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ABSTRACT

Using a variational technique we provide sufficient
conditions for the existence of a bound-state in a system of

N particies in one-, two- and three-dimensions.




1. INTRODUCTION

_In this paper we explore: the va;iational.method for
obtaining sufficient conditions. for the existence of a bound-
state.in_a system of.N.Qartic%ésiin v-dimension iteracting via
two-body potentials vij(;i_;i)' . .

Let Hy denote the Hamiltonian of the N-particle
syster {(with center of mass (CM} kinetic energy removed) and

N
wave function- @ﬁ Such-that;

e the énergy. of its continuum threshold. If we can find a

(% d.) < g

BONON a Oy Oy ! ' i)

the variational prindiple guarantees, then, the existence of at
least one bound-state of N particles (below the continuum).
The difficulty associated with the method lies in

the determination of ¢ For locally square-integrable two-

N
body potentials vanishing at infinity, N is given by

Hunziker's theorem [1,2] which envolves the knowledge of the
bound-states of.all-subsystems of the whole system. Denoting

by C a cluster, C = {i,, ...,.in(c]}wi {1,...,8} , and by
Cc

the Hamiltonian of .the subsystem . formed by C ; after the.

C
0

infimum of the spectrum of_,Hg' then. Hunziker's theorem [1,2]

H

removal of CM kinetic energy, and by E the- energy of the

gives.

€, = inf EEi ; (2)
.{E;,...,cf_} - :
e, = {1,....n5
i=1 1
Ciﬂ,cj=¢: l#j

-12£5N

where the infimum'iS'taken over all possible decomposition of.
{1,..;¢N} into disjoint clusters.

. For the two-body problem €,=0 and theféfore it
is not difficult to find sufficient conditions on the potential
for the.existence of bound-states. If N2 3 ,_howeﬁer, gy < 0
in général thus making the problem not so simple. To bypass
this difficulty we use a recursive procedure on the particle

number N to show that there exist simple sufficient conditions

on the two-body potentials that ensure the existence of bound-

_states for arbitrary N in v-dimension (v=1, 2 or 3},

The physical idea behind our methed is dimension
dependent. In three-dimension it is basically a "two-body
mechénism": for a certain class (to be made precise bhelow) of
pure1§ attracéi?e two-body interactions, given two Egggé
clusters C1(ﬁtci? =N,) .and C,(n(C,} =N,) , it is possible
to biﬁa_them together provided there is at least one pair of
partidieé each‘one in_a different cluster which can form a
boundfstate.'.On the other hand, in one—-apd two-dimensions. it
is a “two—cluster mechanism": for "globally attractive" two-

(

body potentials, i.e .J Vijdvx < 0, given two bound clusters



C1 and C2 r it is possibie zo bind them together since the
[, eff
v

J7CiCy

The difference between v=1,2 and wv=3 cases has its origin

A’ <0 .

“effective" inter-cluster potential also satisfies
in the fact that in one- and two-dimensions a two-body interaction
with {\idvx <0 always binds [3,4] two particles but in three-
dimensioﬁ this is not the.case even if V. is purely attractive.
However, if the particles are identical (bosons or fermions) we
can also show that a N-body system will exhibit bound-states
even if the two-bddy system has no bouﬁd;states, provided N

is big enough (along a subsequeﬁce). In fact, large particle
number favours the existence of'bﬁund—statés Qf identical
particles (bosons.dr fermions) : ‘classically catastrophic
potentials (for instance, glbbally attractive potentials or

potentials with an-attractive core) [5] remain so in the quantum

~-E _
case, i.e. {£im “? = ® .. Based on that, we show that for
N -
these potentials there exists an infinite sequence 2§N0$N3§...
such that Hy has at least one bound-state.

i .
This paper is organized as follows: in section 2

we derive useful sufficient condition for a two-particle system
to have a bound—staﬁe with energy below —uz in v=1, 2 or 3
dimensions. Fof v=1o0r 2 and &=0 we recover the above
Mmentioned result.that if the potential satisfies Jf?dvx <0

the systeﬁ has always a boundnstate. For v=3, and a=0, we
obtain a sufficient conéition which is simpler than that

‘obtained. in [SI; also, if the potential has spheridal symmetry

we recover Calogero's "best" sufficient condition [7]. We also.

