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ABSTRACT

An expression for the ponderomotive force dué to
ion-cyclotron waves bPropagating in a collisional plasma is
derived. Using this expressicn, the effect of collisians on
the isotope separation induced by large-amplitude cyclotron
waves in a two-icn-species plasma is calculated. It is shown

that efficient isotope separation can still be achieved even

in the evanescent propagation region.

1. INTRODUCTION

Due to a wide range of possible applications, tﬁé
ponderomotive force {(Pitaevskii, 1961) caused by ion~cyclotron
waves propagating in magnetized plasmas has received_renewed
attention in recent years. Among the interesting applications
are radio-frequency plugging of cusps [Hidekuma et al. (1974} ;
Hiroe et al. (1975}], radio-frequency stabilization of magneto-
hydrodynamic modes [Sanuki (1983); Myra & D'Ippolito (1984);
Similon & Kaufman (1984)], and isotépe separation [Weibel {1980);
Festeau-Barrioz & Weibel (1980); Weibel & Festeau—Barrioz (1882} ].
Isotope separation occurs in a magnetized plasma because {he
sign of the ponderomotive éseudo—potential depends on whethef
the frequency of the wave is 1argé£ or smaller than the oclotron
frequency (Motz § Watson, 1967}. By properly choosing the
frequency of:a leftehanded cyclotfon wave between the resonance
frequencies;oﬁﬁtwéwion{species in a plasma, it is possible to
separate thgm?along the direccion parallel to the externally
imposed magnetostatic field (Weibel, 1980). Hidekuma et al.
(1974) have already éxperimentally demonstrated that essentially
the same mechanism .can efficiently be used for preferential
plugging of a multi-ion-species piasma. This scheme of isotope
separation is being acfively pursued in Lausanne (Tran et al.,
1982).

To be competitive with other modern schemes, in
particular laser iscotope separation of uranium, it is necessary
to achieve effective sepa;ation in high-density plasmas with
cold ions {ion temperature, Ti< 1 eV). ©Under these conditions,
the icn-neutral collision frequency can be very large and

affect the separation process. One deleterious effect of. a
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large cellision frequency, namely, iLon-neutral charge exchange,
can only be avoided by a fast extraction scheme. However, in
this paper we concentrate on another effect of collisions, i.e.,
the modification of the pondercmotive force associated with the
transfer of wave momentum during absorption.  Preliminary
calculations by the Lausanne Group [Tran et al. (1982); Sawley
& Tran (1982}; Sawley (1984)] have indicated ﬁhat the effect of
collisions on the ponderomoctive force can be deleterioué for
isotope separation. However, by a self-cconsistent soluticn of
the wave and moment equations inciuding collisions, we show
that efficient separation can still be achieved for relatively
large values of the collisioﬂ freguency.

The effect of collisions on the ponderomotive force
in laser-produced unmagnetized plasmas was initially studied by
Stamper [1576i and Miller & Hora (1979). They have clearly
shown that collisions introduce a new term in the expression
for the ponderomotive force that cannot be written as the
gradient of a pseudo-potential. Dimonte, Lamb and Morales
(1983} have studied another ncn-adiabatic effect on the
ponderomotive force in the ion-cyclotron range of frequencies.
They have shown that due to the finite transit time of a charged
particle through the region of strong field variation, the
ponderomotive potential becomes very small near the gyroresonaﬁce,
instead of becoming infinite as predicted by the adiabatic theory
{Motz & Watson, 1967). Actually, the condition for the adiabatic
theory to be valid is that

v

fw=-Q7 > A ,

where o is the wave frequency, € is the cyclotron frequency,

V4.

v 1ls the characteristic particle velocity, and L 1is the
characteristic scale length of the wave field variation. The
parameter v/L can be considered as an effective collision
frequency that limits the duration of the wave-particle resonant
inferaction. Thus, we expect the effect of coliisions to be
soméwhat egquivalent to the one described by Dimonte et al.
(1983). Because the non-adiabatic effects decrease the pondero-
motive pseudo—pdtential near the gyroresonance, Dimonte et al.
(1983} conclﬁde that the effectiveness of isotope separation by
ion~cyciot;on waves. can be drastically reduced in comparison
with the valﬁes predicted by the adiabatic theorv. However,
their qonclusion is based upon a single-particle model (see
also.Lamb.et al., 1984). Actﬁally, in a real experiment there
are s;;dng sgéce vaiiations of the particle densities that are
nonlinearly;coupled to the field variations through the dispersion
relatioﬁ; in this -case, the ponderomotive force on sach species
has tsiﬁé;self—consistently calculated with the wave and moment
equations.

