IFUSP/P 508

BiF.-use

UNIVERSIDADE DE SAD PAULO | . pUB“cAcﬂEs

INSTITUTO DE FISICA |
GAIXR POSTAL 20516 ' Bt
01498 - SAD PAULO - sp 1FUSP/P-~508
BRASIL

ELECTRON-~ POSITRON ANNIHILATION AND NON—ABELIAN
EIKONAL EXPONENTIATION o

by’
‘C.E.I. Carneiro and J. Frenkel

Instituto de Fisica, Universidade de S3o Paulo

J.C. Taylor

Department of Applied Mathematics and
Theoretical Phy51cs, Unlversity of Cambrldge,r
England

Fevereiro/1985




ELECTRON-POSITRON ANNIHILATION AND

NON-ABELIAN EIKONAL EXPONENTIATION

C.E.I. Carneirg and J.HFrenkel

Instituto de Fisica, Universidade de 830 Paule, Brasil

J.C. Taylor

Department of Applied Mathematics and Theoretical Physics
University of Cambridge, England

ABSTRACT

Using the non-abelian exponentiation theorem, we
have calculated to fourth order in perturbative QCD the exponent
which contains the contributions of the annihilation process
into a pair quark-antiquark, including soft gluon production up
te a maximum enerqgy A. We suggest a generalization of tﬁese
results to all orders, which contains ail leading as well as
non-leading logarithms of EL, where m denotes the guark
mass and +S represents th;gcenter of mass energy of the
electron-positron pair. We show in particular that the @epaikmce
of the exponent on these parameters is governed, in leading

m )

crder, by the effective coupling G iL—J as given by the
rvs
renormalization group.

I. INTRCDUCTION

_The problem of calculating higher order contributions

. to high eﬂergy reactions in perturbative QCD has been hnmsfnﬁmsd

by many authors [1]. 1In various cases it was found that the
corréctions can become large and it has béen suggested that
these may be summed to all orders.

In this paper we study the electron-positrén
annihilation process and consider a procedure for summing higher
order corrections via the non-abelian eikonal exponentiation. As
is well known,in QED soft photon amplitudes and cross sections
are completely given in terms of exponentials of order e2
quantities [2]. The derivation of these results uses the
eikonal approximation and the eikonal identity., In QCb, much
progress has been made towards a proof on the exponentiation
of the leading [3] as well as the non-leading logs [4} and
recently [5] complete results have been proved for all logarithms.

The theorem concerning the non-abelian eikonal
exponentiation is as follows [5]. Let X be a gauge invariént,
physical guantity, related to a cross section evaluated in the

eikonal approximation. Then

X=wn(Y) B

where Y is calculated in perturbation theory from an infinite
series of terms, each of which corresponds to a single Feynman
diagram. The diagrams contributing to ¥ are a subset of
those contributing to X, with colour weights which are in
general different from'those of the co;résponding terms'in, X.

For instance, to fourth order, the colour welghts in Y
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correspond to a maximally non-abelian colour given by CFCA
These Casimir operators are defined by tata = CFI; fabcfabd =

= Cp 3 where t, are the representation matrices for the

cd ’ ]
fermions and fab are the structure constants.
When soft gluon production up to a maximum energy

4 is included:
ZE. k:ﬂ <A (2a)
L

the quantity ¥ is closely connected with a cross section like:

+ - #* P QEEII
te—Y ”??*Aﬁﬂta (2b)
The condition (2a} can be enforced with the help of the step
function 6[A~Z Ki]. Using the integral representation of

i

the 9~function, we write the physical cross section as follows:

4om ; :
JH va m
O ()=t S e Ty u) (@)
\ls _Tane 3—!.6 Ve§
_ -
Here m is the guark mass, 5 is the invariant center of -
mass energy, and 1 is.a uvnit of mass which appears in
connection with the U.V. renormalization substraction.
Furthermore, T is alsoc an IR finite guantity because the
Bloch-Nordsieck theorem [6] applies- to process (2). The

exponentiation theorem applies to o . We have [5]:

0_'“-*:[{('—%)1 MF[Y(VW% Yugw] o

where £ is a rengrmalization vertex-function. .