.6.

derive sufficient conditions for the existence of a bound-state

of a given angular momeéntum. Moreover, we show that some of

the sufficient ddnditipns provided by Calogero (7] are improved

by the variational approach.

In section 3 we dgrive sufficient conditions for
the existence-éf ﬁ bound-state in the N-body proklem in one-,
two¥ and threeedimensions; ~Part of these results'have been
announced in [3,8]. o

In section 4.§e:§rove our results for large number
of identical particles. .

In _the Appendix we ﬁollect some kinematical facts

for N-body systems which are used in this work.

2. BOUND-STATES IN THE TWO-BODY PROBLEM

A collection of sufficient conditions 6m V for the
existence of bound—étates of H2 with energy below" -az is
obtained by varying the trial’ functidn in the inequality (1)

(with e, = -a?)
o i Loy 2 .0 .o )
(?R. H  QR) < ~-a (QR' @R) - : . : (2)
Particularly useful sufficient conditions are those expressed

in terms of simple integrais of the two-body potential V [6].

For instance, very simple.conditions are obtained by taking as




3

trial a function @R

thaf at_short:range behaves as 8.

—-Qor

and at long range behaves. as.the solution of the free equation

with energy- w&?:.

) ¢§$;1;=_e‘“f]g(;); S for r<R
: éatr) % e_FR ${x) Hior) for | >R

H{eR) -

(r = |§1y,_ wbe;e ¢{r) . isg gfbitréry_apdsrﬂjqr)

of the modified Helmholtz equation,

{-A+qzlji(qrr = 0. :

is the selution

(5)

(We are taking energy in qni;s;qf  g?/Zpr, U being the reduced

mass of the two particles).
”So;'ip"bnéediﬁéhSion-ﬁe-také. 

: —GIX—XOI_'-
é (x) . ¢ (x—x

<o)
where Xqy is arbltrary and ¢ (x—x )€ LZ(R1)
ik—xb!<ﬂR’,. ¢R(X-x ) =1 an@,fo: ,I$~x0f>-R ,

starts at  1: and ¢R(xf 0)-*O _aé’-[x—xdl*—w .

a 1. - . A )
scalingh'¢R(x§xbj;i34@'@ﬁ{ﬁ(x-xb)) -and letting

Obt_a.in_- th& C:Onditior_z*‘-—_" [

R AN
20+ e Vix)dx. <0 .

ENCN

(6)

is such that for
b (x-%)
By making the

B+0 we

‘where KéiaR}

.8.

Setting a=0 we recover the known result [3,4] that in one-.
dimension a globally attractive potential, i.e. J\Idx <0,
always possesses at least one bound-state.

In two-dimension we take

e(r) = 7% for r <R _,

1]
U]

{7)

-0k
a e
@R(r) = K—'D"(ra-ﬁT KO(G-.'C) for ].'-> R. ’

where Kojar) is the modified Bessel function, and obtain

‘the following sufficient condition for the existence of a

bound<gtate of energy less than - a2

Cp2w R ' ar K. (ox)
-%{@[ mﬁer&——J@fafm‘im—vwmraa

ENC)
o 0 0 R
~2aR _ 1. KR |
1-e —-20R 0
z [-2 .] - oR e "l Ry (oRy [ =/ : . ERCY
dKU(ar)

= qery :
: ar=aR

Again, setting o=0 we recover the result [3, 41
that in two-d1mens;on a globally attractlve potentlal
(f‘vd;x'<p} _always possesses at least one bqund—state.

_Finally, in three-dimension we take



o 1 —-0r .. .
= r < R
@R(r) ;35 e o for '
(9}
o2(r) = Rﬁa o for r >R
R'\E S r '

obtaining the following sufficient condition for the existence

of a boundfstéte of enérgy less than —o?
R ; ©
{ i _—2aRr -2or
L - Yar-tlan |2 & vie,eirlar :
- EFJ dﬂj = C Vir,Q)r"ar a7 | 4 Z .
0 R
- —2aR
N s ] (10)
T 2R
Setting & =0 obtains
roR =
- = 'ch %V(r o rfar- L fdﬂ[ RV(r,Q)ar z 1, (1)
0 R

whith is simpler than the condition obtained by Chadan and
Martin [6]. In the particular case of spherically symmetric
potential, condition (11} reduces to Calogero's [7] “"best"
sufficient ¢condition. .