Fiedler Ferrari and Galvio (1%84}) and Sawlev (1984)
have deriﬁed similar expressions for the ponderomotive opseudo-
potential including the effect 6f collisions. In the derivation
of Fiedler,Ferrari & Galvao (1984), an important piece of the
ponderometive forqé has not been properlv taken intoc account.
In this paper, we derive a correct expression for the pondero-
motive force in- the presence of collisions and show that it
cannot be written as the gradient of a pseudo-potential, in
agreement with Stamper {(1976) and Milley & Hora (1978%}. An
aguivalent expression for the force has also been recently
cbtained by Sawléy (1984). Using a WKB perturbative calculation,

he is able to write the ponderomotive force as the gradient of
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a pseudo-potential. Based upon the benaviour of this potential
near the cyclotron resonances, he concludes that collisions
decrease the effectivenéss of isotope separation. However,
because the scale length of field variations is comparable with
the scale length of density variations, a WKB approximatiqn is
not applicable and his expression for the pseudo-potential is
not valid for relevant values of the collision frequency. By
numerically integrating the full set of nonlinear equations, we
show that effective isctope separation can still be achieved in
the presence of collisions.

The expression for the ponderomotive force is derived
in Section 2. The coupled system of wave equations and equations
for the particle densities is derived and numeri;ally
integrated in Section 3. The conclusions are presented in

Section 4.

2. PONDEROMOTIVE FORCE

We consider a left-handed circularly polarized wave,
El(z,t) = E{z)(£+i§)eth + c.c., where Ef{z) is the complex
amplitude gf the electric field and o is the frequency of the
wave, propagating in an infinite plasma column immersed in an
homogenecus magnetic field B,z . The wave phase velocity is
assumed to be much larger than the thermal particle velocities.
Accordingly, kinetic effects are not important and the wave
preopagation can be described by a fluid plasma model. The basic
equaticns of the model are the moment balance eguation
Vp N

F v o x (BeBe2)] - =2 — vy, (1)
)

0

a - -
(at + vU.V)VO =

Hiﬂ

€

Faraday'é law,

1

B - B
VXE = - 7T , {2)
and Ampére's law,
> i+ 1 3B
v = ] L
x B UpJ + e (3)

In Eq. {1}, m is the mass, g is the charge, 30

o

is the macroscopic fluid velocity, P is the kinetic pressure,

a
and ng is the particle density of the species labelled by the
subscript . We assume that the collision fregquency v is
constant and egqual for both ion species. BActually, for the
parameters of-inté;esth the dominant c¢ollisicnal momentunm
transfer is due to ion-neutral collisions (Tran et al., 1982).
Electron coilisions are not important. -The collisiocn fregﬁency
can also be considered in a phenomenological way to simulate
the effect of .other non-adiabatic processes, as finite transit
time (Dimbhte et al., 1983). The_temperature T, of the
different species is assumed coastant and uniform.

TFSE éyclotrcn waves, the ponderomotive force comes
only from the Lorentz term ¢c><§ in Eg. (1) (Tajima, 1977; -
Fasteau~Batrioz & Weibel, 1982)}). In this case, an exact solution
of the momentum balance eguation with Vg =0 is obtained by
separating the .compenents parallel and perpendicular to the

external maghetic field,

n i) - n_F k. T EEE = 0 4
c9% 3z 0 "B o Bz ° (4)
and
B-F
v q
g4 - g = -+
it ¢ ﬁa Ve = I E - YVl 4 (5}




respectively. In these sguations, U 1is the ambipolar electro-
- ~ - =+ 3

static potential, EZ = -3U0/%z , Fd = Fcz = qg(Rele x ReB) is

the ponderomotive force, and QU = (qGBe/mU}i is the cyclotron

angular velocity. The expression Zor the ponderomotive force
-
can be readily obtained by solving Eg.{2) for B and Eg.(5)

for . Writing the complex amplitude of the electric field

Vai
as E(z) = Elz) expiic(z}] and neglecting terms of G(v¥/w?},

we cbhrain

(&)

