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Abstract

Grazing-angle singles spectra for projectile fragments from nuclear
collisions exhibit a broad peak centered near the beam velocity,
suggesting that these observed fragmeants play only a “spectator" role in
the reaction. Usiag on.ly this spectator assumption (but not DWBA), we
find that a2 "prior form" formulation of the reaction leads, vj.a. closure,
to a <¢1WI¢¥-type estimate of the inclusive spectator spectrum, thus
relating it to the reaction cross sectiom for the “participant™ with the
target. We show explicitly that this expression includes an Improved
multi-channel versiom of the Udagawa~Tamura formula for the “breakup—
fusion" or incomplete fusiom cross section, and identifies it as the
fluctuation part of the participant=target reaction cross section.

A-'Glauber—type estimate of the distorted wave functions which enter
clearly shows how the width of the peak in the spectator spectrum arises
from the "Fermf motion” within the projectile, as in the simple Serber

model, but 1s wodiffed by the “overlap geometry”™ of the collision.

i‘Sx.u)[;mr:ter.l la part by the CNPq, Brazil and the U.5. HSF.
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,,._A_Llass__n.f__mueaueacciox_ns*which_has acttracted considerable
attention in recent years is that of project:ilé fragmentation, ideg—
tified by the detection of at least one fragment of the projectile
—{"the_spectator") near its grazing angle, where its spectrum is found
to peak near the beam veloeity. The simplest measurable aspect of the
reaction, both experimentally and r.heor:e_n:ically, is the inclusive or
"singles"” crc.ss section, i.e., the determination of the energy and/or
angular distriburion of the spectator alone. Our purpose here is to
provide an especially simple and direct formulation of the theory of
this most elementary reaction, in order to correlate several previous-*
treatments and to provide considerable-‘insight into elaborate numerical

calculations which have been performed within the DWBA model.
In the notation which has become conventional, the reaction dis

described as
at+tArbtx+a’ sbF Y, (1-1)

indicating that only b 1is detected (thus including botﬁ bound and
unbound states of X = x + A). Although in general b could of course
have interdcted strongly with the target A, it is presumed, in those
cases where its spectrum is found to peak nxear the beam veloelry, to
have played a passive or spectator rorle in the reaction. Employing
this assumption, all models c-onstructed to date have comnsidered the
reaction to be basically a collision of the "participant” x with A, in
which b is indeed treated as a spectator, and permirted to scatter on
A, 1f at all, only elastically. By far the simplest desceription

possible is that of the Serber deell}, in which both the spectator and




the incident projectile are described by plane waves. This-lemds—to—

the appealingly simple on-shell formula

d“a Ty 42 -
m %].&a(qb)l P(Eb) * 12y

whete.axi. is the total cross section for xA scattering, and I'&a(.qb)l?'
is rhe momentum distribution of the x-b relative motion inside rhe
projectile, évaluated at the momentum transfer to b; p(Eb) 1s the
finalrstate density for b. I'$a(qb)[2 peaks at qy = 0 (b remains at
beam velocity), and in this simplified modei it is entirely responsible
for the energy and angular distribution of the spectateor. As we shall
see, this is the physical origin of these distributions evem in a more
realistic caleulation, but they are substantially modified by the
absorption which the plane-wave model of course omlits. The appearance
of the total xA cross section means that all possible xA reactions are
included, fn‘:‘om elastic scattering to complete fusion (including what
has been called 'hreakup—_fus_ion").

The Serber model has met with modest success in explaining the
shapes of forw_ard—angle spectra, but considerably more realistic
calculations are now available. “pargs?) generalized the plane wave
appreach to include Coui.omb interactions (but not nwclear absorption)
and compared it with his extensive coincidence as well as singles data,

in addition to more accurate DWBA calculz_u:ions. E_‘riedman3)

argues that
the absorptive bA interaction requires the collision to be a fairljr
peripherai cne, making it sensitive not to the entire interior of the

projectile wave function wa(fb-l?x) y but omly to its surface region, and

he finds an impressive correlation between the width of the quasi-free

bump in dd/d'Eb—and—the*b-tndi-n-g—Eﬂergy—fux—thra**-b—h-x—breakup mode.

4)

For relativistic data, Hofner and Nemes come toe much the same

conclusion within the limits of the Glauber approximariom, employing
aosure to sum overtheunobserved states of the xA system.

