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ABSTRACT

It is shown that the fermionic sector of N=1, D=11
supergravity can be rearranged in such a way that a minimal
number of auxiliary fields are necessary to be introduced so
that we can eliminate the quartic gravitino interaction:terms.
After functional integration over the gravitino we obtain a
effective action in teérms of these auxiliary fields and the
bosonic fields of N=1, D=11 supergravity. The non-vanishing
expectation value of these auxiliary fields can lead to mass-
like terms for the gravitino and contributions to the cosmological

constant.




INTRODUCTION

(1)

N=1 supergravity in d&=11 dimensions has recently

received much attention due to two major aspects: a) obtention

of N=B supergravity in d=4 dimensions through the dimensional -

(2}

reduction scheme thus leading to the Cremmer-Julia and

(3)

de Wit-Nicolai medels; b} spontaneous, compactification of
the 11-dimensional space-time into a product of a 4-dimensional
space-time with a compact 7-dimensionalrone. This propérty
arises as a consequence of the fact that in j1-dimensicnal
supergravity a three index totally anti-symmetric boson field
is obligatory. In coatrast to other higher dimensicnal nodels

(4} of the

the 4-dimensional space—time comes out as an cutput
classical equation of motion in the 11-dimensional supergravity,
as a result of the dimensional reduction scheme.

This scheme was, until now, almost only used to
obtain 4-dimensional model starting with a classical d-dimensicnal
one. ‘Very little is known, on the other hand, if the dimensional
reduction is performed after the d-dimensionally model is
quantized, or at least partially quantized(s). The guantization
of higher dimensional models can present gfeat simplifications
because they are described by a simpler structure, as compared
to 4-dimensional models. On the other hand, thié d-dimensicnal
gquantized model need to be adequatelly analvsed in terms of its
4-dimensiocnal physical content. We are particularly interested
in studying the quantization of the N=1, d=11 supergravity
fermionic sector. Two major aspects are important through this
procedure: a) dynamical mass generation .and b) cosmological
constant generation. The fermionic sector (which includes its

interaction terms with the other 71-dimensional supergravity

. 3.

bosonic fields) is uniquely described by a {128 degrees of freedom,
on mass shell) Majofana Rarita—Schwingef field (gravitinc). Its
pure part has a rather ﬁeculiar structure because it is only
described hy.quadratic and quartic terms, thus bearing a close
analogy with the Jona-Lasinic-Nambu Model(e} {J-L-N}. The
Cooper pair formation in superconductivity(7), described in
terms 6f a phonon mediated attractive force between the super-

conducting electrons (leading to an energy gap) was used as the

starting point- in the J-L-N model in order to understand the

~dynamical méss generation process in field theory. The quantization

of the J-L-N model has been carried out by some authors(s'g)

with the use of the functional path integral formalism, leading
to. the introduction of auxiliary fields in order to eliminate
the quartic.fermion self-interaction terms. Although this kind
of mddel is unrenormalizable (from a perturbative power counting
argument point of view} which forces us to introduce a ultra-
violet cut—off representing an independent parameter, interesting
informations can be obtained if some of the auxiliary fields
develop a non—vanishing vacuum expectation wvalue (v.e.v.j.

The -pure pért'of the fermionic sector in the 11-

dimensibnalasupergraVity model presents similar kind of results

"as-the J-L-N model. & closer inspection of this part shows us

that the guartic gravitino interaction terms (g.g.i.t.) appear
due tofthe.pféSence of a guadratic contorsion product, since
the spin connection is used as a dependent field, in the 1.5
formalism. Using a specific gauge for the gravitino, in
addition.to the Fierz identity, made it possiblé for us to
reé-arrange the g.g.i.t. in such a way that a minimum number of
auxiliary fields where necessary to eliminate'them;when fexrmionic

quantization is performed. These auxiliary fields are of three
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types: a scalar, (twe)three index totally anti-=symmetric and
{two) four index also totally anti-symmetric ones. Classically
they represent only Lagrange multipliers, whose equation of
motion consist of gravitino bi-linears in the wvarious channels
(scalar, three index totally anti-symmetric and four index
totally anti-symmetric}. But at the quantum level they écquire
kinetic terms, which represents a change in their nature.
Anyway, they consist of a new kind of :entity thus leading,
after the quantization of the fermionic sector, to a clear
departure from the élassical scenario through the development
of v.e.v..

