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Este trabalho estuda a anatomla da dlnamlca das cor—
relagoes quantlcas de 6015 sub51stemas em 1nteragao descrltos pe

lo Modelo de Jaynes-Cummlngs( ), fazendo uso de uma decomp051gao
ABSTRACT : .

nos estados naturais, segundo uma antlga mxﬁstxade Schroedlnger.

A modulagao da amplltude das oscllagoes rapidas de Rabl, que O
This work studies the anatomy of the dynamics of s s ; . . R
. o _ correm para um campo inicial intenso e coerente, & obtida da des
quantum correlations of two interacting subsystems described . . L - - .
. _ ) polarizagao intrinseca o spin gque resulta das correcoes a apro-
by the Jaynes-Cummings Model(1), making use of a natural states

. ximagdo de campo médio.
decomposition, following an old suggestion by Schroedinger. :

The amplitude modulation of the fast Rabi oscillations which
occur for a strong, ccherent initial field is obtained from
the spin intrinsic depolarization resulting from correcticns

to the mean field approximation.

( jBased on a thesis presented by MLCR to obtaln a MSc degree

at the University of S3o Paulo.
* )Supported by Fundacdo de Amparc & Pesguisa do Estado de
Sdo Paulo (FAPESP).




INTRODUCTION

Open subsystems of even very simple, closed guantum
mechanical systems can display very intrincate dynamical
behavior, described by an effective, non—unitary time evolution
law for the density matrix which may be used to describe their
state. This fact is dearly illustrated by the spin observables
of the so called coherent Jaynes~Cummings Model, which has

(2). In this work,

recently been studied in considerable detail
however, essential use is made of the fact that the model is
.soluble,.albeit not in closed form, and a lot of effort is
successfully spent in obtaining precise, ampuvﬂﬂe approximations
to the exact solutions, vaiid both for short and for long times.
These requirements are stringeﬁt enough to place stronger
demands on mathematicai expediency than on physical transparency,
and the present work.in a way attempts at reversing this
situwation. We restrict ourselves, in fact, to moderately short
times only (i.e., of the order of several pericds of the fast
Rabi oscillations, see below) and base the analysis of the
dynamics on physically motivated quantities; We are able to
show that the remarkable behavior of the Jaynes-Cummings Model
during the times that warrant the application of our approach
can be understood in terms of the behavior of very simple and
straightforward spin observakles, which are however governed
by rather intricate laws due to the dynamical evolution of
quantum correlations between the two subsystems which are
invelved in the model. Since we make no use of the soluble
character of the model, the analysis can in principle be extended
to other systems and situations.

We begin with a short characterization of the model

and with the definition of the felevant observables and

.4,

parameters in Sections I and II. Ou-* approach to the dynamics
of subsystems, including correlations between different sub-
gystems is described in Sections IXI to V. Finally, in Section

VI we present numerical results and a final discussion.

I. THE MODEL

The Jaynes-Cummings Mode1(1) is characterized by
the exactly scluble hamiltonian H , that models the interaction

of the radiation with matter,

H = %_6\3 3 ot -+ >\(_Qae-\+ .}Q"'(r—} (1}

+ . . .
where a and a are bosconic operators for the annihilation

and creation of photons respectively (la,a*] = 1), associated .

with one normal mode of the radiation field, and O3 , O, = *
g1 £ i¢,y . . .

= ———— are spin operators satisfying angular momentum

commutation rules. This degree of freedom describes a two level
"matter" system, and € is its natural transition freguency;
A is the coupling constant that represents the strength of the
interaction between matter and radiation, while the freguency
of the normal mode of the guantized radiation field is taken as
the unit of eneréy Hh=1).
We concentrate our discussion on the coherent case
in which one studies the time evolution of the Jaynes-Cummings ‘

system, given the initial condition

(2202 = lo>®@ \+>

where |v> stands for a coherent state of the radiation mode
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and . [+> . is ‘an eigenstate of the spin operator ;. - This- case -