The alternative theoretical approach which has been studied, for
lower energy data, is the DWBA (or DWIA), again a spectator approach
and again using closure. Bauer and collaboratorso /) have performed an
extensive series of DWRA calculat.ions for the breakup of Llight
projectiles like deuterons and 'alphas. They employed the post form of
DWBA, as well as a zero-range approximation for 2, ( ?b—?x) and a surface
approximation for x(?x—fA). They were quite successful in fitting both
singles and coincidence data, and in particular found rhat elastic
breakup, in which A is left in its ground state, is genmerally a small
component of the b spectrum. Finally, Udagawa et al. 8'10), considering
what they designate as a "breakup fusion™ reaction, have been able to
write the c‘ross section for observing the spectator particle ia the

appealing form

2
o (o)
d—de_E‘: 2<¢X Wnldax > P(Eb)/ylva (1.3)

_in which :haj tdencify :b:(:) as the wave function for x»~A relative
motion, after the a + x + b breakup. They find this result to produce
a fairly acceptable fit to Ey spectra for lighter heavy ioms, at the
uvpper ends of the spectra, but In general to underestimate these
spectra by as much as a factﬁr of 10 at thelr lower emds.

We conjecture that part of the reasom for this- underestimate is

due to the constraint imposed by these azuthors that the projectile




_breakup occcur before the xA'int.efaction. in-general these events could
occur 1in either order, or simultaneously, and since there is no
experimental way to distinguish the various orders, all should be
summed over to obtain the singles b-spectrum. As we demonstrate below,
if this is done, one obtains for the net b-spectTum {employing only the
spectator approximation, but no DWBA assumption) the simlilar but aeven
simpler result for the “xA reaction cross section” (1.e., excluding

elastic breakup),

o COMG L 85 (R (1.4)
—— = 2L W E . 1.
TaE, P T Woen | B3 P(Ey ) Mhv
with
(0 = G MED Lo B2 (2,200 (1.5)

employing U%agawa’s notarion that (|> implies integration only over the
coordinates of particle bs xg"'i and x(_) are optical wave functions for
a and b scattering elastically from A, and d’a is the internal wave
function for the projectile. p)(:')(?x) thus clearly plays the role of
an optical wave function for the elastic scattering of x (ridiag inside
_the projectile) om A, and ﬁm is the Imaginary part of the
corresponding optical potential. <ﬁ|‘3|ﬁ> thus represents the teaction
cross section for x om A. It contalns ¢a(Fb—?x), which is basically the
source of the width 1in the Ey-spectrum, but 1t also contains the
absorption of both x and b by 4, in their optical wave functions. This
can be made very explicit by employing a WKB approximation to these
wave functions, to produce a very clear qualitative picture of the

reaction, as we demonstrate below.

II. BACKGROUND ON REACTION CROSS—SECTIONS.

Motivated by the form of Udaga'wa's'result, Eq. (3), we recall the
familiar derivation of -a—simtlar expresaion for a reaction cross
section from a simple optical-potential Schrodinger equation, written

In the form

HZ

=

v2¢(+) + (v.iiq)d,("") = E¢(+) ’7 (2.1

where we adhere to the customary coavention of taking W(r) positive ro
describe absorption. The usual Wrongkian manipulation with & and o

vialds

% J Fedf = 2¢0(Fpm] i)y (2.2)

where the integral is over any surface surroumﬂug the pdtential, in a
region where the potential has vanished, and deseribes the net inward
flux due to -the absorption. Dividing it by the incident ecurrent
1¢(+)t2v° = v, (which defimes the normalization of ¢(+)) gives the

familiar expression for the total reaction cross section,

o = 24w /e, (2.3)

I.e., the reaction croes section out of a specific entrance channel is
given by the expecration value of the imaginary part of the optical
potential im that chanmel, calculated with the corresponding optical

wave function in that entrance channel.




—it—fs-elmodt—posaible—to-apply this axpression, unchanged, to the
three-body or fragmeatation problem of Eq. (l.1), and in any practical
calculation that is doubtless what one would do, using Eq. (1.5) to
provide the obvious definirion of the “negartive energy entrance
channel”™ wave functionm, ﬁx(§¥)' The fact that the spectator carries
away a range of possible energies, however, requirea certain care,
which can best be seen by employing the Feshbach projection operator
formalism.

We consider the multi-channel problem in which the channels are
defined by the states |{n> of the target, and choose rhe projection

operators
P=jod<o] , Qq=1-p, (2.4)

so that Pd is the elastic—channel projection of ¢, 1.e., the optlcal
model wave functiom for this chaunel.