. -We shall now present the variational versidn of the
other sufficient conditions (a=0) derived by Calogero in
reference 7. Taking as trial function ¢R(r) = RaE/(r+R) '

a suffictent.éondition for a spherically symmetric potential

to heold a bound-state is

- for a sequénce - o%

[ L v rfar < o {12)
j  (r+R)¢ .
0

- Taking _@R(r) = (R /rf(Tl-e _ ) - as trial function we get the

condition

Bl =y

SR | .

J S areT R vy 2ar L1 (13)
Conditions {12} and (13) .should be compared with

Calogerc's [7J.¢onditidﬁs-(3:15§,ahd-(3.17) respectively. In

both cases the vafiational3MEthQa produced improvement.,

Remark - The fact that for '« =0 the trial- functlon lS not

square 1ntegrable is of .no- 1mportance- Af Rim (@
N ) a0
R_,'-then; for- o sufficiently " small

R Hy 95) <0

(@a, H @a)-< 0 ‘and - the varlatlonal prlanple guarantees the
existénce of a bound—state.-._ .
For spherlcally symmetrlc potentials, our method

can be readily adapted to prov1de sufficient conditions for the

eXistence of a bound—state hav1ng energy less than —az and

0f a given angular momentum £ Our recipe in v=3 is then

to use as trial functlon the regular and irregular solutions

of the modified Bessel equatlon,

2
. dTX dX
£ 2 £(£+1) 2 :
-t _ 2772 Xp + 0%, = 0 ' (14
ar? T A T T % 72 )




W1i.

matched at an arbitrary point r=R.. Thus, the trial function

is

L ) 1- .
(GR)A ) £+V(Qr)

£
& {r) - ; for " r<R .
RS Ky, (OR 0 gy 72 -
Y, I (az) {15}
2 ‘ {aR) 2 241, 10T : .
oo (x). = - — for:- r>R .
R .z£+5%(GRI (ar]yQ : ‘ _

providing the following sufficient condition

( . (oR)
22 2 2 (£+1) KoY,
s 1A | epl® Ve 2)xTar: 2 oR 2 +
4m J ] : _ GR £+1/2 (R}
: Q : R
 XZpis(eR)|
. ar? % P A | i (16)

..I£+5E(QR)

In the limit _Q?io' the above condition reduces to Calogero =]

"besE‘[?] suffic1ent condition

-1

R o
[y 24 . 2842 . S
[ {%} T vinyefdr - %[ [-E] v rtar 2 2ea . a7

Remaik - The technical assumption on -V needed for the validity

2
foc (RY) and fim V(F).=0. This

o
ensures: 'a) Hunziker's theorem [1.21, i.e.,

of Qﬁr arguments is VEL

g, = 0 and b) since

Eoc (&") Cle oc (RY) . all integrals are well defined or

equivalentl a Tl i .
y, 11" trial wave. functions ¢R gie in the form

Li2.

domain. MNotice, also, that the condition of being "globally

. attractive” J vaYx<0 canbe generalised as follows: there exist

R>0. and I>0  such that

[. v(¥)¢"x £ ~I . forall R'ZR i (18}
[%| <R

thus aVOiding the requirement of 1nteqrability

3. BOUND-STATES IN THE N-BODY PROBLEM'

SuffiCient conditions for the existence of bound-
states for all Nz2 are derived inductively on W , that is,
assuming that. a certain sufficient condition for the existence
of bound-states for_N_;Z ié verified, and assuming the
existeﬁce of_é bound;state of N particies,.we.pfove the

existeﬁce of a bound-state of N+1 particles.

3A. One- and Two-Dimensions

_ Let all two-body interactions Vi be globally
attractive; i,.e.__J Vij d¥x < 0. Consider now the {N+1}-body

system.. Dencting by ;i and m; , ial,...,N+1 the particles.

-cqordinates_anﬂ masses, and introducing Jacobi coordinates [9]

-1 B . :
g-- mj] [E T, ;} r. i=1,.0.,N
=1 . . .