.4,

In this way one cbtains a differential equation

satisfied by ©:

| ‘j a%ff: t[%’?‘ﬂ#)]? (4a)

5=3g‘;§ Y | (@

The ﬁarticular form of the y-dependence of G, via the effective
coupliﬁg constant ¢, is just a consequence of the renpcrmalizability
of the eikonal approximation. Equationé like (4) have been
conjectdred previously also in other investigations [7].

. Since G . controls the behaviour of the cross section,
it is important to evaluate it, especially at high energy, where
we expect perturbation theory to be applicable. The purpese of
this work is to calculate the factor G up to fourth order
terms,'énd try to guess a possible generalization valid to all

orders in perturbative QCD. We obtained:
- . 2
#9 (M‘ﬁJ = gz[i—%%cﬂpm fi_y%)][%%%ﬁﬁ)_z]
+gqcﬂg(ﬂ)j CeTr(I) . (5a)

Here B is the speed of one quark in the rest frame of the

other, and is related to m/vY5 by the expression:

-2

‘1~.B2;* ( *-25;13 —i) : : '- (5b)




The funetion of & in the second square bracket represents the

bremsstrahlung probability function B(B) = B{lil. ETjL] has
n e /5
in general a complicated dependence on — , through the
V5

dilogarithmic and three-logarithmic functions [8]. We will
present the complete result later on, but here we only notice

that at high energies the corresponding expression simplifies
m |

has the simple form:
V5

considerably and consequently ﬁ{

H (%)T— Eo +Cy ffﬂ(%) (5¢)

with EO and 61 constants.

It is worthwhile to remark that the expression
multiplying the bremsstrahlung function represents the beginning

of the effective coupling E{ﬂl ﬁ%}. Although as noticed
kS

above, the dependence on uy Jgas to be expected, its dependence
on ?E represents a result which was not antecipated.

S In section II, we state the results of our calculation
and point out some relevant features of the method employed
which made possible to obtain them in a closed form. A few
more details are presented in the appendixes. In section III
.we suggest a conjecture concerning the generalization of these
results, and present an argument which supports the appearence

of the effective coupling Ez!ﬂl El
\sg M

@CD. Finally, using the expression of the exponent evaluated

to all orxders in perturbative

te fourth order, we derive in section IV an explicit result
for the cross section Uph which contains all leading as well

as non-leading logarithms.

.6,

IT. RESULTS OF THE CALCULATIONS

In order to determine the factor G(B,yu} defined
in eguation (4) we will calculate in this section a closely

related quantity, GI(B ,%) defined by the eqguations:

G, =H(NG(RD)

..!J_G'(]g,-&._)zG(B __&_) | (6b)
an M "

To thig end we work in the Feynman gaude and use consistently
dimensional regularization in a sgacé—time of dimension d=4+n.
Since purely virtual diagrams are independent of A, only
graphs which have at least one real gluon, satisfying the
condition {2a), will contribute to G. To set up the notaticn,

consider the contribution of second order graphs shown in

Figure 1.

Fig.1.

The right hand side of each graph represents a contribution to

the complex conjugate part of the amplitude, and a sum over
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symmetric diagrams with respect to reflections about vertical
and horizontal axes are always to be understood. Thick lines
are quarks, while thin lines denote gluons. The black blob
represents the point where the virtual photon in equation (2}
produces a pair guark-antiquark with momenta g and p
respectively. We denote the four-momenta of the gluon by k
and its modulus |§[ by K. Working in the rest frame of p .,
we represent by x the cosine of the angle between X and E.