In the guantization procedure, the bosonic fields
are classical background fields. Introducing thé auxiliary
fields, after the re-érrangement of the g.g.i.t. and performing
fuancticnal guantization of the gravitino leads us to an effective
action. This effective action is. a Very complicated {non-Iocal)
functional of the bosonic 171-dimensicnal supergravity fields
and of the auxiliary fields. As mentioned before, new informations
will be cbtained when these auxiliary fields develop a v.e.v..
The guantities thué_generated are a mass-like term for the
11=dimensional gravitino and a cosmological constant. We have
to be carefull in interpreting this new generated quantities as
physical ones. The mass term is called "mass-like™ because a
physical mass can only be understood by this if it appears in
a 4-dimensional space-time with a vanishing cosmological
constant. In this sense, we can point out that, after dimensional
reduction the spin 1/2 and 3/2 fermions in 4 dimensions acquire
mass terms and the 4 and 7 dimensional spaces receive a
contribution to the cosmological constant.

The classical field eguations of the 11-@imensiocnal

«3,

supergravity', in-addition to furnishing varicﬁs kinds of 'sé.ontar.aeous
compactifications, gavera new insight to the cosmolégical
constant problem. The'three'index totally anti-symmetric field,
through its fiéld.Strengh,~leads (éfter dimensional reduction
to 4—dimehsions) to a different kind of contribution to the
cosmological_cénstant(10'11’12)- Instead of being a fundamental
element in the 4—dimensioﬁél equations of motion it consists:
of a undetermiﬁed equation of motion constant. This fact,
although it daes.not furnish any deeper explanation of the -almost
vanishing 4-dimensional -cosmological constant, demonstrates us
that higher ﬁimensional models containing world index tensor
fields can.furnish a contfibﬁtion to the 4-dimensional cosmological
constant. We”@ill show.that, in the case of 11-dimensional

supergravity, thé three index totally anti-symmetric field,

is not the-ohly'ingredient to ‘the obtention of a 4-dimensional

cosmologiéal'cénstant because v.e.v. of the scalar and the

{twe) four index totally an£i—symmetric auxiliary fields do also
contribute.:

. This paper is 6rganized as follows: in part 2 we
introduce the model and re-arrange the g.g.i.t.. Next, introducing
the varibus auxiliary fields we eliminate the g.g.i.t. and
perform functional qﬁantization on the ¢cravitino field thus
obtaihing aﬁ effective action, in part 3. In part 4 we draw
some comments on the d-dimensional spin 1/2 ané 3/2 fields mass
terms, in addition to the generation of contributions to the
cosmological constant in 4 and 7 dimensions. Finally we make

final comments c¢oncerning open guestions and future prospects.
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2. REARRANGEMENT OF THE GRAVITINO QUARTIC INTERACTION TERMS IN
N=1, d=11 SUPERGRAVITY

The N=1, d=11 supergravity lagrangian is described

by a "elf-bein® eﬁ + & Rarita-Schwinger field (gravitino) w;
and a totally anti-symmetric three index tensor field AMNP‘
World indices M,N,... (middle part of the alphabet) and
tangent space indices A,B,... {early part of the alphabet)
range from 1 to 11, while spinor index o goes from 1 to 32.
Its complete lagrangian is(*’
__1 e - MNP _ (w+d
L = - 5 e Rie,w) - 5 ¢M T DN[ 5 ] wP -
- _ 3 - MNPQRS M NP O
25 Pawpg — 7 De [@R r bg + 1290 T ¥ | x
-~ Ml‘M2M3Mq'M5M5M7M5M9M1 anl
EMNPQ + FMNPQ:, + C g . , x
X
FM1M2M3M4 FmsMstMs * AM9M10M11 (2.1)
(#%)
where
Faweg = ¥ (m Rupg) {2.2a)
Faveg = Faweo ~ 3 Ym T Yop (2.2b)
and
C = - /7i/345 , D = . /37144 {2.3)
(*)

We use conventions of refs. (13) and (14).

