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ABSTRACT

The ‘time dependent variatiohal principle is applied
to generate semi-classical apprbximationé in the descripﬁion-of
ineliastic collisions in one-dimension. This is achieved by
using'appropriateiy parametrized-trial wave functions. The
method is applied to an exactly so;vable model and the results

are fairly good, in general much better than other approximate

calculations.

TFinancia'l'ly_ supported by FAPESP.

The time dependent variation;l principlie (TDVP) was
introduced by Dirac (1930} but its appiication to nuclear
physics problems is rather recent. One of the methods dériving
from it is the time dependeﬁt Hartree-Fock {TDHF) method used
extensively for desc;ibing'fission and fusion of nuclei (Negele
1982, Davies et alh1982): ‘The main disadvantage of the TDHF
method is the non‘existénce-of é_p;acti;al way of extracting
gquantum information frem it (besides the'large amnount of
numerical calculations-rEqui;eQ). Another way of using the
TDVP is through the parametrization of the variational wave
functicn. The parametrized'waﬁe function should span. a
collective subspace of a given system and the use of the TOVE
obtains classieal equati&ns of motion for the chosen paraméters
(Kramer and Saraceno 1%81). <This form of the TDVP has the
semiclassical character of. the TDHF method but at the same'time
allows the computation of quantities having quanhmfinﬂaqxetation
and this is its main advantage (it also involves a large amount
of numerical calculation).. This parametrized TDVP has been
sﬁccessfully applied for descfibing vibrational and ro?atiqnal
modes in nuclei (Cohen*198ﬂ§*£ramer 1984). Aisé it has broved

to bewa-usﬁful,tobl,fﬂrfﬂﬁﬁctibing_elastic scattering of light

nuclei at low_energiés~t§aracenb 1982} and this stimulated us

to trying to exténdnthis.method sb as to allow for excitations
during the collision.’ In;thisfwork we investidate the possibility
of usinq.the TDVP- for -describing inelastic scattering by solving
é one-dimensional problem: collision of an excitable system
with a potential. By appropriately parametrizing the trial

wave function we can calculate transition probabilities.




In section 2 we briefly descripbe the TDVP using
parametrized. trial wave function and obtain the classical
equations of motion for the parameters. In section 3 we propose
a parametrization of the trial function for describing the
collision of an excitable system with a particle., The equations
of motion for the parameters are obtained and in section 4. they
are solved for an exactly solvéble system. We make comparisons
with the exact results and with the results of other approximation

schemes. 1In section 5 we summarize the conclusions.

2. TDVP AND THE CLASSICAL EQUATIONS OF MOTION

Ir its usual formelation the TDVP is derived from

the action functional
s = nwPar ' : (2.1)
with the Lagrangian given by

LGy - e = <iles  <ulnly

where. H. is.the Hamiltonian-of the system and [¢> unormalized

{but normalizable} wave: function (the  dot means time derivative).

- Imposing. stationarity of: S with respect to
arbitrary variations of . |§> - and . <@} obtains an equation

which is. the.analog:of the.SchrBdinger-equation for unormalized

2- <1psl:11)>,' - <1 Iq,) r (2.2)

.4,

wave function. Approximations in this scheme are naturally
cbtained by considering restricted variations of |y> and <y|.
A simple way of doing restricted variations of the wave
funetion is by parametrizing it. Considering a time dependent
parametrization of the function, when imposing stationarity of
the action S with respect to variations of the parameters will
result in Hamilton type equations of motion for the parameters
instead of a Schrédinger type equation of motion for [¢> . Of
course the pérticulér choice of parameters depends on the
problem to be: solved and at the present time there is no
practical procedure for assessing the suitability of the chosen
parameters. At the moment the best way of checking the validity
of the appfoximation resulfing from some partibular choice of
parameters is by enlarging the subspace Spmﬁﬁﬁﬁby the variaticnal
function and then recalculate the relevant quantities. If no
essential change is observed we can be reasonably sure of the
appropriateness of the choice of paraméters.