In this notation, we obtain from these graphs the contribution:

g ¢ _”CF"t(ijoka“JJn””[ 4]

@u )t 1-Bx

= g C;!n(~ A 1 CJJ13+% Bx
(am) ¥ (/u, ) i 1-px (7a)

When applying A é% in equation {6) in order to obtain G(z),
we note that this operation preduces in (7a) an extra factor of
n in the pumerator. Hence we may put, n=0 in all cther places

in the integral obtaining:

@ - , |
G (g):% l: ';’; QJVL( it’; )—2 (7b)

In this simple case, G(z) is proportional to the bremsstrahlung

function, being independent of A . Furthermore, as remarked
before, the factor G must be an infrared finite quantity.
" We now turn to the evaluation of g4} which

results from contributicns of fourth-order diagrams with colour

.8.

factors CFCA' Typical abelian type of diagrams, contributing

to this order are shown in Figure 2.

> <>

(a) (b)

> <>

() (d)
Fig.2.
After a long calculation we cbtain from these graphs the

following contribution:

(1) -
Gi(a): CeCa h (@) 3"
(amyd

_213 %(1
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Py Pzn( 4—[3) [_Lz i+B va(jﬂf) (8)

As expected, this result is infrared finite, Moreover, it is
much more complicated than the corresponding second order
contribution, due to the appearence of the dilogarithmic

functicns Li2 and of the threelogarithmic functions Li

3
These . functions and their properties are briefly discussed in
appendix A. _In this way, one can see that at high energies,
when 8-+ 1, the terms in the last two lines of equation (8) will
yield centributions proportional to £n3(1-6) .

Next we consider the contribution of topologically
related nonabelian diagrams shown in Figure 3.

These diagrams are more difficult to evaluate,
"because they contain individually superleading infrared divergences
of order n*B [10]. The main idea is to group these graphs in
such a way as. to cancel all singularities before actually
starting the calculation. Then we can put n=0, a step which
is essential for obtaining the contributions of these diagrams
in closed form.

We will now outline the way in whiéh the cancellation

of the infrared singularities does actually occur. Using the

notation already introduced, we cbtain by a straightforward

(a)

(c)

(e).

210,

(b)

(d)

()

Fig.3.
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application of the Feynman rules that the contribution to the

cross section of diagram (a) is given by

G'CeCa Tn (1) jJW% '0(51"?4@

16 (2m) 5 K} N7

L B(K'X'-Kkx) 4
KH' K+k-plkxskx’]  4-Y .

Here k and k' d&enote the momenta of the two gluons and
y=k.k' .  Furthermore in view of the condition (2a) we have
K +K' <A. The above expression exhibits a triple pole
sinqularity: a factor n“z results from the region where both

gluon momenta become soft with K- 0, K'=+0, and another

factor n—i is associated with a parallel configuration of the

gluons where y~+ 1. In order to see the cancellation menticned
above, it will be convenient to separate equation (%a) in two
parts: one which has a pole in the limit y~+ 1 and another
which- is convergent in this limit. 1In this way we find the

expression:
1

c9_ PGGRA d“"ﬁ(d’“’ﬂ {(ksk)  BX° 4
16 (2m) &t g ) 0® (KFKk? 1-pxt 1-Y

N GCeCa T2 @) dm?/g Pyl i
T 16 () 5N K & (kR

k-K42K'(4-8x) __ 4 Bx“x) |
K(4-gx)+K'-pC) 4-Bx' 4= O ob)

12,

The first expression in the above equation yields the triple
pole singularity. On the other hand, the second expression
gives only a single pole singularity, since both momenta k
and k' are controlling.

Néxt consider the contribution of graph (b)}. Here
the ﬁomﬁnta of the real gluon satisfies the condition X< A,
but the momenta of the wirtual gluon k' is not limited.

rerforming the k! integration using the Cauchy theorem we

0
find:
¢ IGGTR) fo"“’ﬂ P
16 (M ) K )
BOKX+2K(x x)1 __4 (10a)

(k- k)(4-Bx) 1~y

We note that the first term in the numerator of (10), proportional
to Kx, yields for the same reason as previously discussed a
cubic singularity. For the contribution coming from this term,
we split the range of integration in two parts: one where
(K+K')> 4. which yields only a single singularity, and another
where E+K' <A which gives the whole cubic singularity. Adding
this last contribution with the first expressien in equation
{9b} we find:

q'Cela glelaTa(d) J“”ng a%g" )

3 (Qu)“'“! (x)?