el
N
\

I

siondy
z qo‘ (u,g){wmc) [%‘311»2&_‘;2 Eigi:} .
o Mgl wiog?)® o v hel LE o

It follows from this equation that, in the absence
of collisions, the ponderomotive force can be written as the
gradient of a pseudo-potential that diverges at the resonance,

w=i

g’ and has opposite signs for w< QU and w> ﬂc. The new
term proporticnal te vid¢/dz) that appears” in the presence of
collisicons comes from the transfer of wave momentum to the
particles during absorption. This transfer is eguivalent to a
collisional drag that acts onr the same direction for both icn
species (the term proportional to d¢/dz does not change sign
at weﬂo). With the collisional term included, instead of
diverging, the pondercmotive forces assumes a finite value
Foo= - q; Ea(dwfdz)/mc\:ﬁo at m=QU and crosses zero samewhere
away from the resonance. 1In Fig. 1 we show a sketch of fc

ag a function of w for a fixed position inside the plasma.

We note the similarity between the behaviocur of FG and the
behaviour of the ponderomotive potential derived by Lamb et al.
{1984) including the finite transit-time effect. For the .

application in isotope separation, o 15 chosen somewhere

between the values of the gyrofreguencies of the two species.

In this paper, we consider only the case w o= (G, +2,3/2
studied by Weibel (1980). As shown in Fig., 1, the discrepancy
between the values of Fa with and without collisions is not
very large in this case. However, this is wvalid only if

| (aE?/az).| /B® ~ |d¢/dz| . During the.wave propagation, thers
can occur peints in the plasma where | (dE?/dz)|/E? << |deé/dz]|
and the term due to collisions becomes locally dominant.
Finally, we remark that in the presence of collisions the
ponderomotive force cannct be written as the gradient of a

pseudo-potential, as it follows from Eg. (6).

3. WAVE AND DENSITY EQUATIONS

Computing the current density, § =% n
substituting into Eq. (3}, and using Bq.(2), we derive the well-
known wave equation for cyclotron waves propagating along the
magnetic field, 1In the presence of collisions, this is a
complex equation for the complex émplitude E(z) . We split

it into two real eguations for [E(z)| and ¢(z}), i.e.,

2
alel o . fde)?  w? Upg  lw=1y)
az >~ Blig] et - g w e TavE] lEl=0 ™
c

and
a*y L, [_1 alel]das _ w? - v
3zz * TET dz dz T ¢? [E W (=52 )2 . vlj =0, {8)
g
where w__ = {n_gq_/m_¢ )VZ is th 1 i
po g /My Eo : e pilasma frequency of species

o . The wave equdtions {7) and (8) are nonlinear because the
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the particie denéities tnat appear in the plasma frequencies.
are coupled to Ei and o} through Egs. (4) and (6}.

Because the scale lengths of interest are much
larger than the Debye length, the ambipolar potential can be
2liminated Irom the problem by assuming charge neutrality,i.'e.r
: ngq, = 0 (Weibel, 1980 and Festeau-Barrioz & Weibel, 1982),
Then, assuming that we have two ion species of equal temperatures,
T.=T,=T,, and summing Eq. (4} over all species, we obtain

1

. - d :
.{B{Ti+_e) 3z (ns - n,) - (n1F1+n2F2+neFe) =0 , (9)

where n, = ny+np. Finally, subtracting Egq. (4) for the ion

species 2 from the corresponding one for the ion species 1

(dy =4q;) , we obtain a second eguation for the densities
f1 dny _ 1 dny) -
kp Ty tny dz  nm, dz ) (Fy=F,) =0 . o)

Eqﬁations (7} ©o (10) form a complete set of nonlinear equations
for E..,¢,n., and n, ., with the expression for the pondero-
motive forces given by Eq. (6}.

