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ABSTRACT

Schwinger's scalar-tensor theory of gravity is
shown to have spontaneous breakdown of symmetry as an important
feature of cosmolegical solutions. Machian features are also

examined.

1. INTRODUCTION

In an attempt to solve the vexing problems connected
with the formation of domains in the cosmological 3-space, which
should, instead, be homogeneous1, I propcsed recently2 a way out
by exhibiting a pattern of spontaneous breakdown of symmetry3
in which order-discorder phase transitions due to the thermal
evolution of the universe4 do not occur. It depends crucially
on the presence, in the Higgs Lagrangians, of a term % 2 which
couples the zero;spin meson o gravity in a conformal ways. This
microscopic breaking of the equivalence principle is not entirely
"ad hoc", as it allows for a natural extension to arbitrary
space-~times of the 15-parameter conformal symmetry of a massless
particle ir Minkewski space-times. This notwithstanding, it
would be conceptually better to have the presence of such a term
as a built in fequisite of the coupling of gravity .to mattexr in
some (well motivated] modification of General Relativity.

Schwinger propesed such a theory a few years ago in
the last pages of a wonderful book on relativistic guantum
mechanics7. In this paper I review his work from a slightly
different viewpoint, discuss some features.of it which might be
called Machian, and show that it contains my mechanism of
spontanecus breakdown of symmetry in its very structure: this
is possibly the most important property of the model, which

singles it out from similar models of scalar-tensor gravity.

2. THE MODEL

The Lagrangian

L(o,9) = - V=5 % {gwau‘b 3,6 + (m*+ 5 ¢2} (h




.3.

{¢ is a zero-spin field; R 1is the scalar curvature} is, for
m=0, invariant under conformal transformations. More precisely,

if ¢ and g“\j are transformed into

e

St (=) = (Ax)) ¢ (x)

(2)
g' (x} = A(x) £

uv
and m=0, the action constructed with (1) remains invariant.
It is sufficient to check for the infinitesimal wversion of (2),

which reads

—

ddi{x) = -_3-6A(X)¢(x)
(3)
sg™Vx) = - sax g™V ix)
The response cf (1) to these transformations is, in fact,
. 1 42 By ;
51L-3V{4¢ Y=g g auak} (4}

We refe; the reader to Ref. {(7), chapter 3-17, for details.

The ihtroduction of an additiocnal, dimensionless, scalar field
o(x) in such a way that the term m*® in {1) is replaced by
m%42(x) , is sufficient to get a Lagrangian that maintains
conformal invariance even for m#0, provided o(x) transforms

like ¢({x) , that is
solx) = - % §A(x) o (x) (5)

A slightly more complex Lagrangian still having this invariance

is

tlg,0,9) = '21E /=g {Rcz + gt 3,0 B\vcr} -
/g 1 I 2.2 , By.2 (6)
- Vg o5 {9 98,0 ¢ (mTaT + A

This is, however, too symetric: o{x) , whose kinetic energy
term has, by the way, the wrong sign, can be eliminated by a
conformal transformation. Egq. (6) is, however, a good source of
inspiration. Keeping the "matter Lagrangian"” (the ¢-dependent

part} as it is, we modify the "gravitation Lagrangian" to get

Lig,0,d) = 12':(.& /‘—g {R - é gu\) 3110'3\)0’} -

Tﬁis is Schwinger's model (0 >0 is a new empirical, dimen-
sionléss constant, and «=8r1G): a scalar-tensor theory in
which the matter Lagrangian is made conformally invariant by
adequate use of both R and o. This has several nice
consequences, the first of which is the following: if we
specialize the minimum-actien principle to conformal variations
§i{x) , a relation between ¢ and R is immediately obtained,
as the matter Lagrangian remains invariant. A similar thing
happens in the theéories of induced gravity propugnated by
Adler and Zee19'20: there, an effective Lagrangian resembling
Einstein's is obtained when the conformal symmetry of the
gauge-symmetric, scalarless matter Lagrangian is broken by
radiative corrections. Relations among the induced terms then

follow by utilization of the technigue we just-described.