4 BX 1 (16b)
(k+k7? (1-px) 4-y

Notiee that the superleading singularity cancelled and that

(10b) has only a double singularity, because now both Xk and

k' are controlling momenta.
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The other double singularity whicﬁ remains comes
from the second term in the numeratog of equation (10a}. However
we find that these quadratic singularities cancel each other,
leaving us with contributions to o which have only single
poles.

Next we consider the contribution of graph (c),
where K<A, but K' is not limited; Performing the ké

integration using the Cauchy theorem we find:

¢ 2GGTA)

16 (2i7) ° 147

M{ﬂjf B(2Kkx +K%")
%) :

(kek)(t-px) 1zq *
J’*’ff f U i i
(KF K'-k-p(k¥kx) 4-4
qu*“fﬂ il SRR Y an
KWk [T+FF k+prx

Note that the first expression again exhibits a triple pole
singularity. However by considering aléo_the contribution of
graph. (d), one £inds that it cancels exactly with this expression
in the region EK+K' <A, In this way we are left effectively
with an expression like the first term in equation (11}, but
where K+K'>A. This yields only a single pole singularity
coming from the region y-+ 1. Similariy, in the second term
of equation (11}, the cubic pole contribution actually vanlshes

by antlsymmetry in the region K+K'< A, leaving only to a

.14,

single pole coming from the region K+K'>A, y-~+1.

Finally, in the Feynman gauge, the contributions
from graphs (e} and (£} vanish identically because of the
antisymmetry of the 3-gluon vertex. . [It is also because of
this property that graph (5) yields an U.V. finite result in
this gauge].

Therefore we obtain that the contributions to o

have only single poles n—1. These contributions are proporticnal

2n s0 that when applying the operation A% in

eguation (6), we-cbtain as expected a completely finite result

to A

for the factor G. Letting now n=0, we obtain after a very
long calculation that the centribution of the non-abelian

graphs is:

() @G _a') ‘ | | |
Gm_ g 5qu!ﬂ [Lu( oy )* ch,( jjg ) ,




' partlcles is to be understood.

.15,

Again, analogously to equation (8), we see that in the high
energy limit, when £+ 1, the above expression yields contri-

butions proportional to £n3(1-3).
Finally, we show in Figure 4 the graphs which

contribute te the effective coupling constant 52(3) for the

pure Yang-Mills theory as defined by the renormalization group

@ (b)

() | (d)

Fig.4.

In these graphs the contrlbutlon from the ghost

In appendix B we present a more

detaiied discussion of their contribution. We obtain from the

.16,

above rencrmalization-group graphs the result:

C(q)(ﬁ:» gl{%ﬁ;fu) [ y e P’° (%) L“(,_gﬁ_)]

I T

where % stands for the Euler constant.

We now add all the contributions to G(4) resulting
from fourth order diagrams. From equations (8), (12} and (13)

we find that

“@_ ”CC (] L
A LI S T =18) , 20T

7 1. P
e lop by b
+[—}%+¥%ﬁ— Q}L”( i+p) s Lu; (1)4—0(1 -A) (14a)

with 0{1-f)} representing a contribution which vanishes as

B+1. (see appendix A) as follows:

O(i~a_)=_f@-[@;‘” L) L1 )+ ¢agn(¢+,a)
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—Qﬁ

17,

n En(iw){(i—fﬂ Lg,( 30 )], (L 1’3] (1) |, (:H?)
. B

i-p B 1-p. I+ﬂ 2B 118

) L j)n( 1;3 )fm{iz ) +Ley (A;ﬁ%{—%(uﬁ _}2_’J

28 14p i"ﬁ

+ _13_ Q,,L( 14f ) (448) ﬂ%( 448 )Jma)

i-p 2 B (14b)

Tt is interesting to remark that in the final result, the

contributions which potentially could.yield at high energies
3(1—-8) terms, are suppressed by a factor (1-8}. The

physical reason for this behaviour will be given in the next

section.