TFﬁqmﬂnow;on,we shall use h=1.



.13, . : . .14.

the Hamiltbnian_ H&+1 -reads . . ‘
R . . N T C T 2 - + AT V ’
oy = i§1 [IQ)N(Ei Pt g TV g Mg 8y e
H 1 ' > - ' = ' ' .
H = - —_— - o
) is the "effective" potential seen by the (N+i}th particle in
. 1 . o -1 the presence of the bound-state of the other N particles. The
where - uT¢ = mo!. + {_2 m.} . . ';
i i+1 361 3 4 - important property of the effective potential UN ‘is that it
_ is also globally -attractive. This follows from
that is N I Ny
rat " .Y ) = > 2 v e
J olepa g = i§1 J_d Eqees g- gN_,l-—l-@N(g.l ; ..._,_.gN_le Jdngi’N+1 )
H K {277 A ? v e P e e s s T T
= - L+ . - . Lo - >
N+ 1 N T 'N £y J& TiNe ATy -5yt : where ﬁi is a linear combination of .&;. ... » &y ;... The
7 integral in £ can be performed .and-is -iridependent of Zi .
where the Hamiltonian Hg involves only the coordinates and since JI@NEZ,QV g .---5dv.€ﬁ 4 = 1 . we obtain
- + " . : ; - )
} 51: cev i B - .
' Let E_ be the enefgy of the bound-stat : ' . u S
_ N ¥ oF the e of N u G ave, = ) V, g @ avE|
. . N ' B -> N . 3 r
-particles (with By <ey) and - 9p(f,, ..., & ) its normalised , i=1 =)

wave function. Consider then . E Lo : ) :
which proves the statement. - By a Simple limiting argument,
+ + - . v, . this result follows even if we use the more general defirition
@(51 L ) EN_1 ’ EN} =¢N(£1 ¥ b ey EN—1) ¢(EN] r : X
. : ) of globally attractive potentials introduced in (18).

. s : S0, from the discussicn in section 2 it then follows
where ¢ is going ta be conveniently chosen.

) that ¢ c¢an be chosen such that (¢, (Hd+UN) $) <0. For -this
It is clear that o

choice of . ¢ we have

(¢, Heiq #) = By + {6, (B +U_)$) . S
ot ’ e .
: ’ ' (¢, H (3] <'EN < g T .
. N+1 "N

where H, = — «+— and : _ ' o ; . ' .
Notice that the arguments .can be repeated for any decomposition
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of the  (N+1)-body system into. 2 clusters of N and 1 particle(s)
respectitely;' So, numbering:the particles in such.a way that
EN is the smallest energy of all N-body bound—states it then e
Follows that . .

(?‘rHﬁ+1¢]'<

concludlng the pzoof
' It 13 easy to generallze the above result {3] to

prove. the exlstence of bound—states of N-particle. systems for

v =1 and. 2y E;qvidéd%the:ecexists.a“decomposition of;the;system

into two disjoint clusters

c, = {1

1 rt

1::--.-.. N } ’ -cz = {j1.r PR jN } r N_+N =N'_ r

1.0 -'ﬁ_:_' S S 1"2.

' ' R T T _
both admitting bound-states with energies B and E {below
the respectlve contlnuum thresholds) such that the "effectlve"

1ntercluster potentlal

vgfg & ;’, Loove® (19)

L iABCy L

3602

is globally attractlve and such that the contlnuum spectrum of
C C Cqy
He sterts at. By = 1, E L
_'In_fact{}theuﬂamiltoqian Hﬁ_-can be written as ..

.16,
. o C
Hy. =;-H‘1'+ B2 Hy + S, (Z,-F,)
o . o iEC1 131 3
JEC,
5 S -1 S _ .
where. HO'= --55 S TR [ ) m}* + [ ) mj} s and K3

1EC1 JGC
denotes the p051tlon of the CM of C2 with respect to the CM

Of.c?;r

.Consider_now
A R L ) C20 2
2 ¢{§1 . -.- * gN‘l_-\I r E.] ; Eea g ENZ_-l r E] =

CrEE1 G C(aC2 - aCy Y
=& [51 "---rg _1]@[51 '.""'EN

‘5Cp .. . Co ‘ e ‘
where £.% , i=1,..., y_41 are the Jacobi coordinates for
¢C£ .