has been extensively studied by Narozhny et_al(z). In that
work it is shown in particular that the time dependence of the
atomic-inversiop_a <63>t . lsee Figure (1)) involves at least
two different characteristic times. These times are associated
respectively (for strong fields or la;ge v} wiFh a fast
oscillatory behavior of <c;>t and witﬁ‘a érﬁduai damping of
these oscillations. The oscillations themselves are readily
associated with the precession of ‘the  spin in the strong field”
of the radiation mode (Rabi oscillations), but the basic
physicdl;mechanism:underlying'their damping remains relatively
unéxpléted.

We show that together with the atomic inversion
(<03>t) the;e-is another c¢rucial gquantity that can be calculated
to make cIeafer'the-partiéular"behaﬁioré‘described above; It

is’ the intrinsic atomic inversion or <g.> where ¢ is the

Pt
projection of the opefator g alohg the spin polarization axis,
5. <E>t
i.e., cp = —5—— - This quantity is important since it gives
<a>}
it

us .the degree of intrinsic polarizaticon of the spin as a ﬁrw;km
of timé. It depends on the dynamics of guantum correlations
_betwéen the two subsystems in an essential way. In particular,
if is trivial.to check that a mean field approximation leads to

<05%. Dbeing independent of time.

II. PERTURBATIVE TREATMENT POR VERY - SHORT. TIMES

Pirst of all, it is interesting to consider what
happens to the system (spin + field} during the first moments

of interaction. This means short times in comparison with the

.6.

shorter characteristic time of -the system.

In this limit, a straightforward calculation for

the coherent initial conditicﬁ'éiveé’”

Cl . R} 2
<G\P>};‘" Ao QMEAZ

that leads us to idehtifying the;characteristic time

(2)

gy o A

- N

for <03>, ~one gets, on the other hand, -
TG Al 2 (A ey e

with the correspondinguEharacférisﬁic time

Alvrl
For large v and small X these timés‘arg indicated
guantitatively in Figufe 1.. Ihé characperiétic time ?R7 i;
asscociated with the precession of the spin caused-by-the strong
radiation field. Aas <op>, "is a kind gf measure of the
depolarization of the spin, the time tD icharacterizes a
temporal scale at which the initial state of the spin relaxes

to a non-polarized state sirnice, moreover, t. is of the order

D
of the times associated with the modulation of the Rabi oscillations,
one is led to assoclate the latter effect to: the depolarization
of the spin. This will in fact be investigated quantitatively

in the following.




7. -8.

III. THE DYNAMICS OF THE SUBSYSTEMS : ’ ' . the entire system as in {4}, we can analyze the temporal c

evolution of the system in terms cf that of the natural states

The system characterized by H consists of two and of the respective occupation amplitudes o, (t) .

subsystems (spin+ field) interacting through the last term. If we consider the time dependent Schroedinger
This leads us naturally to consider the statefvector space equation
for the entire quantum systelm as the tensor product of a "spin" . i
i T J._a__\*->___-_-_Hli>
space &'S and a "field" space @QQ_ 4 ..
ao'e— = ﬁSQ ;ee-_Q_ and calculate it using (4) we get
and we can say that any state vector (|t>) contdined in this Y ' ' '
o _ % %) = Im W) €, () S %) (3
tensor product of two Hilbert spaces can be expanded as(3’4’5) o(\"\(*) {quh )< ¢ .)S‘“ 1 l Q (t)S,_(t)? (5
2 _
4> = I i) 1O, > S (x> (4)
A =4

1%y uj{s RS Y7+ (O IR MO Q (Y] =
where a,(t) are real amplitudes and {'|.Si(t)>} and {|ﬂjft)>}r " <M \-?g ‘.M ? < " ‘Q \-Qh i]

& (6)
the natural states, are sets of orthonormal vectors in the two =R E 0(1(*)<Qm(ﬂ S B “’“-QL(*) SJLH’)7} .
_ ) : . ol ™
level system space (ﬁs} and in the normal mode of the mdiation *=
and, for m#p.

field space (;EE‘Q_) respectively. These sets may always be

completed to férm basis sets in these spaces.

