬁééessfﬂi.due
te the symmetry difficulties encountereé,in the_bons;£ﬁ¢tion
of the state vectors. This h&s leéd us ta formulatehfhé
following mpdel. . ) .
We consider.fhe action of 53 "oy d.¢6loﬁfgspace
{R, B, Y} and we write the baryon 4;aimenéipna1'étate'ﬁéctor P

as:




¥ = ¢ x Y{colour} (4)

where ¢ is cone-dimensional and the 4-dimensional Y.({coloux}

5(3)' . Since

correspond. to the intermediate- representations of
tﬁe gentilionic and fermionic models have the same "uncoloured”
quark function ¢, they will give identical results when it is
assumea that tne pny51cal processes. are colour 1ndependent.

: The- algebraic invariant KE; 11 of Sectlon 2z
assocxate& with the gentileons is, using Noether s: theorem,
interpreted . as a unitary operator taken as the "colour operator™.

In that manner, the: conserved colour quantum number which

arises as an.-intrinsic consequence:of the study of AS(3) will
be the;eigenvalue;of.thefoperator- KE%T}}. Mow, it is easy
Bt : : .

tO show‘that'this—eigenvalue=is~2&ro(3); That -this is not a
fortultous result .can., .be: seen:.as: follows. .

The Gell-Mannuﬂlshljlma relation

Qo Ty o+ ¥/2 = _'FVB- * Fo/ /3 : (5)

deflnes the charge operator'as & function of the SU(3)

generators‘s’ : Thls.rglatlonqcanibe;gegerallzed as

QR Ty VA2V E EfF (6)

with:: t taken as:.an: arbltrary c-number which: in. our approach
lS assumed O be thes elgenvalue of" K{S.I};', This assumption
;svganAStgnt_thhrtheidefinitionﬂof-a triplet of charges

cbeying-

.8.
z = (t+2)/3 (7 i
subje¢t to-the constraint that .
Zp + 2p + E, =2 E L {8)
which follows from the requirement that AT (usu uy) “have

R'B Y
charge + 2. Thus, the .constraint in Eg. (8) corresponds to

-tR + tB'+ tY"= o] ) (2}
assuring the familiar baryon charges satisfying the standard
Gell-Mann-Nishijima relation. Expression.(9), which is imposed

by the experimental data, arises as a natural result in the
' £3,1]

gentilionic appreoach: it is exactly the elgenvalue of K(2 1)

obtained from "AS(3).
We must note that Eg. (9) has been deduced for
three qua;ks with different. colour states. Since Y'(colour)

algso admits that two particles can occupy the same colour

state, an additional condition appears in our scheme:

2.?n +_tm = 0 ) (10)

where. 'm.;_é n . and m,n=R, B and Y. Thus, a_iccérc_l;i.ng to Egquations
(9) and gTDj{we can conclude that tR = .tp ="tY = 0, suggesting
thaf the.cdmbihatidﬁ of a t3) --quantum. colour number. with
the SU(6) x.0(3) symmetrlc model could result in an exact
symmetry .of Nature.

Our appfoach differs considerably from the.one+ . :

dimensional quantum description. With the recognition of a
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new conserved quantity in physics, the problem arises of finding
a corresponding invariance principle. For continuous transfor-
mations we define a Hermitian operator as the generator of the
symmetry. Here, for.discrete transformations, extensive use
of the invariants of the operator algebra has been made. We
recall that, although the function ¢ is the same in the one-
dimensional and in the 4-dimensional approaches, the presence
of Y (coleur) is very significant since its 4—dimensionality
and symmetry properties can lead to an explanation of:
(a) -barycnic number conservation, (b} geometrical guark
confinement and (c¢j 3~quark saturation in baryons(1).

Finally, we must note that a very peculiar aspect
of the multi—dimensionality of the gentilionic wavefunctions

has apparently escaped attentior in our previous analysis(1).