r

cluster Cz_, £21,2

C
of H_£

are the normalised eigenfunctions
. . ¢ ' '
(with energies E'ﬁ) and, as before, b will be

conveniently.chbsen.__Eor this trial function we have'

. = c, ¢ ' -
w,%ai;E?¢E2+(¢.mN@ﬁ;¢}

where

13 i 3

eff -+': : _- Cy «C1. 2 Cy C. c 2 . -
AR A Dl N P (ORI T | R S
c‘I92_ _ -it-:cj - Ef‘71‘.1 E'! : E1~12_-1 ] FEy %

JEC,
gt oy Nyt ¢
" I a’ Ek1 4 av E£2
k=1 £='|



LT,

is the “effective“ intercluster potential {19). This followe

“from -

[ : "(Nﬂ 1 | 1l 40 2
j vgfgl(é)dVa =y on ag o 1[511 i By _1]\ x

160y . k=1 17
A . iE_Cz :
N1 2
L2y Cz 2(:C2 . L2 Y fz 2% »‘32]
x J 5:1 d Eﬂ [51 reeneby 4 5 J a’ g ViJLE-z-ui * oy '

R R . o : L Ce
where Ei£ , £=1,2 , are linear cecmbinations of 21 ,...,E
. The integral in- E- can be performed end'iS'independent of

c . c. L . o
ﬁiz, and as the functions @Z are normalised, we obtain -

| . e 5
vgfg @l = ] :-{ visthdle
1 iEC1 = _
3&C2
S0, as the "effective" ihterolﬂeter'potehtial ngf is assumed
172
to be globally attractlve, from the discussiocn in section 2 it
eff

follows that ¢ can be chosen such that (¢, (H 4-VC C 19) < 0.
1
For thls ch01ce of s _we have
¢y HL$) < ET +E =By ov
thus concludlng the proof.
o Agaln, by a-simple- llmltlng argument this result

follows even if we use the more general definition of glcbally

attractive potentials introduced in {18).

N£—1'

18,

" 3B. Three-Diménsion

Let _C1,="{;1.EJ--G'1N%} and C, = {j1 Fooa 'jmj}
be two disjeint clusters,"N1+N2==N: The folléwing set of

relative coordlnates w1ll prove suitable -for dlsplaylng the

binding mechanism that we explolt in v=37:

= _ > . . - .
Xi-ri-rm,' R T Ty -
; (20)
§. = ;_: ;—; ; r j =j r-';'lj . r
3 N1+j TN 1 N,-1
R 2
-+ _ 3.
z = rN1,~ Ty .

i.e.}_inside'eaoh cluster 'C£-,GE= 1,2 5 we single out a given
particle (for siﬁplicity we always make it the last one in the
cluster) and take'coordinates relative to these particles.

In the appendix we show that the Hamiltonian HN

written in terms of (20} is given by

1 2 D =
HN = H + H + H + VC1C2 ¥ TH—E N (21)
where D is the two-body cluster:
D = {ig ., 3, ¥ = (N, ,N} ,
N, N, 1
¥ = 3 V., . (R, -V, +%) (22)
€€z T~ A SV
£=1, ..., -1

2




.19,

ig the intercluster interaction excluding VN - already included
: A 1

in HP ¢ and

— ' {23)
v

is-the:Hﬁghééegckart'kinetic;energy'ET]. Here 'Ei"aj.
i §j. and z

and E

denotevthé«canqnically conjugate.momgnta to x

respectively.
C.
Let us now assume that there are eigenstates ¢ *
C. ) C.. C,
of H } . with=energies E L <. g i v i = 1,2, where ec

denotes;theacontinuum‘threshqld;of'HC-f'

,_Considexingythéhvans:ate b of the N-body system

of.the-form;
c . T

. P B o R S T =+
L TR CIVARPRP S B R ¢ S A yN2_1)¢(-£) . (28)

we get

c. c:
(g By 8) =E ¥ f‘az ST T T GCT_CZ- o) +
(O r Dy p o) . _ (25)
Now, for puxely-attr;ctive potentials 'vij
Ogr¥e o o) 5 0, (26)

172

.20,

and, if it is possible to choose ¢ such that

9.a%6) 5 0 (27)
and
(6,50 = 0 , (28)
then
C1 C2 ,
(o » Hy §N) < E' + B . .(29}
Comments -

{a) Condition (27} is a sufficient condition for the
existence of a.bound—state for the cluster D = {N1,N} .