(B (02 0o ) { Q) Vhg®) |7+ <S> 1R | Sy )=

_As this expansion giveé the density matrices of the

7 : in diagona . =3
o subsystens in dlagonal form | =5 dik%){(Q?(ﬂS,m(-ﬂ \’.—\.\SZL(*3'31(*)7*-@1(*)51&31Hlﬂrgt)se(*))}
S A = D u> di @) <O = ‘
e Pt b j’=“ g

' (7
v N _
. E_-q_;-%%.li?(kl—.—. NS> of ey sy

=t where hﬂ(t) and hS(t) are two hermitean time displacement
generators, acting respectively in #Q_Q_ and in #@,s . They

we see that it can be ch i i : .
it can be characterized also as an expansion of describe the time dependence of the natural states through

the state vector that describes the entire system in the eigen-

vectors of the reduced density matrices for each subsystem. B R

S\Ssm> = Rs(A) 1St (&Y

Expanding the state vector |t> that describes




and

~§E—; Q=R M) QL )>

These:operétors are sufficiently defined by equations (6} and .
(7). It is clear thus that equations (5), (6) and. (7) determine
completely the dynamics of the éystem and they allow us to-
analyze conveniently the temporal  evolution of eéch sﬁbsystem

and of their mutual correlations. This will be done next,

IV. THE MEAN FIELD APPROXIMATION

A mean field approximation for coherent initiai
conditiéns is easily motivated by noting that, for small coupling
A ,. the envelope of the Rabi oscillations (associated with tR ’
see Figure 1), a smooth guantity, together: with -<op>t remaing
close to 1 for several Rabi periods. This suggests the

validity, for such intervals of time, of an ansatz of the form

A = |_o,‘uc)>\suc)> TS

for the staté vector of the composite system. Iﬁ terms of the
analysis of the preceding section, this inmﬂies constant occupation
amplitude, i.e., oy (t) = and ay(t) =1, The replacement of
equation (4} by these constraints, together with equation (8)
and equations {5) and {6} define ocur mean field approximation.
In fact, when we substitute the expression (8) into the coupled
equations (5), (6) and (7} we get, for hS(E) and hR(t) , the

expressions

.10,
R = <O TR, 0>
and

hothd = <G 11 '1:'é,_’(§t)> .

These expfeésidﬂéushoh:thét"thé'géﬁéréiéf of the
temporal evolution of each subsystem is qlven by the average
of the hamiltonian H, calculated at the state of the other

subsystem. We have_thus,_ln_ph;s,app;pxlmatlpn,
PS> = Cnunl A LS 1S3>

4 % QWP =gt 1R (S, [ )

which has to be solved for the initial ‘éondition
12> =le> y 1S40 = 1+

To solve the system above we can make ansatze for

the form of the states [Q;(t)> and Isltt)>

2
""‘\P(*.) - hr;_k)\ - otk Q_"'

‘o7 o (e

Q> =

and
SV +rme.

Jqﬁ:f?;;;;;;?-- E 0o

obtaining a new linear system for the parameters vwv(t) , z(t),

f%t) and y(t) that can be conveniently dealt with mmerically.
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Given this mean field solution and in preparation
for a perturbative evaluation of the time-dependent occupation
amplitudes olt) , we can also determine the relevant null

occupation state [Q:{E)S2{t}> (22{0) =0} as

igH)
IS0 =INe ™ (- 1S, (k7> LS ) D(4-

QWD L2 S@>

which is just tﬁe."dodiwé§“$£éa_by thé'éomplete hamiltonian H

tek

when it acts on [R:(t)S1{t)>

Using the forms (9} and (10)

1L ¥ if)f??)'; lotan)2 mﬂm- -
WS> =2 TZ [areade  107@(0>- 0id)

which involves the parameters already obtained in (9} and (10}

and the new phase Tfjt}."