If z= (21,22,..., zr) are the chosen parameters
and |z» is the trial function that depends only on z (complex
conjuqatanbf 2) the\Lagrangian.tz.Z) can be written as

L(z,3) = -%_ﬁ ]§1 7, I L g —] LaN-H , (2.4)
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" Wwhere

‘Wiz,z) = <z|z> _ -{2.5a)

and




<z Hiz>
RziExo

Hz,Z)- {2.5b)

: imposinq'stétidnarity of -5 with respect to
variations of z; and Ei obtains the following equations of

motion for the parameters

- 3 (2,7

e B T o (2.62)
T s AH(z,=z)
- E i Iy By = f—ggff— . {2.6b)
3
where:

, _

. o dnNiz,z)
ik * EEN IS : : . (2.7

If g 1is ﬁon-degenerate (det g # 0} eguations (2.6) can be
inverted and Hamilton type equations of motion are obtained
for Z. ‘and z,
i i
if Ei =3 (g7h,, Hiz2) s ele. . {2.8)
3
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Defining the simpletic structure (or generalized Poisson

brackets) of funetions F(z,z) and G(z,z) as

equations (2.8) take the form

i zZ, = {zk,H} . . (2.10)

3. ONE-DIMENSIONAL COLLISION OF A PARTICLE WITH AN EXCITABLE
SYSTEM

We shall now apply the method presented in the
previous section to the system shown in fig. 3.1: a particle
of mass m, collides with the system consisting of a particle
of mass my submitted to a potential U{y) . The interaction
between the particles is given by Vi(x-y).

The Hamiltonian for this problem can be written as

k2 2 : . :
H = 2m1 + Eﬁ; + U}y) +.V‘x—¥). I ) .F3.1)

The.first step +o use the ﬁeﬁﬁoa described in sectioﬁ é is té
choose the trial-wave-functioﬁ. Iﬁ the case df elastic
scattering the-cohérent_state has-pfovgd to be a good choice 7
{(Ssaraceno 1982), so in this case 6f ineiastic collision we .

propese the following variational function

z,05 = g () |z(e) ,n> o ts.2)

N

uﬁ&é:

n=0

where

lz> & [ln> (3.3)
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operators for the system.of mass m

Z- .= - iﬁ“] '
Bos vhaol oo

o gy e Ry : .
Ale iR [_ﬁr . ;.EZJ o (3.4)
o 2 o By e L

alte> = o

o
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In other words, gt and- & are-the.creation ‘and annihilation

’a aﬁﬁk AES*|0> is an

unanmﬂizei gaussiaq-@ave-bégket which- describes the motion of -
the.particle:.mﬁ 7£ei§§ive-tp the equilibrium position of .sz
The number of terms N: in (3.2).15 suitabiy_chosen

: . Z 2 , .. )
S0 as to have IQN*}| << |GN| - ?he coefficients o (t) axre

the unormaiiiéd”ﬁfﬁbability amplitudes of finding the system

in the state |z(t),n> (eq. (3.3)) at time t.

The equatiohs of mofion for the.parameters {namely
z and ad,..,,aN) are obpaiped_from eguations (2.8). S8ec, the
first thing we must do is to calculate the.matrix‘ g (2.7).
It is easy to see that this matrix is non diagonal 50 that the
parameters are not canonical variablgs. But in this case
canonical - variables are obtained by defining the normalized

probability amplitudes

B = —_— . (3.5}
2
Z |agi

With this, the.Légrangian (2.4} takes the simple form

ifh. =

L o= 5 (ww - ww) - H(w,W) p (3.63)

where:

= ﬁ??}sbr---:BN) ’

w .=
{3.6b}
H{ww) = H{z,Z,a(8,B), a(B,BN)
and . the eqﬁatiéﬁs.lz.s) turn into
L= 3Hlw,w) '
ih vk = f“%ﬁ;—— and crc. . (3.7)

Givén:po;entials Uy} and Vix-y) we can
calculate Hiw,w)} and solvé equations (3.7) for any given
initial eondition. The transition probabilities will be given

by

TDVP ' 2
PO = |&im B (€) | , {3.8)
L N
where R, and n, are the initial and final states of the system of mass m,.