This may be seen as follows. Since the wavefunctions associated

with gentileons must be multi—dimensional, ne two identical
gentileons can form a system, for this would imply the repre-
sentatien of the system by one-dimerisional wavefunctions. Thus,
despite the fact that one-~dimensional theories and gentilionic
theory give the same results when applied to mesons, the
gentilionic approach seems to be more satisfactory in the sense
that it can explain why ‘mesons are bound states of two different

particles: a quark and a anti-guark,

10,

4. CONCLUSIONS AND COMMENTS

The Paull exclu51on prlnclple plays a fundamental
role in the p0551ble ways to deflne observables Ain quantum
mechanlcs. It 1s the most important law_whlch must be. obeyed
with regard to-stablllty of matter The StatlSthS deflned.by
it, that of Ferml Dlrac, when applied to the entlte fleld of_
guantum phys;ca has glven unquestlonable results._ On the other
hand, for partlcles oY systéms not obeylng the “Pauli prlnclple
we have only oneiacceptable alternatlve. that o33 Bose~E1nste1n.

These two StBtl

. ,fulfll the. requlrements of quantum .
mechanics and of more elaborate theories. as e. g. quantum field
theory. Nevertheless, recently{1) we. have argued ‘about. the
universality of a thlrd kind of statisties,. that of Gentlle.

It alsc has been deduced from the géneral prlﬂClples of _Quantum
mechanics and is not in contradlctlon with the Principle of
Indlstlngulshaballty- But 1ts meaning 15 not as transparent

as that ascribed to the other statistics. One fundamental
difficulty is  ¢oncerned w1th observablllty. Whereas Bose~_
Einstein and Ferml Dlrac statlstlcs have. recelveﬁall aqemnmamal
conflrmatlen, leadlng to well establlshed results, no claim

has been made of the need of extendlng these theorles to eqﬂaln
experlmental results. But quantum mechan1cs has its ~OWTL
selection rules. Somegprocesses not directly related~to_'
experlmental observatlon are allowed or forbldden, accordiné

to some guantum rule._ We expect that Gentlle statlstlcs

probably will be of. fundamental 1mportance in the formulatlon
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of selection rules. This has been shown in detail in this
{3)

work. The symmetric group S not being directly related
to space time symmetries could lead to operators not necessarily
related to:quantum observables. Qur gentilionic interpretation
of the multi-dimensicnal state vectors is consistent with the
non observability of some properties which could be attributed
td'unitary non chservables gperators.

There is ancther aspect of observability which is
worthwhile to mention. The second guantization method developed

(1)

by us: is a particular case of a general mathematical

technigque applicable to any formalism involving linear equations

(6'7}. The multidimensicnality of the intermediate

of change
state vectors expressed in-terms: of the. second guantization
languagé has, for N=3, as a result a. tri-linear commutation
relation for the creation and-annihilation operators. On-the
other- hand either that ofdeséfEinstein.or that of Fermi—niféc
operators, all expressions_connecﬁed-to cbservables as the
energy and the charge, are written:as;bilinear combinations of
the'operatorstg}. Thus , Sin¢éfwe&eXPGCt that. neither a creation
operator:no;;an_annihilationpopéra;or cannappear alone; in any
term,offtheaﬁamiltonianfia‘tﬁieliﬁear commutation relatlon must
be.relatggﬁwith'qnobsefvaﬁiélppqpertie$;. Nevertheless, some
selections:rules rglatedito.tﬁe{co@muﬁafion ?elations:could
result; o . . o
Thg—very_sixaﬂégaprppeztieé;of qua;ks: can be

satisfaqtorily explained.if.they*aré_aésume& to. ochey Gentile

statistics. Colour guantum numbers: arise. as a consequence of

12,

a broader interpretation of Noether's theorem applied to a

5(3). We think that the

3—quark system invariant under
theoretical implications of assuming Gentile statistics for
collective gystems is not restricted to explain SU(3) or

513)

5U(6} symmetries and multiplets. The action of on the

colour space considered here is an example of a general

(9). The

procedure which is well known in internal space theory
appearance of selection rules and conservation laws in our
scheme suggests gauge fields and internal spaces as being the
most promising beneficiaries of the study of general statistics.

This study raises very difficult but fascinating questions

that promise a great challenge for future research.
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