As uaual, the coupled equations are
(E - HQQ)Q@ = VQPP‘IJ » (2.5a)
with solution

1

Q¥ e
E- HQQ

VQP Py (2-5b)

(no incident wave in the Q space)}, and

(E - HPP)P¢ = VPQ Q¢

(2.6)

1
= Vot
PE- Hoq + 1€ Yop B

8
glving the custowmary expression for the lmaginary part of the optical
potential in channel P,

1
~Hp(E) = |o>[1m<ol\r?Q W_g vQPlo>}<o| R

Q +1
(2.7

= nl0><OlVPQ &S(E = HQQ)quioxo{ ,

which wlill be non—zero at any energy where Q-channels are open.
We mnow consider any reaction from P to Q. Considering the

Hamiltonian in the form Eg +.VQP for this purpose, where HE 1s the

Pt pC
above optical potentizl in chanael P, its elgenfuneriom Pelt) 15 the
"unperturbed wave™ in this coantext (contalning none of the reaction
chanonels produced by VQP)' s0 we write it as x§+)(?)10>; thias ineludes
the full elastic optical distortion in the definition of the incident
wave. Then 1f %g i3 any exact final state in the Q space (we are golng
to sum over £ by closure, and g0 need not rvestrict our considerations

to DWBA fiaal states), the net reaction cross section out of channel P

is

2 - 2 A
o = Yﬁ%g I<of N vgpaét 012 a(Eg-E )

- 2x + “)5<4f)1 ae- +)
o g b <ofvpgl 4f ><uf T iR gpl 021 15T
(2.8)

2 +
- K% <xbtIolvpg 8E-H VR0 P>
= 2§ L 4 v

[using Eq. (2.7)], a8 we fouad via the simpler argument. Note that the

closure sum was done within the Q—space.




~III._ THE SPECTATOR MADEY. FORTNCLUSIVE FRAGMENTATTON .

Now consider the spectator model for “fragmentation™, where by

inclusive tfragmentatiun' we mean that a fragment of the projectile is
observed, but we gum ove; all possible final states af the rest of the
projectile interacting with the target. This includes ~breakup”, 1in
which both fragments escape, as well as total or incomplete fusion of x

with the target.

TII.1. Direct Reactions Only

We divide the pogsible xA reactioms into two extremes, @irect and
compounﬁ (i.e., fluctuating). In the present section we comsider only
the direct reactlons, meaning that the xA cross section (or, ia the
present  context, the Eb spectator spectrum) exhibits no energy
fluctuations; Udagawa and Tamura interpret this to mean no incomplete
fuéion. Ma&hematically it means that Hgg is real, like the above HQQ’
so that Eq. (2.7) holds for the xA system.

Like Udagawa et al., we find ir moar natural to write the (exact,
not DWBA) matrix elements in the "prior™ form, which coansiders the
interaction causing the fragmentation to be the entrance-channel

potential,
P P
Yoe = vxg AN (3.1)

If a given trajectory causes A to lateract more strongly with x than
with b, the resultant “tidal force" can fragment the projectile. The
reaction in this case is caused more by va than by vbA' In the 1imit

that the V., interaction (and final-state Vy,) is neglected altogether,

10

we have the (b) spectator wmodel. Of cburse, other trajectories can
equally make x the spectator (and so leave it travelling forward at
bear velocity); the baslc assumption of the spectator model is that
these two casaes can be gleanly geparated exparimentally.

Choosing b as the spectator means that we neglect QVy P as far as
the reaction 13 concerned. Its elastic scattering component is
retained, howe&er, by incorporating it ioto the optical model wave
fuanction xb(?b) used to describe the outgoing spectator, which countains
the important’ effeet of nuclear absorption of b 1f the projectile
impact parameter is too small. X, should actuglly include the full
effect of (xMA) (L.e., not just of A) on b, but if M, >> M, the
distincticon is not important.

Thus the spectator-model matrix element in the prior (bot non~

DWBAY form 1is
Tfi = <ng) ¢§_)‘anl¢a¥§+)¢b> » (3.2}

where x;+) 1s the optical model wave function of the projectile,'ﬁa its
internal state and 2, = 10> the ground-state wave function for the
target."Within the spectator model, this matrix element 1s éxact, for
¢g-) is the "exact (and unknown) wave functiom for any state of the xA*

3ystem,'includiug the internal state of A*.

*Re should, of course, include fatermal wave functions for x aand for
particle-stable states of b, but they will be summed over and so can be
understood to be im d.. We also note that the prior form requires
Tey = <'?fl"1|¢;.>- with (B-Vy) ¢y = Ey¢4-
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By slightly generalizing the § space of Sec. Il to Ilnclude aIl
states of xA, not just of A, the same manipulation gives, for the net

reaction cross section cut of the entrance channel a,

dzddir
R 2n 2
d_E;m—b = I ]'rﬁ| S(Ey+Ee—B_-E,) P(Ey)
af
-yt
7

2
" - P(EL< <01V , &(E +B £ -u3Q)
A .

<V, 010> 6, 5§ VTP (3.3)

= g B
a .