It is inferesting to note that the same equations

may be. obtained by vusing a normalized trial funetion and taking




only .z ‘and. z. as variational parameters. The equations for
tﬁe.oﬁhéf.péfameters (B, .i.,B')_ are'obﬁained'impOsing the
tlme dependent Schroﬁlnger eguatlon to the wave functicn.
A In fhe next! sectlon equatlons (3.7) will be solved
for a 31mple case- whlcn is: exactlv soivable: .the system of mass

m. 1s a harmonlc osc1llator._

. COLLISION WITH A HARMONIC OSCILLATOR

The-model we shailfsolve ﬁ§ing‘the meﬁhod'deﬁéloped
in the previous section was introduced by Jackson and Mott (1932)
-fbrnﬁndefstanding the colinear collision of a diatomic molecule
witﬁ'aﬁ'atom.'-The'moleculé'is.represented by a harmonic
.osciliator (see fig. 4.1) andxdurlng the collision we dlsregard
N "-the lnteractlon between - the . atoms that are furthest apart
(A and’ C in fig. 4.1). .0 L

'The.Hamiltonian:is-given'by

2 2 2
~H T om, ¥ m, © 2mg * VBc:(q]a. Gt + Vaglay-qg) 4.7)

with 'VBC ca harmonlc osc1llator potentlal of elastu:conﬁﬁmt k.

Intrcdu01ng the. center of mass coordlnate X of

the- whole system

. ' x - 2%t Msdp * Mede
mA + My 4_mc !

K

and:the relative coordinates ¥ and v .(see fig. 4.1}
2

10.
. Mg * M9
x = a. r
AL. mB + mC.
Y = ag-9%

together with their-respective: canonically ceonjugate: momemnta.

2 '2 2.
Py P=x P i
X X e AN .
H = <= % - - (Y) * Vo (X
M 2pA 'ZHBC AB T

where

M = . .
Ma !
y s

BC mBi-mc

B

+mn

'pﬁ"pf and Py the Hamiltonian. {4.1) ¢an be written as

F1 ., (4.2)
[

The harmonic'oséiliétbr_poteﬁtialf-Vécjﬁ) is .given by

VBC‘(Y}'- = _,2:-_.k (y yeq) .

In order.to eliminate the constant

the relative écordinates 'x and 'y by

v

. we define




for which.the{Hémi$;odién of the system (with the center of

is: sipply written as:

mnass kinetic.ene;gy;;empvedk; H .2

{4.3)

wiﬁh_ pkkxﬁkkf and p 'ﬁKY being the momenta canonically:

x5 ¥ :
conjugated to  x. and ¥ ‘réspectively and where we have’

7 : ézigéuthé-gamiltonian in fo;mf{é{3$ energy will be
_ﬂ_ﬁéa§§fe§”ip:§é?hé ef #iw and the formalism of section 3 can be
' ﬁ§eﬁv§i#eétig;bg.putting' mo=1 and m,=m (see eq. (3.1)). In

;té;ms.ofj#hg_cre;;ion and annihilation operators {3.4) the

Hamiltonian Hna£ {4.3) can be written. as

12,

hy ~oaty
Hogp = - Bple s 887 L v [B:87 _&:d') g g

4 U am VR

The potential Vix-y). will be chosén as.”

0

Vixey) = V! e—Y(xfy)  ” ; _lz..- ) .f.' t@.S}_

in order. to compare our results With-the_;esults.of;the exact
calculaﬁian.pe:formedxby-Sécrest;andLJohpgbn (1276) ..
 _The4rel§vant“maf:ik-glgméptéfnéeded_fdr Ehexnmerﬂxﬂ
calguiation v;a-;hgjparaﬁetfizedfTDVP_can_be calculated straight-
forwﬁrdly; '&he reSuit is . .
$z=§-$?mﬂléf¢?”ﬁ= e’ § le 1%,

zZ. |

<2y |Hypplmim> =e” [

where

._qz,:nz"lv.(x_—y) jzyn,> =

1
SR SR V)
T e 15 lln,

and

Even though the-térms Vn o ©an be calculated analytically
’ . . 172 : . ‘




-13.

it will instead be calculated by making a series expansion
because we shall consider the case y<< 1.