In our case the relation which follows from the

copformal invariance ¢f the matter Lagrangian is




— W s
— 3, (/23 g™V 3 o?(x)) = aR (8)
v-g
Other eguations of motion are
v 1wy _ 3 uv
R 29 R = T+a = {9)

AV .
where Y is the stress tensor corresponding to all pieces of

the Lagrangian (7) except for the first one. It is written

_ 2 1z _ 1 By '
tuu = tmuv f e TE {Buoavu 5 guvg agcayo) {10)
- 1 -1 2
tmu\) = au¢au¢ * g {RUV 5 (VUVV+V\JV1I) .+ guv[:l }¢. -
- {-“ﬁ o242 + 4 B3 0, ¢ (11)
guv 2 2 guvg o B
- 2 1o By '
t =t -E59 Bsoayc_ (12}

where ta=t The eqguation for o({x) can be written, using

(9}, as

3, (/73 ¢ ot = Eoe (13)

al
e}

Equations (9} end (13} govern the behaviour of the gravitaticnal
fields. It is seen that all gravitational fields have the same
source, the stress tensor.

Schwinger's.Lagrangian, Eq. (7}, contains no strict
mass terms. If o(x) is slowly varying the field ¢ has a ”
slowly varying "mass" given by mo(x) . In our interpretation
{see below) this is a Machian feature.

To clarify the rules of the model a little more, -

.6.

consider the coupling of a vector field of mass m to the
gravitational filelds. The last term of the matter Lagrangian
1

a1l Wi oa 1wy
L = - 5 E (auAv BVAu) +.4 F g

KA 2 UV ’
F - mtg 'AUA\; (15)

=

UK Yo

breaks conformal invariance. The required modification consists

in replacing it by

1 .
250 9 A Av. : | . {16)

which depends on ¢ in a non-analytical way. To avoid thie,

one must take m=0. Electrodynamlcs comes out naturally.

3. MACH'S PRINCIPLE

Inertla is perhaps ‘the fundamental property of
matter15. Mach's principle addresses the problem of underw
standing lt and asserts, grosso modo" ﬂuﬁzlmaxlazs debamuned
by the 1nteract10ns of a body w1th remote sources of grav1ty
(see Refs.(B 9,16,17}). ' Mass, one of the parameters charac—
terizing 1rreduc1b1e representatlons of the Polncare'group, may
have the same origin as P01ncare 1nvar1ance. In the_presence
of gravity the latter is valid only locally; mass can therefore
also acguire a dependence en position and time. Schwingef‘s
model has this feature embodied.in ite structure in a'very
e;eqant-way.' Letrus consider the case‘of a scalar field; given
by Eg. (7), and look for soluﬁions with constant. o(x) . From
Eq. (13), t=0. -as, theF,i t=t  (Bq. (12)), £ 0. Fr0m7t11} y

ig straightfoiward to show.that .
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€ = - m?o?é? 4 %‘ 62 (17)
and this implies m=90. So, a constant ¢ 1is only consistent

with a vanishing mass.

Schwinger decomposes
olx) = 1 + ¥ix) {18)

and interprets u{x) as the field due to nearby sources, whereas
1 .is the field of the very distant sources, connected to
Mach's principle. I think, instead, that the decomposition (18)
has no physical meaniang, for .o{x), likg Iy is not a field
strength, bu£ a potentiél.. A constant o{x} means zero (scalar
gravity) field strength. No wonder that a constant c(x}
requires a vanishing mass: it represents the absence of (scalar}
gravity. It is this wvery faect that makes of Schwinger's model

a Mach;an cne: inertia (as measured by_mass) is an effect of
gravitf; écélaf graviti, to bhe preciée.

' We méy take profit of the fact that the model has
simple transformation broperties under dilatations to write
it13 iﬁ a form rééembling the Brans-Dicke theory14. Essentially,
ci{x) is absorbed.by ¢(k) and R({x), the "mass term" of
¢ (x) 'being transformed into (m?-+%}$2 ; which hag a more
familiar Look (the mass is constant}. The metric is, of course,
changed, and the price to pay is that thel gravitational
"constant" is now a field. The two formulations are physically
equivaient if considered as classical theories. We prefer the
original formulation of schwinger, with constant G, because
of the possibility of borrowing, in many cases, the solutions
of Einstein's equations of Generél Relativitﬁ. To argue'fﬁrthe:”

for cur contention, that the relevant field for inertia effects

is not a(x} but auu(x), we consider now a simple situation
in which the physical role of the scalar field is made trans-
parent. The geometry will be that c¢f the Robertson-Walker
metric for =0, that is, the flat case; in agreement with the
spatial symmetries we assume o(x) to depend only on time.