(**
’The symbol [ ] means total anti-symmetrization.

The spin connection used as a dependent field (in the 1.5

R . . A
formalism), is written in terms of e

M and wN as:

AR AB __AB
wM. = Wy (e} + KM (2.4)
; . AB ; .
with the contorsion term KM given by
AR _ 1 = SABNP 1 iy AB_ 7 (BA oA B
M =B YTy Yo + 3 EwM- P Yy T 07 + Ty v
' (2.5)
Also
o= 1 AB
Dy =y ey Tap {2.6)
and
~AB AB 1 — _ABNP
Wy = wps = Uy Ty ¥p . (2'7).

The :scalary curvature and the curvature tensor are

respectively represented as

Rle,u)} = €5 ©p Run (2.8}
and .
2B L o wlB L (BC B (M~ 1) . {(2.9)

MN M N M NC
The gamma-matrices with N indices are defined by
h e o I'a . (2.10)
Apesdy TORD Ciagay

Lagrangian (2.1} is invariant, on shell, undér the
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following supersymmetry transformations

seh - 1Er? ¥y (2.11)
s, = D (G)e + L2 [FNPQR - 88" PPQR:[eﬁ (2.12)
M = Dy 288 | ' % NPQR
and
SAp = - %? e I oy ¥p {2.13})

being € an infinitesimal Majorana spinor.

We know that the.quantization of any gauge model
requires algebra closing, as can be deduced by the BRST
invariance. In contrast to N=1 and N=2 <4-dimensiocnal super-
gravity N=1, d=%1 supergravity does not close supersymmetry
élgebra on all fields due to the lack of auxiiia:y fields. But
for the particular quantization of the gravitineo it is possible
to circumvent thisg problem, due to fhe-existence of a set of

(13)

auxiliary fields which close thé gravitino algebra, as

will be discussed in more detail in the next section,

The quartic gravitino terms arise from the following

parts, in expression (2.1)

e Rie,w) (2.14)

(2.15)

1
Mf—=
o
=y
=
—
]
=
—_—
[
—
=
o]

and

(2.16)

V3 — _MNPQRS =N _PQ 2
-7 ke [wm T ws + 129" T ¥ FNPQR .

.9,

Starting with term (2.14}, the quartie gravitino

terms éome”fromkexpression

M N ac B AC B '
€, g [KM “ne ~ Ky KMC] (2.17}

as cah be eééily'éhecked-through the use of (2.4), {2.5), {2.8)

and (2:9). ‘Using ‘the gatge

oy =0 - (2.18)

™y = 0 . {2.19)
and

Ty =0, (2.20)

® © = 0 . (z.21)

M N AC B . 1..— _NORPS 2
A ®B “m *ne T 5z Wp ! Vg
{a)

J.f—-_‘NPQRS.l - L1 s o L 5P-M N

+mg Wy T bl (U Tp¥gy) + 5 By Tygeg) (T 00N -
(b) o {c)

- T, T vt '

75 By Ty ¥p . (2.22)
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Now, using that (%)

- NPORS

g T g = 30 (BIPh Lg rTOYy  2a23)

we obtain for expression {a) in (2.22)

- : _ 9 (TINPQl2 1 (g oNPQ
5z (VpT Ug)T = g W TV e g Gy T v’
.9 - NPQ_ M, —

and the same for (b}, leads to

NPORS

1 - = 3 .,7IN o1, 2
35 (g T Vg (P Tp ¥g)? (I P gRhy® o
1 NPQ
- e B T T toug - (2.25)

Further, using Fierz identity in expression (¢) gives.us that

- -p M N, 1 [ - M2 1 - NPQ, 2
(Fyy Ty ¥ (T 170} = = 553 {wmw) G Tyt e

| —

+

4, TP (T Tpbgy) ¢ 3p (B Tt ?