(b) Cendition t28) follows from symmetry requirements on ¢ .

{c} Both (27) and (28) are automatically satisfied if the
Vij's_are central potentials and ¢ is ﬁaken to be a bound-
state of H® with well defined angular momentum.

{d} For non-central potentials a sufficient condition for
the possibility of choosinq ¢ satisfying (27) and (28) is for

instance (11).

Under the above assumptiohs om Vij we can draw

the following conclusions [8]:

{i} The threshold for the continuum spectrum is given by a

two=cluster break. up:



S e ey
gy = imf - {E," + By™) . : (30)
A il LIRS
_..c Ney=9

where 1Eg' dencteslthe ground state ehérgy ithe infimum of the
spectrum} of K" .

with

(i1) For all N 22 there exists an eigenstate of . Hy

‘energy Ey < e
Proof -

(i) Suppose the minimum in- (2) - were dttained at £23 , ile.

| e e . . gb”_:t;
EN = EO +-E0..¢ ves + E0 ::?
A : - eMe, c, c, ‘
Now, from (29) it follbws that EO S< EO + E0 ; therefore

the only possibility left is £=2 .

ii} Follo#s_trivialiy'frpm (1} and (29).

4. IDENTICAL PARTICLES - LARGE N RESULTS

The results of the previous section have one thlng'
in ‘common: they all assume the existence of boundastates of
two-particles. However, even if the two-body 1nteractlon 1sf
‘not strong encugh for blndlng twe-particles, there is a class

" of interactidns for which we can pfdve the exisEence of bound-

such that u(¢) <0 then for N>-N0(¢) = 2 {1 +

.22,

states of N particles, provided N is large enough. To prove

this let us consider a system of N identical bosons bf.mass m

'interabting_via'a“fwo-body potential V. . Using relative

'coordinqtes with respect to the Nth particle, ;i = ?iL-zN '
i= j,..;rN—I }_the-Hamiltonian HN reads:
. >3
N-1- ki Not N-1 N
Hy = .E =t L V) o+ . Tovix,.-%,) +
i=1 i=1 if3=1
;W= Ei.ﬁ.
+ = =2 . - T {31)
Zifger @

" For the trial wave Ffunction

%&1 PETTRS M A E: fp(;i'i_ | (32)
we havF |
(wN He ) - oen '{w CHyg) - B2 u'@j’} (33)
.wﬁere- .u(¢)'=.J ;¢(§1)¢(§2)|2 V(;1_§2)_d3x1 d3x2 . (34}
‘Notice that the Hughés;Eckart terms disappear by
symméiry.

It is clear from (33) that if there is a ¢ € L?(R“)

lu() ]
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Sinf N (6) (by
ell T

Hunziker's theorem) BNO_ will have a boundestage, Sufficient

it follows ti}at -(IPN:-, Hovy < 0. So. forsome Ny

conditions.onu_v' for this-toahappgn_gra;

(a) V‘ls purely attractlve (V(x) O) -in" this case

u ). £ 0 for all . ¢ .-

{b). v has.an;a;t;active-core; i, e;' V(Q) £ 0. for EIER:E

. qhoosing: ¢{§): 0 }fpr'_[ﬁf_z R/2 ‘we have. :u(¢i 5.0

ic) V. is globally attractlve- let v _3 (ﬁhé'case v=1
v/2

or 2 has.been,dlscu$sad in sectlon.SA). For- ¢g§)=s $B%)

we have

ufeg) = 52"_ j[ V(X-Y)|¢(Bx)| I¢‘(s§; |._2a‘?.x a_"'y =

o

v %) %¢(sx)}2 iwy);zd"xd Y.

r

L

J _ o

Jd y]MYH [J'\:f(_m'.l_mﬁ:,?){zd" w] .