Writing the fundamental form as
- ds? = dt? - s5(t?) § (dxk)2 19
k

the field equations read

tne
X}

X

3§2‘+ 3 52 =EU + Tiz 4l {20)
S g2 k _ K l .2 .

2§*8T 8T " TaP-a® (21)
g 4 3z, _ 1 ok - :

57 @c (879 =3 7.5 (3p-9) 22)

where p 1is the energy density and p is the pressure. We

now take p=0 and combine {21} and (22), obtaining

K 2 -3
- 6('!_‘_&) g - 37‘”: g [23}

o

The spherical symmetry of the problem, allied to the vanishing
pressure, should allowrfor a Newtonian interpretation of these
equations, in analogy with the case of General Relativity15
provided that we recover Newton's law in the limit of weak
fields. This is most easily done in the source formalism

developed by SchwingerT, where the interaction energy of a

fixed body of mass M is




|:t°° (%,%°) « % tkk(i,x°):| (24)

>¢+|—4

|

for weak fields in the scalar~tensor theory, whereas General
Relativity gives
1

oy _ _ KM 3, 1 0 [+ 0 > 0
Eint(x ) = e j d*x i;i £t (x,x") & tkk(x,x [] . (25}

When t°° >> tkk {vanishing pressure} the limits coincide, and
reproduce Newton's law. By ceonsidering the Newtonian equation
of motion of a point at the surface of a sphere of radius S

containing mass M, one has
8§ = - - -4 ac0s (26)
= sz = 3 TEP

ZS,

-1

which is Eq. (23) with the last term, given essentially by
lacking. This term, which looks like a centripetal force, is
showing that the disagreement between Egs. {26) and {23) (they
agree in General Relativity!) can be interpreted as meaning that
the chosen reference system is not inertial, or, equivalently,
that particles do not move along geodesics. It vanishes for
constant ¢, which is, then, a condition for the frame to be
inertial. Here it is particularly clear that inertia is
connected directly to & , and not to o .

Just to c¢lese the argument we analyse a simple and
curicus situation that once more strésses the role of &.
Consider Egs.{20), (21) and (22) with &= constant#0  and
3p=p . From (22} it immediately fellows that S is constant,

that is, the universe is stationary. Then Eq. (20) gives

o = [E% _ % 62] 132 constant {27)

and using (21} and the eguation of state, it follows that

_ . K= 3(1+a)

2.2 .
Teas)a 8%& (28)

and

where A 1is a constant. It is ¢ which is directly connected

to physics.

4. SPONTANEQUS BREAKDOWN OF SYMMETRY

We start by enriching the physics of the model,
adding a self-interaction term to the ¢-Lagrangian. Let it
read

_ l+e 2 _uv
L= e V=g {R—ag 3

w .
cravcr}—/:; {g 3, ba,0 +

-

u

+ mPo? s+ 52 o % ¢‘*} ‘ (29)

and notice that the ne* term dées not break the conformal
invariance required of the matter Lagrangian. In the case
m=0 we are allowed to look for solutions with constant o:
the gravitational problem reduces, therefore, toc a problem of
General Relativity, except for the conformal coupling. The

p~Lagrangian

= {«3“" 3,63,¢ + T Re + 2 ¢"} (30)




g
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can, under certain circumstances, reproduce Goldstone's
Lagrangians, the curvature term playing the role of wrong-signed
mass term. In references (10} and (11} this has been doné for
complex scaiar fields in the context of General Relativity
modified by the addition cf the conformal coupling term. In
Ref. {(2) the case of a real pseudo-scalar field is considered,
and connected to the CP violation of the R° system. In the
present context the R-proportional term comes out of the theory
itself, and the spontaneous breakdown of symmetry is an
unavoidable consequence of its rules. It is alsc seen that the
problem has a different nature when ¢ is massive, for then it
is no longer possible to assume constancy of o. This very
interesting case is presently under development.