- (3, TVFOR u'h % Tro wR]} ) (2.26)

Finally, for term {d) we have

- L% 2 .. 7. ot 14T
16 (Pulyve) = - 373 {1”‘”1\&‘[’ 1w g (G TRy
181 ,— NPQR M. 2
-3 Wy T } (2.27)

*
( )Subsequently we will use always gauge {2.15) without mention. -

o

Now we insert (2.24), (2.25), (2.26) and (2.27) into (2.22),

so that’
M N AC 15 7 M2 15 [N P 0]
eA eB KN KMC ~ 512 (‘JJMW ) "'.T'g (UJ B ) +
15 NPQ M2 3 g [NPO M
- TEge BT V)T = Gy T (U T Ugy) +
+ 23‘3014,,627.@:4 [NPOR M, ¥ 1w Tpo Vai (2.28)
.Fcnf -exprés.sion (2.74) we write
- %ER('G-;UJ) = - %eR{e) - g { [ l: WP ABPQw )+
+1Z [EN P - ENI'BwA . P erpB :l + wﬁcie) % T, NCPQIPQ N
+ % l:szrB_qj_C -7, 4B, B ?ch_ . wgc(e) % 3, FACPQQ) -
] A ¢ A cl o 15¢ 4 M. 2
*E[””MP‘”“”’T‘I’+‘PTM‘P_]*MN)}+.,024WM1,U)—
_ ‘ISe W[NerQ] 2 31057@_-2 (ﬁ pNPQ My 2 _2_ E PO M,
5 _ 23167e o pNPOR
< Ty Ty vy - e (T TV Wy Tog Uy (2.29)

where -Ri{e) is the scalar curvature without torsiocn.

Now, for term (2.15) we have:

1 — MNP (weid] 1 MNP,
-7 U Dyt Ve = -3 @ Uy ¥V
1 _ — _MPN AB e - _MnP T ARRS
-z eVl Tap¥p Uy &) - 3g Uyl ¥pp WP_[IAJRI“N Ug) +

M
- A_B - B, A TA . _B . -
4 - T N L) ™ .
+ |:ri v U T 40+ ¥ __qu:l] - (z.30)
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Since

- MNP

U I Tapip = ZEEMFA byl - oy wA)] S @ ™Mt 2o
and

(Fp Tgap ¥g) = 30 (Fpy Ty ¥p)) = (Tg Typp ¥5) (2.32)
expression (2.30) reduces to:

- % e Yy pHiE DN[w;ﬁ]'”P == % e Uy rHi In¥p -

-3 e u;MrMNP Tm Vo MSB(e) - ;—;% (T, v -

_ % (% FNAB ‘PM) w[N FAIPB] _ 7_2_ (EM 1.,NAB wM}7

- 3% Wy Tpvgy)? v 220 (g, NPOR M, 2 (2.33)

Finally expression (2.16) gives us:

MNPQRS

Vg + 12 PR B NPQR =

MNPORS

=N PQ R
]PS + 12 7T 7 FNPQR +

MNPQRS =N _PQ R | &
128 ':IP T iﬁs + 12 97T >y :| IJJ[N I‘PQ\UR] ’ (2.34)

which after the use of relation

EM rMNPQRS vy = 4l NP rQ Rl _ @M NPOR M, {2.33)

13,
is:
) _n; -MNPQRS_ "’s 12 3N FPQ_wR WeOR
- - LZ2 GNP LOyR) Npor e (G, TNPOR M, Fypor *
. 9_3_{22 (GNP £ 4RI 2 _?Tg (B rNPOR M, Vi Tpg YR - (2-36)

Inserting expressions (2.29%), (2.33) and (2.36) into (2.1)

results in:

L=_%eme)_"_' [[ m ABPQq, .