V. THE PERTURBATIVE CORRELATION CORRECTION

To obtain our mean field approximation, we képt
frozen the amplitudes ai(t) imposing that ai(t) =0 always.
To correct this, we will now allow for changes of the ai(t)

making use of (5) written more explicitly as
Kqled = Ay 1% T St@z‘m Stk FHID, M 52(4;)\,-}

Sait) = O 1x) m‘\ <L S, H Q00§ un>}

.12,

which are two coupled first order equations for «;(t) and
asft) . The matrix elements on the right hand side of the
equations will be calculated using the states Iﬂltt);lsltti>
and 192(t)>i52(t)> given by the mean field solution and in
this sense this is a kind of perturbétive correction. Concerning
the phases of the states (2:(t)>|8:(t)> and 22 (E)>|S2(t)>,
it turns out that, if we consider a global phase FI(t) given
by F(t) .= ke(t) + Pt} +S(t) , it is easy to prove that, for
our initial conditions it remains constant ( =%) (7).

On the other hand, it is necessary to keep in mind
that this perturbative correction will be valid just for times
short in comparison with tD (the envoltory characteristic
time) but that may be long (for |v]|>>1) in comparison with

t {the Rabi characteristic time).

R
This gives us two coupled first order eguations
for oilt) and apft) and through them we cobtain the approximate

temporal behavior of a;(t} and a.(f).

VI. RESULTS AND DISCUSSION

We concentrate on the most relevant quantities
asgociated with the spin ("matter") system: <Ug>t - the
atomic inversion and <Up> - the intrinsic atomic inversion.
In terms of the parameters introduced in equations (%)} and

(10), they are given by

B>y = (A6 - 436:)) -k
o 1+ 12H\%

and

P>y = A7) ~ o;,% k)
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quantum mechanical effects in a physically fery trangparent.

way. These features should stimulate its use in the ahalysis
(6}

. - ..These quantities, as obtained from numerical solution of other composite systems'®', particularly in the context of
to. the dynamical, equations, are shown in Figure 2. We see that obtaining corrections to mean—field_approxima;ions_dypamigal
in this approximation .£0:>  _can be written as steady Rabi equations.

cscillations medulated by a depolarization envelope which
. results. from the_dynamical correlations arising betwgen the

two subsystems..

Unlike in previous approaches {see (2l.and references
therein}, the present approach aliowed for a physical definition
and for a separate calcula;ion of the envelope, a;beit in a
perturbative context as far as the correlations hetween sub-
systems are concerned. It is interesting to note that this
envelope is not smooth in the sense that it contains some
. structure on the time scale of the Rabi oscillations. The

3 intrinsic depolarization which goes along with the several Rabi

periods following the initial time appears therefore to feel
the Rabi oscillations themselves. This is nrot particularly
surprising in view of the structure of equation {5}, which
relates the time evolution of the occupat;on ampiitudes ai(t)
(associated with the dynamics of correlations between sub-.
systems) to the time dependent natural orbitals which, in
particular, carry the Rabi oscillations.

A perhaps less expected result is that the average )

. gross-structure of the depelarization envelope bears witness to

the perturbative time t equation (2), which was calculated

D r
at t=0, where the curvature of the envelope would appear

naively to be possibly affected by the Rabi frequency component.

We finally stress the generality of the present

approach and its ability to get hold of some rather subtle
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1 —“Time Dependence of the inversion <o3>,

2 ~ Time Dependence of -the inversion <gs3>

as a function

i : I3
of time, for [vi

“»» 1, showing the Charactér;stiC'

times t., and t.

R D 1Just_schematls},

. (smooth line)

and.of <g (dot.iine)'as a function of time, for

>

Pt .
|vi? »> 1, obtained from the numerical solution to

- thé dynamical eqguations. Both of the quantities were

calculated at the same points. : ‘ ‘ e




Fie.©