III. DISCUSSION

From the results obtained in the preceding section
A
[equation (7b} and (14)] we can express the factor G{f& ,id
S

in the following form:

G(Im A): Cﬁw@) g'-’[ iC“gEYl(/MA) B(m\

Vs (am)* 24 VS 4 s

P - _ R
%Tr%; [_ggi+t_i(é_‘2-&1(rr)+Y)—u3(i)J+

.18.

(Q‘;CA .';9 TR (Y‘Eauﬂ En(’m) +O( )

(15)

4
Here B[EL] denotes the bremsstrahlung function and ﬁFﬂ—} is

/5 52

related to the function ©€(1-f} defined in equation {14b}.
We notice that the expression in the first hracket

of equation (15) is the beginning for the effective éoupling
& A]}' It is no accident that the coefficient
/g H
A

5 Zn(i) appears in the above expréssion. This factor comes

congtant gz[
11C

24w

from same vertex and self-energy functions as it does in the
renormalization group egquations and indeed it should be present

to all orders in perturbation theory [10,11]1.

. 11C
With regard tc the factor 'g £n(la), note that
24w ¥3

it is connected, in the limit B+ 1, with the expression
multiplying Liz[— fg%] in eguation (14a}. We can trace back
its appearance from centributions resulting from graphs with
two real gluons, like the ones shown in figures 2, 3 and 4.
since this set yields a gaunge invariant answer, the above
result is more clearly understood in physiéal gauges (like the
axial or Coulomb gauges). In such gauges, the mass singularities
are connected with ﬁonfigurations where gluons are nearly
parallel to a given guark line. The leading singularities
result when all gluons are simultaneously parallel to a given
gquark line. We can estimate the degree of divergence of these
singularities, by observing that any 3-point vertices wvanish
like the angle between two particles in a guasi-parallel

configuration, by helicity conservation. A power counting
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analysis, similar to that in reference {12)] indicates that
graphs like (2a) and (3e} will yield only single logarithmic
singularities, whereas the graph (4a) is the only one giving a
double mass singularity. [This explains, using the gauge

invariance of our result, why the cubic mass singularities

proportional to EnB(T—B) - £n3{§E} cancel in the Feynman gauge
: s

as B+ 1]. In a physical gauge [13] this graph yields precisely
1‘!Cg2 (m)

the -factor —— { }, connected with the running coupling
2412 VS

constant §2 i&j' in the leading approximation.

s

To higher orders, we therefore expect that the
leading mass singularities g2 £n f&]rl to result, in the CM
system, from graphs like the one shogn in Figure 5, where all
gluons are in a parallel configuration with one or another

quark line.

Fig.5.

Consequently we conjecture that the factor ¢
might have in the high-energy regime .the following general form

[compare with equation (15)]:

. 20.

w_)+
5

o M- ‘
+%—2 %o Cfn,n' 9,2%( )F/ﬂ,(\r_) 'f'O( /W},”) (16a)

where ﬁz(t) is the effective coupling constant as given in

the leading approximation by the rencormalization group:

' -1
2 ? ,
g (ﬂ: g i—l—ﬁﬁfﬂ q'@“(ﬂ_ (16b)

The important feature of this equation is that the leading
behaviour in = is contained in the first term where the

VS
running coupling constant multiplies the bremsstrahlung function

B[%]=4£n(§)-2

IV. CONCLUSTON

We must now relate the previous results with the
cross section Uph defined in eguation (3). Po this end, we
take on both sides of this equation the derivative with respect

to A. Using (6), we find:

E(H}:¢(O}+§md_%‘6(ﬁ:) e..(,b&f (17a)

o O
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To fourth - order, G(%) has the form a-—b £n % . where a and

b are determined by (15). 1In particular we have:
b= iiCF(R IJZ(I g B {(17b)

Using (17) to order g4 for the non-abelian terms proportional

to CpC, » we obtain with the help of eguation (4a) the result:

G(j}b)z—[®~b%(ﬁl_)}_b\f (8

which yields the structure indicated in eguation {5}.