. % :ﬁN PAyB _ EN?B¢A F ¢ :ﬂ MC (e) l: BCPQ by +

2 :EN -B apc ~ 'EN-T.‘&-:JJ}.B+ ?51’; fN 1pc:l te) |_1 7, ricE0, oo +

s :EMrAuJC S EA'I}NC:I] - ey - 222 g WMt

R T S - A2 Ty Ty, wM)'Z. + 25 (3, TP o, Yop *

. ;?12 u: erRw j2; f2316;0?§4/')e w TNPQme) ‘“[N m“’m

P 228 '.(.ib'“'I'N'fIPQ N - e g, ™Ry, - Le@, M v B -

- T8 Faweg " ‘Eze _.—‘E[N r PQI“’R] Fypor * ../3583 (3, T Fyeor ~

_ Y23 ¢ M M2 My M. M5 Mg My Mo Mo My o B ¢ . (2.37)
3456 Mz My M3 M, M M; B Me MaM:  Ma s

Lagrangian (2.37) is totally equivalent to (2.1) if we use
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FPierz identity and gauge (2.18) but presents a more simple
structure concerning the g.g.i.t. thus permiting the use of
a minimal number of auxiliary fields to eliminate them in the

quantization procedure,

3. QUANTIZATION OF THE GRAVITINO

We guantize the gravitino by using functional path
integral formalism, with eA and AMNP represented as back-

M
ground f£fields. Supergravity quantization(15)

{in -the case of
algebra closing models) reveals some novel features if compared
to the gquantization of abelian or non-abelian thedfies. For
example in the case of N=1, d=4 supergravity four<ghost
coupling terms have to appear as a direct consequence of the
BRST invariance. This property implies that the supersymmetry
algebra is closed, using a set of ‘auxiliary fields, in its
minimal version given by 8 ‘(scalar), P -(pseudo-scalar) and
Au {axial). ©On the other hand, in the case of N=1,.d=11 super-
gravity there does not exist (at least until now) a complete
set of algebra closure auxiliary fields. But for the gravitino

13) that its algebra can be closed (also for

it was discovered
the elf-bein} if we use a specific number of auxiliary fields:
a scalar, two totally anti-symmetric three index fields and

two totally anti-symmetric four index fields. This information

is sufficient tc ensure the guantization. of the gravitino.

The Green function functional generator is

[

1 a !
j [deyl [dyy) [da, 1 [6CY ) s(gauge fixing) x |

Z(7,T,0) = N™1

TMNP N supergravity algebra closing 1\ {3.7)
* Py . auxiliary fields guadratic terms ;f )
where Sc£ is the classical action, ct represents the various

ghosts -and the ghost action, for the case of the gravitino

guantization, is given by

R { '
M 11 =0 = 8
S = J.dx e[C %5‘3] (3.2)
with
= ~ .. v2 [ _NPOR N _PQR
Dy = Dy (&) 788 Ty - 8y T ?NPQR *

+

[supergravity algebra clgsing| (3.3)

auxiliary fields

_As-we'mentioned in the 1ést'section, the re-arranged
lagrangian (2.37i is suitable for quantization, since the set
of auxiliary fislds necessary to eliminate the quartic tefms
are mini@él. Now we start introducing these auxiliary fields.

~In ‘the scalar channel we write

f . ! f
exp — 1§g4 i } d;l e (EMWM)‘ = NP [dol exp i § d;l e {02 +
R ' _
e v (3.4)
Next, in the three index channel we intreoduce two
different fields, « and . 8

"MNP “MNP- T
First,



.16,

r .
21 5 0 c1n T 2 2i n 5 pNPO = .
eXp - 33 j S ey Tp¥g)) + 53 | A ey T oy W g Tp =

' [ _ f
-1 s 1 MNP 21 =+
=N J [doyepl expi J‘ dyte {“ﬁNP e [‘/ T Y FN Ypy ¥

21
9 =
32 7 R 1701 R, 2
*az o R e ¥ ):I 725752 (Y Tawp V) } : (3.5}

Second, summing the last term in {3.5) with the

same kind of quartic term appearing in (2.38) leads us to:

52254531 { dll e(T

683733024 | & Tawp V0

[

] lan [Lge .1 /SEESEST
= N )\ [dBypl expi J ay { Bune * 7 /593733021

< 8N (T, T wR)} : (3.6)