The following situation is potentially relevant for
particle physics and simple enough for computation: ¢ propagétes
in an open Friedman universe considered as a background metric.
This corresponds, so¢ to say, to studying ¢ in the laboratory
but taking into account the cosmeological field. The curvature
of the universe is not due to that sample of ¢ we are cbserving,
but, mainly, to the cosmic matter. In these circumstances the
existence of Friedman's solutions is ensured by the fact that
o is being assumed constant. Then, according to the Machian
interpretation of the precedent section, one would expect the
mass to be zero. Because of Egs. (8) and (13), a constant o
is only possible if Ret=0 , conditions that are satisfied for
matter with the equafion of state .

wlo

The metric is12

- ds? = 5%(n) {dnz-—dxz - 5inh?®Y (6% + sin®0 ay? )} {32)

.12,

The equation of motion being

Do - %

¢_%¢ﬂ=o (33)
one gets for the wvacuum expectation value

gin) = <0]e¢(x)jo> (34)

the folleowing equation, walid in the tree approximation (see

Ref. {11) for details}:

. ,
§+(3-mg+28g" -0 (35)

i

g+ 2

Remark that though R=0, the term % $? in Eq. {30) cannot be
simply ignored,.as it gives origin, in the stress tensor of
Eg. {11}, to terms which do not vanish with R, So, it is wiser
to keep all R terms to the end. To determine which of the
solutions of (35) is the real vacuum expectation value, one has
to select those which correspond to the minimum value of the

energy density. Introducing the new variable defined by

g = _i_.g, {36)
in Eq.(35),‘it simplifies to
t-f£+£% = 0 (37)
whose gepe?al solution is
%=1~2Bsn2{/?n,/%} i B = J1+2C {38)
with .C;-% . Here sn denotes the Jacobian elliptic function
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called sine amplitude.
From
TR 1w 1 o TR 2
trn -3.¢3V¢+6{R —2(VV\;+V\)V)+6\)EI}¢ (32)

v v

(see Eg. (11}) it follows, for the vacuum energy density

- &
e(n} = <Gitm°°|0> = 335% {fz - £ 4 %} : {40}

or, in terms of the sclutions of Eq. (37},
e(n) = I : {41)

So, the minimum <¢i{n) corresponds te the smallest C. This is,

from Eg. (38},

£ o= £1 {42)
or

0let) 10> = gm) = /2 T (43)
and | ‘ !

g(ny = - Ef%f . (44)

The wacuum expectation value_of ¢ (x) 1is nonvanishing and
degenerate. The symmetry ¢ <+ =¢ 1is therefore spontaneocusly
broken, in the stated conditions. A host cof phenomena follow
from this conseqguence of conformal coupling. For instance, if
¢ is pseudoscalar, parity symmetry is viclated in the solutions,
though maintained in the Lagrangian. Potential applications

to particle physics are indicated elsewherez. More important

.14,

to the present analysis is the fact that mass generation for
the field ¢ is found to happen. In fact, rewriting the theory

in terms of_fields with vanishing vacuum expesctation values,
$lx) = ¢(x) - g(n}

a quadratic term in §? will appear in (29), to be interpreted

as a mass, given hy

This is the only mass term, as, for the adopted equation of
state, R=0.

The phenomenon just described is connected to the
very foundations of Schwinger's gravity, ﬁamely,to ﬂm:iamﬁ:emmt
that the matter Lagrangian be conformally invariant. It has
been shown, therefore, that not all ﬁass is connected to the
field of(x) . However, as the generated mass has geometrical
character, it can still be said that its origin is graviiational.

S0, no harm is done to the Machian features of the theory.

5. CORCLUSIONS

In this paper we reviewed the theory of gravity
proposed by Schwinger, in which conformal symmetry plays an
important role. For weak fields it gives thé same results as
the theory of Brans and Dicke >, so that the differences should
be looked for elsewhere, as in cosmology. In fact, as demon-

strated in the case of scalar fields, the coupling % ¢? can

give rise, through spontaneocus breakdown of symmetry, to
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unexpected phenomena which are particularly important in the
early universe. We also analyse a Machian property of the
model, the connection between the ¢ field and the masses, in
a more complete way, including the mass generation connected
to the just mentioned symmetry breakdown.

This theory, though endowed with an extra field,
has a manifold of solutions severely restricted by the conformal
invariance of the matter Lagrangian. In particular, it is not
hard to show, through the use of Egs. (20), (21} and (22), that

18

inflationary solutions with a Friedman metric do not exist.
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