We proceed to calculate the factor Y [see (3b) and
{¢b)]. Te this end we recall that Goly} is an IR finite
qﬁantity, so that the contributions from the purely virtual
graphs contained in o¢{0) must cancel the infrared divergences
present in the second term of eguation (17a). Sincé o{0) 1is
a real guantity, indeﬁendent of A and Vy, the virtual graphs
must provide effectively a subtraction at a point y0=-%ﬁ where
M is some parameter'with dimension of mass, Using {18 ) and

(4b), we then find:
\(([j)“ Q,'i“bY-l- b p/n( ij/lt) ,Qn(LyM) (19)

The fact that Y*(-y) = ¥{y) guarantees the reality of the
cross section Oph defined in {3).. Introducing a dimensicnless
variable =z =4y, and using (1%) +we obtain from this equation

the result:

.22,

Oph = [ﬂ m;o(z e{;"}'

2“0 ~ oo 2""6

ot [atby+ bl (S22 [ 121)

(20)

In order to evaluate this integral, it turns out to be more
convenient to express it in terms of G and b, rather than as
a function of ' a and b. So, after factorizing an exponential

term independent of z , we can write (20) in the form:

-{[GeE ) +bY]P/n(—'ﬂ—)}] "

2 .Q_
G;&:Ifl e Tf: M t21a)’
where I[ﬁ% ,%} is determined by the integral:

oo . : '
m Ay L di_ b2 o
I(.‘}._E M:) oY Sm LZ-I;E g . | {21b)

o (G B b bhrcahn o]

In this expreésion the function 6 is given by eqﬁation {15},
while b is determined Ey {17b}. From these eguations we see
that in the high energy limit, we have G>>b>>1. This is
because, to the order we are working, G contains entirelly

all the leading dependence, whereas b is non-leading. We can
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then evaluate the integral using the saddle point method.

Neglecting terms of order [b/G}z, we find in this way that:

G

ﬁu._l_. ___g_____. o
I T Sl | (22a)

.e-_B:'Q'MG)E%MG)'JrY] { i+ 2] b (6)+1+4Y] j

The first factor in this expression yields precisely the
asympfotic form of [F(G)]—1  where I stands for the gamma
function. In fact, if b=0, we can evaluate exactly the
inte_.gr.a.i in (21b) and obtain [14]:

-1
)

[ (b=0)=[(6+1]

This: case is relevant in QED, where CA=0 so that b wvanishes.

(22b)

Equations (21) and {(22) represent our result which

gives the leading and non-leading logarithms of I ang %
: VS

as well as the finite contributions to the cross section. It

is interesting to remark that classically, we expect the angular
width of a jet made of a guark and gluons to be of order
E-J'I- 62 = %~ in the center of mass frame. So it is plausible
2 CcM JE

o

. A . :
to interpret and T oas representing the angular and energy

Vg .
resolutions of QCD jets, respectively. Our expression for cph

shows that the cross section decreases very rapidly as these
parameters are scaled to zero. This represents a sensible

behavicur, in contrast to the low orders QCD contributions

which diverge in this limit.