"In terms of the normalized parameters B, (3.5) we

' have
lg 2 3 % : '
Ho=". ;n]B o = 4 52 4 z, B_ B v ¢ 4.7)
=g P P ah, T2 Py mn,

. 2 :
ifigj =3 Bj.+ nED Bn an an§ c.c. . o {4.8a)
L K.
XK = F {4.3b)
N : w0 -ﬂnﬂ. . -
Be =vvpe™ 1 oe B T <nliTInpy L (4.80)
n,n, 2 71! k=0

where x and K, are related to .z and z by equations (3.4).
We shall consider small transition amplitudes and
the. egquations of motion for Kx ig in this case approximated

by

R = yv. e YX (4.8d)

thus decoupling from.equatiens for Bn.

Tables 1 and 2 show the results for the transition

TDVP

probabilities Pile obtained solving equations (4.8a), {4.8b}, and

(4.8d). Comparisons are made with the exact results Pi+f

(Secrest and Johnson 1976) and with the results of other two

4,

dM

approximate methods due to Jackson and Mott (1932}, Pi+f and

SR
to Sharp and Rapp (1963), Pi+f .

In equation {Q.Saj.we have considered terms up to
73 g0 that (f-i} £3. As it can be seen, the results of the
Ealculations'using_thefpérametrized TDVP are in most cases in
good agreement with the results of the exact calculations. 1In
general our results are better than the results of the other
approximatelcalculations shown in the tables. " Therefore we

conclude that the cheoice made of parametrization was appropriate

for the problem we investigated. However, as it can also be seen,

pTIDVP _ TDVP
ivf % YEwi -

The origin of this problem lies in the approximation we made

our results do not have the desirable symmetry

of small trahsition amplitudes. When this approximation is

" made an average trajectory z(t) . is assumed. But in fact,

after the collisioﬁ with the pafticle, the oscillator wave
function is in a combination' of all possible states, each.of
them having a different internal energy and should correspond
to a different-trajectbry‘Qf the particle. If instead of taking
an average trajectory;we~ailow for different trajectories this
problem of lack of symmetry is eliminated.

As the eneigﬁ'difference between the levels
considered becomes small compared to the total energy the average
trajectory approximation should be good and indeed, in this

case the lack of symmetry becomes small.




-
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5. CONCLUSION

- We have presented an approximative method using
parametrized trial function in the TDVP so as to allow for
internal-ekcitation of colliding systems (in one dimension).
Thermethod:was'applied to. the problem-of collinear collision of
.a pantipleiﬁatomri§ithfa hafmonié oscillator (diatomic molecule}.
Our_fésﬁits d9 coﬁpar¢Jfai;lY-Qellfwith the results of an exact
caicﬁlégipps: Théreféreswé;cégéluéefthét.the formalism
' deve;ﬁégd by.M;-Séraceﬁonénd P kfamer (1982) for treating

elaétib.coiiision is also appiiéable tg'describing.inelastic
col;iSiéhs. However, the problem of fusion'remains an open
questioﬁ;“'In this case a re—éuantiz#;ion.of the: closed paths
" "a 1a" Bohr-Sommerfeld, will probably be requiréd.  Another
problem. is itS'agplicabilitﬁ.to-real'nucléar inelastic

callisions.

.16.
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TABLE CAPTIONS

TABLE 1t —

P

TABLE. 2- -

Transition probabilities as a funciion of the total
enerdgy for m=1/13 .and Yy =49.1287. The columns
I and F are the:initiai and-final states of the

oscillafofr réspéctively.'_Pi;f is the exact result,
TDVP JTM SR
i+fﬂ i+f i=f

,is‘ourjcalcglétions, P
results of Fackson and Mott (1932) and -Sharp and

‘and P

Rapp:(19631;'re§pectively.

‘Transiticn probabilities as a function of the total

energy-for m=13/37 adnd 4= 0.1287. (See caption

.. of Table"1)..

are the

FIGURE CAPTIONS

Fig. 3.1 - Coordinates for the one-dimensional! collision of a

particle with an excitable system.

Fig. 4.} - Coordinates for the collinear collision of an atom

with a diatomic molecule.
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