Finally, in the four index channel, the two totally

anti-symmetric auxiliary fields which have to be used are

YMNPQ and GMNPQ' So

1814 [ 11 _ .~ -NPOR M, 2 23167 - 2442 |
exp zyqa | dx ey’ LR 3672 1
J

11 = NPQR
dx e{wM T

—

M, = -1
v )(‘J’[N FPQ TPR])ﬂ N J [dYMNPQ_] x

_ b an 2 MNPQ 181 R
¥ exp 1 de e{_YMNPQ [ 7536 R Tuwpo ¥ ) *

+

183 1336 1112064

(3.7}

(23167 - 24/3) 181 - 536611041~ 1112016/3
—=emea S8 ("U[M‘NP%}):,* (5N rFQ R ]f

.17,

and, summing the last term of (3.7) with the same type appearing

in (2.38},

536611041 — 799248/2
1172064

exp

f ' N 3
P e {-a2 . v/53661104'; 799148+2

- -1 .
=N J [dﬂmwm] sxp 1 278018

x &P T ) } . (3.8)

Q]

The four -auxiliary fieids a B and

MNP ’ “MNP © YMNPQ

Synpg 2T totally anti-symmetric in their indices.

Putting -the ‘expressions {3.4), (3.5), (3.6}, (3.7)

and (3.8) into {2.1) and using that

g o ‘ ‘
sy = 1@l exp 1 laz! e [E My o gy (3.9)
: ;

we have, after the functional integration over the gravitino

field, the following result:

-
-1 A
Z(T,T,8) = N l-Jq ld eyl [@ay L] [del Aoy, ] [dE

MNP ve! [ Y uypg!

other fields) .
- exp i ?Seff +

" [dAMNPQ]idc 1 (gauge fixing]

f : . o
| gl g1 FrMoper | Mo | JHRPL -1 G =3 ,QAI—I
+ j dx e {— 2|: - [ "AMN T _\MN A i’ABQ' Z o+ Spg © i
o [ .M 1 AR, . L ¥Z | .NPQR N PQR—’
[r l:aM_ *og oy fe) I e o i_“ - 8¢ FypoR

supergravity. algebra 01051ng g M A MNP
* [;ux111ary fields - c” o+ g gy * E:Y
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supergravity algebra closing a } (3.10)

* auxiliary fields quadratic terms other b
ghosts
where the effective action is given by
i, [ 11 2 2 z 2

Seff =3 Tr £n &MN_+ J dX e {c e BMNP . YMNPQ -

2 i 2 _ l - !/Ekl M1M2M3M4M5M5M7M3M9M1QM11
~ dywpg ~ 78 Fmwpg ~ 2 R®) - 33se € x

FMleMaMh FMsMgM?Mﬂ AMnguMll} 4 {3.11)
and
4 A'{EQ QG F ol 128 Il %68 s rBsd .
m <t 1e |2 ®s B PpMN t 7 M °w oM N

A. B a 1 .BC 17, 5 .C C B
+ cSM I‘P 6N_ + mQC(e) I:B FPMN + 7 [SMPI‘ 6N - SMPI‘ GN +

B ¢ ] B 1 _AC 1 A ,C C A
+ 6M Ty ENMJ + wpnle) |:§ FQMN + 7 I:SQMI‘ 6N - {SQMF 6N +
A c | 1 DAB P VI8 :
+ SM TQ‘SN_:I - (M+N]} _ZFMPNFABM (e)-I‘MPNG -5 6MN0+

21
/5

por | /27
e [ z “mip "o lmiv * Tz Caw Teor *
/5225453 ,POR poRs [ /187
* /93733024 F Sun Tpor = 7 [ 787 S Tpomrs *

. 23167-24/2 /181 . . /5'36 611041799 248 V3
T81 384 “M[p QR “sIm | * 60504

APQRS

-
/2 PORS o .