24,
APPENDIX A

We present here a- list of formulae [8], which we
found particularly useful for the calculations encountered in
the evaluation of the 4t order diagrams. The dilogarithm

Liztx)_.is defined by:
_ 28 e
L'uQ. (0= —K L’”—"u—a 0[75 (a.1)

and has the properties:

L, 0=T% ; Li(-0=Th -

LME‘XH-L@: (-44)= —-'?3/5 —Jz; B?'LQ.(X) o, X>0 (A.3)
Lbu( 'X)+)_L1(i/)(): _fl—% — -zl ﬂnﬂ(x) ~(;T(ﬂm(x) , x> a

The trilogarithm Li is defined by:

N
X .
Ly = g L“;id* (2.5)
' 0

and has the properties (¢ is the zeta function of Riemann):

(A.6)

Ay =3
LLa(‘i}zT Lbs(ﬂ = TE

LL,(—-X)“LL;(-V;O::;l-'_Q ﬂn(X}_%ﬂﬁ'Ls(x} , x>0 A7

(A.8)

| - — 0
Li}s(X) —LL?)(iA() ‘:-g—!PM(X)—E'-ﬂM?(X)— Lal-f.. /Q/YL (x) J,X>d
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APPENDIX B

In this appendix we consider in some detail the
contributions which result from the renormalization-group
diagrams shown in Figure 4. After a straightforward application
of tbe Feynman rules in the eikonal approximaticn,graphs (a)

and (b) yield:

A $GGIRT) j Jg:fﬂ J O’;Hq!{ ; {M -9—'-5’—T

g (am)s+n k' il g

+j_2_{__PL2+ @ apg }} . (B.1)
VeV @ (paygm

where
= u;-l-&l R ﬂ-ﬂl ) (8.2)

Except for the second term in second bracket above, we will
perform all calculations in the rest frame of p , where in
view of the condition (2a) we have K+K'< A . The contribution
of second term just mentioned will be done in rest frame of q.
It will yield, in addition to a contribution equal to that of
first term, a correction Ab , which results from the fact that
we must boost appropriately the condition K+K'< A, from the
rest frame of p to the rest of g. Denoting the contribution
of first bracket in (B.1) by A1 , the contribution of first
two terms in secénd bracket by A21~Ab and that of last term

by AB ;, we can write (B.1) as follows:

«26.
A g"G-CnTn,(Z)- 5 LA T
AsLaanl [5, p/\1+/\a+/\3+/\bJ

.where:

/\:SJHQ’QS oyamﬂ' - (z-x'}? P

Ko K(KekD [BCRX+KXY = (v T3 TR

No= ”;TM %Mﬂ[ ‘ : (8. 3b)

KR (ke (4-Y)

Kl

Az gdmﬂ g #af i 1 (B.3c)

(P CkHE) ™ plioxt K- (ke (1-9)

We start with the calculation of A1 , which we write as a sum
of two terms: one which is regular as y+ 1, the other one

being singular in this limit:

/\1 = “(i-i-ﬁadﬁ—)(/\u +/\42) (B.4)

/\u:pg damﬁ gdwzgu { . e

K (K41 (Bx-4) BKRFKX)=(K4K)  (4-y)?

{B.4a)

NP LR,

K KOKHDY (Bx=1)  (4-y)*

(B.4b)
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In order to determine A11 we use the relation

y = ®%x' + ¢(1—x2}(1—x‘2)-cosg and define two parameters

T ahnd A as follows:

K=AT |  K=(4i-NT (B.5a)

where in view of condition (2a) we have:

0€T¢h ;, 0 agd (B.5b)

The importance of this change of variables is that the =t
integration factorizes and can then be easily dane. After performing

also the & integration we find:

Ni= “’“‘ i f”f I (1-3) ”’f ok(1-x) "
]—(iW/z) (21)

i .
S It x®) P A (A= XX) M XX
), (Bx-1)  B[ax+(4-Mx']-4 (B.6a)

We are actually interested in determining G[B ,%] defined in

equation (6})}. BSince the operation Aé%— brings a factor of n

in_tﬁe numerator, we can effectively put n=0 in the integrations

above. In this way, performing the integration over A and

t

X we find:

/\ -i!u &W LS Jx+
e Gy | 3 Lt 1.—[5

+Si_d'§<_(i-_) _(4-)° ﬂm(i,ﬂx “L+il

2p%(4~x)" 4o apd-x)

._gﬁdx_i_tx_’ (E 3’ fm( A-PXy_ gex | 4B (1-;3)2]

i-gx | 3pP0-wf f* 9 6 38%-%

+[X“"X? 'B_""ﬂ]f - {(B.6b)

Now we turn to the calculation of A12 , which has a singularity
when y—+ 1. For this reason, it is convenient in this case to
eliminate =x' via the relation: x' = xy+ J(1—x2)(1—y2) cos P .

Pexforming then the 71, A ,¢ and y integrations, using the

condition (B.5), we find:

Mg =- 4t A {

(2n) I-B

S L) F(24m) (2—+i)[§i—'“~—x?—o’x+

F(qaamy \ 1 o 1-Bx

4 J i@-x’)ﬂn (i—x’)-J
R4 (4-px)

(B.7)

Adding now the expressions for A11 and A12, we observe that

the first terms in (B.6b} and (BR.7) cancel out. Performing

finally the =x integration, we obtain after a long calculation
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the following contribution to A1 ; as defined in equations

{B.3) and (B.4):

PYTPRPY ¢
/\A-_-q..(.'m) 0‘52@5 { -ﬂn(ﬂl) +

+ L [—ni— +y- Bnmn—;—][_ﬁ-f/n(-iﬂiﬁyz} +

+_7:1_gbi_ ‘ ( ) L“?(iﬂ% ) (f})"‘}.cg(_ﬂ_‘iﬂ

148

(i) ] e

At this point we mention that the contribution of the chost
particles, turns cut be yield a result which is one fifth of
the one quoted above. Proceeding analogously, we find that
the contribution resulting from A2 and A3 ; as defined in

{(B.3} are given respectively by:

Aq= 45.(m)2“”’@%. [ _q_di_ _ Inemty-as ey J

{B.9}

and

/\3:46(9’131 -LQ{( . -q.P/n(iu Y-H)
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i leli) Ll

ﬂVL( ) “ﬁ )j (B.10)

Lastly we consider the correction Ab . This ceomes about
because, in the rest frame of g,; the condition T<A (see
(B.5) must be boosted and replaced by T < J1—82 [A(T-Bx) +

+ (1—1)(1—Bx')1_1A This modification turns out to yield the

' RETECEE |
No=— 80 7@% [—%-&1(%)-—2] (B.11)

Adding all contributions listed in (B.3), we obtain after

applying A 52 to {B.3) the following result:

d!\ _ 9GG @ 5‘
dzx (a4 { + £l

r f;f(;—f? + % + oo L ﬂm(m-ﬂ—' Y—ﬂa(—ﬁ—))[% i (-i—*@)-—‘?} +

M 1-f

+%[LH(%?%)"L“(4;?) _L( Pl ’3)}

- 125’3 ﬂ"‘(ﬁﬁ;H Hﬂ)j (8.12)
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Proceeding in a similar way, we obtain for the contribution of

the abelian graph .(4c} the result:

rd A - PGGTRO
da. a (2m9

[1 “ P/nﬁ>_2_»y_2_n fﬂn- (5) [%R,n (4)-2 0.1

1-p

Finally the non-abelian graph (44} yields the contribution:

d I\G*M{_____ﬂnm_

dﬁ (am¥

-i[:/é— + PM(M&" "0 ~2_!y—ﬁn(-ﬁ_) _AHJ_ Q/n(ﬁﬁ)—z] -

6 Al g

+f—§5 h(ﬂl—ﬂi)ﬂn(ug) 4+B) L( )J

{B.14)

Adding the contributions corresponding to (B.12), (B.13) and
{(B.14) we find that the infrared divergent poles cancel,

yielding the result stated in equation {13).
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