Wé consider the ion species 1 to be the naturally
more abundant one. The wave freguency is chosen as

w = 8158, _ (a+1)§,

3 , (11)

where the parameter o is given by (Weibel, 1980)

_ Ha-83 _Mi-mp
& = 28y - 2m3 - 2

We note that in general a can be positive or negative;however,

.10.

for the'cases that we are interested, we -have 0< << 1. Based
upon the smallness of the parameter o and of the ratios u/Qe,
v/w , and me/mi , @& number of simplifying aséumptions can be
made in Egs.{7) to (1C}. In Eg.{9}, the pohderomotive force

on the electrons can be neglected because

....,.! = g << 1 . (13)

In Eg. (7}, the plasma contribution to the dispersion relation

is approximately given by

Luzc W= _r.uze mél 1 - %—f— {1+2¢)
s Pe o Rr| M| (14)
Er w (w_go_)2+\;2 St ¥ 23 { v2 ]

at1 + Efﬁ?}
The first term in the right-hand side of Eq. (14} is usuaily
neglected (Festeau-Barrioz & Weibel, 1982) because the ratio
of the first to the second term is_of order o. However, if
ni=n, , the two terms become of the same order. Since in the
process of separation there can occur points inside the plasma
where n;=n;, we Xeep the électron contribution to the dispersion

relation, The third term in Eq.(8) is given approximately- by

w? wzc v w? mzl] v] 1+ :2
- 1
o v oewl [pa)fv ) Tma {15)
c? g Yo {w-R_ )% +v?  0OC [91 }[aglj v?
7 ' Ve gTmr

Finally, Egs.{(7) to {10) can be written in
dimensionless form by ihtroducing convenient normalization
parameters., Densities are normalized to  the density n;, of

species 1 at z=0. Lengths are normalized to the characteristic
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length for isotopic separation given by

Ve

- c , (1e)
i .
(1-1-0’.)(:1»_,‘31g
T = & (z=0) . The normalized collisicn frequency
where wp;n p1
is defined as
- v = 2 (17)
E - w-—Ql Cl.ﬂl

We see that, although v/f,; << 1 for the conditions of interest,
the cellisionality parameter £ can be of order one because
@<< 1. The ratic of the Alfven velocity, V, = B,/VHgniems ,
co the speed of light is characterized by the parameter

n = V3/c?<< 1. The normalized electric field is given by
R -\

e - — B (18)

¢2akBTiB17m.

k2

Using Egs.{11) to {18) and the expression for the
ponderomotive force, Eg.({6&), the basic set of equations (7) to

{10) can be written in normalized form as

e - fag}? - D= (1+2uin, :i =0, (19)
dz? ~ ia_' N [ﬁ 1+£2 v olmma) e
d?e 1dejde & = 20)
3z7 t 2 [E dz] & T Trgz Mrrmab =0, (
. . ) 2
dny . na nl(nl-nz) 2{1+a}ny Q?_
Fz * TIET (nieng) . T + 2{1+a)ny dz
nz ;1 YT -'
. i
2& n, 2 d¢ . (21
MEEFTE - : !

and

dn; ng ni-n; _ de?
dz * TT+£?) (ning) T, ~ 2Uedim | Sg
T+ T
i
26 _m2 oz dg
fTer T T, Y ow t 0 (22}
1+T—

We note from Egq.(19) that, for n<< 1 and a << 1

’
the wave is evanescent for ny >>n; . This is because >,
and cyclotron waves are evanescent above the cyclotron frequency.
For n;>>n;, the wave is propagatory with a damping due to
collisiens. To solve Egs. (19} to (22) for the case that we are
interested in, namely,. the separation of uranium isctopes, we
assume that the two isctopes are at their natural abundance at
z=0 . The equations are integrated in the direction of positive
z - with initial conditions e<<1 and de/dz =0 at z=0,
Thus, the solutions presented below correspond to an idealized
SLtuatlon where an ionized plasma of natural uranium is
continuously introduced into a separaticn chamber from the left
to the righ; and the wave is excited to Propagate from the
right”fq'the.left.

. We consider a uranium Plasma immersed in a magnetic
field of 5kG. The cross-section for ion-neutral collisions is
approximately qﬂ; 5x 10715 cm? , Considering that for the

cases of interest the neutral density can vary from 10!2 te

10'? atoms/cm® and assuming T, 0.1 ev (Te= 1 eV), we obtain
that the parameter £ can vary approximately from 0.078 to 0.8.
In Fig. 2 we show the solution of Egs.(19) to (22) for £=0

(Fig. 2a), 0.078 (Fig. 2b), 0.2 (Fig. 2c) »and 0.8 (Fig. 2d).
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The initial densities at z=0 are n;=1 and n;=g/(1-p},
where o is the natural percentual abundance of the sescond
isotope. The solution for 3=0 corresponds to the one already
obtained by Festeau-Barrioz & Weibel (1980). However, they
have imposed ni+n:;=1 throughout the calculation, i.e., tgé
electron density is assumed uniform. We do not impose the same
condition because the collisional term in the ponderomotive
force acts on the same direction on hoth -isotopes, producing a
spatial variation in the total density of the ions that has to
be followed by the electrons fo keeﬁ charge neutrality. Wg

use the condition ni+n; =1 as an accuracy test of the numerical
method in the case £=0.