6 sin = 16 M[P

& +

mip 'or or 851

~ i ,
P 22 os T pFARS | g% [pJ i{%s §_ . OB,

.19,
s A B s B, B | lr
7| oM N M N M % Ta i l'as
V2 P .5 OR) B
-1 | "porss ~ ¥ ®pg Toms | °m Sn? Jog ¢ {3.32)

4. THE EFFECTIVE ACTION AND DIMENSIONAL REDUCTION

:__The effective action (3.11), obtained by the
quanﬁization.bf the qravitino fieid in MN=1, d=11 superdgravity
p;éséntS}gqme novel aspécts which_induce a drastic departure
from'tﬁefgléssical scenario. In the first place, this effective
. . the

R . . ) . - - o A
action:is & complicated functional of the elf«bein e

Ayyp Tfield and the auxiliary fields o, g

“unp ' Puwe ¢ YMwpo

and A These set of auxiliary fields are not arbitrary

MNPQ-*
in ou:'ogpinion. We thiink that they reveal a unexplored
relationﬁtd.the set of auxililiary fields necessarv to close
supezsymmetry'algebra cn the gravitino field(]3). This connection

(16). There we

wasfalé@sﬁotiped:in N=1,.d=4 supergravity
dié;ovefédrtﬁe!ekiéﬁende of a condensate in the scalar, pseudec-
scaiaf-ﬁﬁd*é#iélu¢ﬁénne;s.in the same way as the auxiliary
fie;ds:(in:ﬁﬁéi?;miﬁimal version) necessary to close the super-
symﬁetry algéﬁra_ére séalar; pseudo-scalar and éxial in nature.
Altﬁough it‘is;premature to give any deeper interpretation to
tﬁis fact, wé-used it as a guiding line to search ﬂx‘thérﬁnﬂmﬂ
sgt.of auxiliary fields neéessary to eliminate the quartic
gravitino self—interactidn terms.

. Second, in d=11 dimensions it is possible to have
a'bare mass -term, in the Majoraha representation of the Rarita-

Schwinger fields, whose general structure is like .



d= -
W= g PN | (4.1)

since EM = wﬁ C and C =+C. This makes it possible to
think in a formal mass generation mechanism, through the v.e.v.

of the auxiliary fields, in a close analogy with the 4-dimensicnal

theories(s). The candidates for this process are the expressions
o PQRS
Y29/8 o, (24V2 - 23,167)//69 504 v GMfPIbR_GS]N ]
PORS
/&536611041 - 799248v2) /6% 504 A GM{PTQR SSIN and

- v3/16 prIRS 6M£P TQR 6S]N , appearing in the effective action
(3.11). We call this process a formal mass generation mechanism,
and the corresponding mass term "mass—like" because: a) we can
only interpret physical masses in a 4-dimensional space-time,
b} the backgroﬁnd metric has to be Minkowskian so that this
amounts to take the cosmological constant ag being zero.
Anyway, after a dimensional reduction, the auxiliary fields

4PORS . sPORS pPORS

g, in addition to give their con-
tributions to the physical spin 3/2 and 1/2 fields masses if
conditions a)} and b} are taken into account.

A third important aspect of the effective action
{3.11) corresponds to the fact that v.e.v. of the auxiliary
fields contribute to the cosmoiogical constant iﬁ 4 and 7
dimensions.

It is known in literature!'0+11,12)

that the
presence of a totally anti-symmetric third rank field yields
through its field strengh, when dimensiocnally reduced to 4
dimensions a contribution to the cosmelogical constant in the
form of a undetermined eguation of motion constant. We deduce
from (2.11} and (3.12) that the cosmoldgical constant in 4
dimensions receives contribution from the v.e.v. of the auxiliary

(17)

fields o, ¥ and A in addition to F

UVAp uvie ' UVAD
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At the classical level v.e.v. of fermion bilinears
have been taken intec account in order to obtain a {geometrical)
nechanism by which the 4 dimensional cosmological constant is

zero(16’17’.-

Although we showed that the cosmological constant
(in 4 dimensions) contains contributions from v.e.v. of auxiliarv
fields, we wonder if it is possible +o maintain sueh kind of

mechanism'in-o:der to -make the cosmological constant vanishing,

since the-classibal-vacuum-structure of the model micht not

survire quantization of the gravitino.