V

wﬁe:E o =_x-y/B .
Since -

“tim H V@) o (8E+7) lza"fu]j - e |? [ v au
CLEC ) V(m]d @ <o,

L u($,): <0 for B small enough .
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We now show the existence of an infinite sequence
2& Nos N1 vee S Nn = such that HN. has at least one boupd—
state. Suppose this sequence is finite, i.e. 3 L. such that
for N:>NL , HN“:has no bound-state. In fact, by Hunziker's
theorem [1,2], the contipuum thresheld is given by

Lo o
€ = X ‘k. E , k integer

i TN, . i

where

Now, since

k, =N o i=1,...,L

By B © L 35)

As we have seen {33} in the case of bosons (¢N , H
2

-CN™ (C>Q} for upperbound. Due to the linear dependence of

gy ©On- N it fqilows that there exist a.-__N.>NL such that HN
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.hasfat;leeet one bound—state; thus proviﬁg tﬁat the sequence of

':Ni eueh-that_.HN. has at leest one boundeetate is infinite.
In'fa;t all these interactions are catastrophic or

coiieﬁeiﬁé'3$nce_the bihding energy per particle diverges

as NH-m. - Any two-body interaction is catastrophic . if it is

net stable. [5} {a two body 1nteractlon vV is said to be etable

if- there exists a constant B2 0 such that U(r1 r e ,rN)-=
: N
= %- 5 Vfri—rj};_ -BN for all :N:2 2 and fer all"

id3=1
s

Tyq wmey ;N-E RY) . 2s proved in page 35 of Ruelle s . book [5],

if the 1nteractlon is not. stable there exist a sequence.of

integers .N1< N2 vew Nk< Nk+1 ceeiir @ eequence of points
El’ e Ek € RY and conastants C>0 , 6340 such -that
g _ < . e
Ulr, -0,...,rNk) S ~CNg o if |rl §i|< 5. for all i.

Then, lt is easy to construct ! sequence of normallsed -wave

funct;ons such that

Wy - v-wN b —'CNEf'a.”ané e
k. : : R .
} C‘Nk' _..__- (BGSOneJ'
(. + Hy q;Nk) < o,
B AT+ 5y .
e ny, -i:{fermiens) .

Therefore there exists. a koé 1- such that’ (¢ {HN Tgyo< Q.
: S F Ak .
0

and so there exists

< <
2z NO._N

has at least-a bound-state if

as already seen).

.26,

0

such that for fermions

vz 3 (and'for-boeons-if

Ay

vz2

0
1

I




2. .28.

&Pﬁﬁﬁb;%.:—; KI§EMATiéé-FdR v ' '_1 . . transpose of the matrix B defining transformation (20):

T P 5 e 4 -
Herg'we,def;veiexgression-(21) of _HNf in terms of R =0 w R TH e W r,
‘the relative coordinates X; , ¥, and z defined on {(20). The *5, B - 1 0

_bniz,thinnge.hayeL;ﬁ?db.tofqbﬁain;éxpression-{211 is to express - R C BT :

) : : . } . i ‘ B A o 7 . - N . - - - .
the kinetic-energy:in:terms of the momenta Ei"'aj and p
canonicéiiyfconjugatééigr,Qiz;f;j,_and. E' respectively. This 1 =

isieasily done- since’the transformation from the moumenta Ei . ' 34
qu.andﬂ-QLUtQ¢;hexmomenta-_pr,'

l - . N .l‘ . .. ". ) T a - - . ) - )
is. given by~ - T o S; ’ B R U o R4 B4 I coe LT

cancnically conjugate to T,

e - L : S _ {a1)
T = B o - . : _
?rN T [.ﬁ] . o . S .where

:whgre;rycm.;:q 1s.Fhe¢CM momentum: canonically conjugate to

Tl N - :
cMas ) ‘m;) - and the matrix 5 is the
SAi=T o T .




i3

. »2
c N2~1 qj NZ—T
2 w3
H = L 3 +
221 CUN3 . psfoq
oL
TN =1
f Vi =¥ )
- . - Lo g
hsf=t.. Jpdp TIp."3p
. =+2
B . -
H = - + VizZ) r
¥y n ;
|
. v
N1-1 p.ki; N_-1
Th-g = ! TT__E -
£=1 My 2=1
o -E: - .
€12 ki, Lomg-1 0 fede
' z=1,“1,N2-1 :

being the reduced masses.
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