The solution for £=0 produces a region of high
enrichment of width approximately equal to 2L. Equal regions
of high enrichment repeat periodically because the solution has
no damping. Naturally, for practical applications, the system
would have to be just long encugh to accomodate one such a
region. For moderate values of the collisicnality parameter,
such as £ =0.078 (Fig. 2b) , regions of high enrichment are
still obtained. The width of these regions are also of the
order of 2L but the separation between two such regions decreases
considerably in comparison with the case £=0. This can be
somewhap troublesome when practiéal schemes for extraction are
censidered. For large values of the collisionality parameter,
cn the other hand, the separation can be favored. This is shown
in Fig. 2c¢ for £=0.2., After the first region of high
enrichment, there cccurs a region of low enrichment and then a
continuous region of high enrichment where the density of phe
second isotope damps out. This is even more drastically shown

in Fig. 2d for £<0.8. Such situation produces a clear

14,

separation between the two isotopes although the value of the
wave intensity at the antenna (assumed to be located at the
right of Figs. 2) substantially increases in the presence of
collisions because of wave damping. However, for realistic
calculation of the required power densities, one hésrto salve.
the more involved.problem of a bounded plasma éolumn'(Weibel é
Festeau-Barrioz, 1982, and Sawley & Tran, 7982} hlfhe;xesaxe

of collisions,

4, CONCLUSICONS

We have derived an expression for the ponderomotive
force due to ibn-cyclotrpq_waves in a magnetized plasma. This
expression shows that the momentum transfer to the plasma due
to wave absorption produces an extra term in the ponderomotive
force that remains finite at the gyroresonances. Applying. our
results to the problem of isotope separation in a magnetized
plasma (Weibel, 1280}, we conclude that effective separation
can still be-obﬁained in the presence of collisions. The
required power levels with and without collisions are of the
same order at the place of separation inside the plasma.
However, because of wave damping, the power 1evelat~ﬂm lecation
of the exbiting,antenna is much larger in the presence of
strong collisions. The expression for the ponderomotive force
in the presence of ccllisions may also be important in other

applications, such as stabilization of magnetohydrodynamic

modes {Sanuki, 1983),
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FIGURE CAPTIONS

Fig.

Fig.

1

2

.18,
2
- Sketch of FU/(—:EL— gEi) as a function of w/f
2mgm2 dz

for a fixed position inside the plasma where dE2/dz
=E*de/dz  (plot for U2%® with v/w—, - 0.2) . The
case with (withqut)rcoiiisions is given in continuous

(dashed) line.

Solution of Egs. (19) to {(22). The normalized electric

field is £ and the normalized densities are n. {n;
for- U**% and n, for U2'%) . (a) £ = v/e-f, = 0
(without collisicns); (b) £ = 0.078; {c) £ = 0.2

7

(@) £ = 0.8.




1500

1000

IIIllI[!tlTllt|ii

'2m2w2 -c“i_i— |

'

|

J ‘l

0.985

0.930

0,995

1000

1005

1010

1.015

30

LI B
| !
| |

M

20

10

R l‘ll'l]i

LR

I

Ii-J!Ill

Doy Lo

Iillf

o
n

NI

0

Z

15

o
@)

=
O

—
q




IIEI]IiliIII'iII-il

30

|

20

10

_III[‘IIIEI

Fig.2b 7

I.iIllfllllllilll'll.ll.'fl
B =02 | ' _/ :
30— ——¢ [ — 15
L — i |
B 1 | |
Ty N
20 —10

s
Lt 41

0.5

l

10

T T 1 ] 1 1 1

| N |

/
|

L L = /l Lo L
Fig. 2¢ | Z




IS |‘ I o , S /] ! | R
30 — o

20}

10

IJI]J__J__I_I ] I I | ]l

T T 1 1| T 1T

—
o

‘A .

D
qQ

o
o

| 1 I.'l——.-!'l/l_l-lfl |_'| L] _Ifl\T‘_l— '
.5 1 B
Fig. 2d V4