5. PINAL COMMENTS

We showed that, although not trivial, it was possible
to quantize ‘the-iravitino field in the N=1, d=11 supergravity
model, using-tﬁe'well.known technic in 4 and 2 dimensional

(8} of introducing auxiliary fields so as to eliminate

models
the quartié'gravitino self-interaction terms. These auxiliary
fields fdrm condensates which, through its v.e.v., lead to a
formal bare mass and cosmological constant generation. Many
questions Still waif for a definite answer. One of them concermns
the vacuum structure of this (semi)guantized@ models since we
know that at the classical level it exhibits a spontaneous
compactification of the 1i-dimensional space—time into a product
of a 4 (or 7)-@imensional space-time with a 7(4);dimensiona1
compact space(4}. Does this propertv survire quantization?{zz)
Another important question concerning guantization of hicher-
dimensional models concerns their phvsical interpretation after

dimensicnal reduction has been executed. Since hicher-dimensionzi

models present a simpler structure, and as = conseguence &
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higher unification;.the more dimensions we take into account,
questions concerning quantization of this models:pefore dimen-
sional reduction are.of great importance, In this cennection,
a lot of work has been done concerning the anomaly structure of

(18,19, 20)

‘higher dimensional models ., which" sets a clear limitation

in the - set of models apt for gquantization.

Finally, fermicn-quantum.numbers(11}

may perhaps -
gain 'a new insight using the procedure of guantizing higher

dimensicnal supergravity models.
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APPENDIX A

 We -define the d=11 dimensional gamma matrices in
the Majorana representation, where C is the charge conjugation

{*)

matrix, satisfying

__{PMJ Tl 7= 2nyy (a1
whéré
Ty = cdiagil= ;4 4 aes ;) (A.2)
and
. -+ . _ T
:C H&C' = Ty . (a.3)
Aléo
.CT = _ IC' ] ’ (A.4‘)
and -
¥ vt e (2.5)
T i r r T r
he gamma matrices 1 ’_‘M { T Tuwe © Tupg and FMNPQ
form an independeht set (™ in terms of which we define the
following Fierz ideéntity (being ¥, , ..., Y. Majorana spinors):
- = SIS T P S|
($r0:92) {§302%) = = 55 § o7 (2T o) (FaoaT Mon ) x
32 nig ot : ;
n=:,3

% (=~1) (A,é)

*
{ )We adopt the same conventions as ref. (13).
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APPENDIX B

Using Flerz identity (A.6} and gauge condition we

Wlll show how to obtain relation (2.24):

Gy Ty vp) G109 = = L (@, 0™ @, r ) -
{a)
1 = M, - NPQ R S 1 — M
~ 31 DulTapg V) B T T2 T0%) o oy (B Typoe ¥
(b)
- NPQOR .8 T
* {bg I T ) (B.1)
(c)
since
Gy T ™ = Ty i 0™ = By pog ¥ = 0 (8.2)
For term (a} we have:
1= M, = N P i M2
=33 Oy ¥ QT Iy = - (B (B.3)
using (A.71) and gauge (2.14).
Next, expression (b) reduces to:
1 - M, - rNPQ R S 0
793 P Tapg ¥ ) T T T T 4%) = = 3 @ T 99 @49 -
1 - M
- 55 (y Typg ¥ (B.4)

Finally, for term (¢} we have to use that:

.25,

(Tg Ty rNPQR Ty = 2 {-41($[N rP QR (EM?NPQRwM)é . (B.5)

So

1..|I|_1..1‘L.'E’<.')R i..S w‘l‘) -

M —_
M "npgr ¥ ) (Vg

+ e Ty Tpop ¥ (B1F P“Q“R}) {B.6)

Putting expressions (B.3), (B.4} and (B:%) -into {B.1) gives us:

— ' [ — - 2
Ty o) B T =BG o L L g Tapo ¥+
+ 40y Topg v NP0l % Py Typgr vh?
- M, —[N_P_.Q R];}
* Oy Typgr ¥ BN TP 100805 4 _ (B.7)
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