IR LN BT PI oL o N
where B, > 0 is the binding energy of x to b, aad p(Eb) - pbkb/(Zu)sﬁz
is the asymptotic phase space density for b. ﬁ%A(Ei+Ba-Eb) is, by
definition, the imaginary part of the xA optical potential appropriatae
to x enter}ng in the wave function ﬁg+)¢a, rather than as a simple
distorted wave. This ﬁxA 1s of course experimentally inaccessible, but
in a practical calculation ome would assume, with Udagawa, thar it
could be approximated by the normal empirical xA optieal potential,
evaluated at Ex =Ey +3B, - By

If we now ?efine "negative energy entrance chamnel” wave functions

for x as in Sec. I,

pitNE) = G E (B2 i, 205 (3.4)

where the round bracket indicates 1ntegration—o€er b-coordinates only,

we have the advertised result,

12

dzd%ir »

e ) <A (607> (3.5
b~ b a

This has much the appearance of Udagawa's result, but is in fact very
different. TIn particular it lacks the Green's function factors (which
he includes in @), the physical reason being that the ﬁ:ﬁ‘ of Eq. (3.5)
arises from flux ioss into other open xA channels (hence the "direet”
superscript), whereag Udagawa's W,y arises from closed xA channels, as
we show explicitly in the next section.

We recall that Eq. (3.5) describes only reactions of the xA system
but omits 1its elastic scattering. I.e., it ié the cross section far
inelastic fragmeotation, omitting elastic fragmentation. An experimen—
tally measured singles spectrum of course includes both, so an estimate
(perhaps in DWBA) of the elastic contributlon should be included in any
confrontation with experimental data;.recent theoretical and experi-
mental resultss-T) suggest, however, that elastic fragmentatiou is a
factor of 5\:1’ more smaller than the inelastic.

In summary, Eq. (3.3) is our central result. It 1is essentially
"true by definition”, obtainable (within the spectator approximation)
directly from the elementary Eq. {1.3) by recognizing that Eq. (1.3) is
valid for any entrance chaanel. Eguatiom (3.5) employs an entrance
channel in which x enters bound to b. It therefore has a kinetic
energy B = E; — Ey + B,;, and indeed Eq. (3.3) requires that we employ
its optical potential evaluated ar this energy, thus relating the
Eb—spectrum directly to the motlon of b within the projectile before

the reaction. The inclusive reaction cross section of Eq. {3.5)

necludes the orocesses computed by Bauer 35_3},,5-7) but should be more
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accurate, in that it makes neither the—BWBA—approximation—nor—any —

further approximations like surface or zero-range estimates.

III.2. Fluetuation i{n the (xAY Cross Section: Iacomplete Fusion

The method of derivation employed in obtaining Eq. (3.5) was based
on the assumptlon that the xA cross section contained no strong energy
dependence (ea.g., resonances or "fluctuations”). One might expect such
fluctuations to occur if the xA Interaction leads to the fomatiop of a

8-10 ,asume that 1t is

compound nucleus, and indeed Udagawa et al.
exactly these fluctuations (appearing here in the Ey, spectrum) which
signal ;he fusion of x with A, i.e., what would be callea “incomplete
fusion” or "breakup—fusion”™ in the present context. This identifica=-
tion of an xA fluctuation cross section with breakup~fusion seems quite

plansible, and in any case, i1f such fluctuaticns are present, the

inclusive crosa section for detecting b becomes, upon energy—averagiag,

a2g a2oAr g2 f%
d&dE, T dQdE, | andg,

, (3.6)

as we ghow by generalizing our previcus Eq. (3.5) to include
fluctuations.

To do so, the previous spectator model must be generalized to
include the (xA) resonances, coming from closed channels which were
previously neglected. Thus, we change our previous notation, which
used Q = 1-P to identify open channels differeat from the entrance

channel. Instead let us write

L=p,+p' +Q=P+2Q (3.7)

14

where B, 12 the eatrance channel, p' the other open channels and Q. cthe

closed channels. If we eliminate the closed chamnels, the effective

hamiltonian in P (i.e., the effective coupled-channels hamiltonian

matrix) is

1
Hp(E) = Hpp + Hpg E"—_'% Bop - (3.8)

If we rhen eliminate p’ also, we obtain the effective ogne—channel

hamiltonian in Py

1
H (E) = H + . .
%5 PolPq Hpopt E - p'Hp(E)p' + ie Elp’pc' (3-9
It will show the Q-space fluctuations, but if we average it (by
E +E + iI), the denominator will contain -exactly the coupled-channels
optical hamiltonian, Eopt(E), which will be complex because of the

fluctuatiens.

We uselthe fact that the imaginary part of the remaining Green's

function can ‘be writtenl2)

L _ +
In e T eI o) 2
opt
— F Tep<al
= DR - el R S, o)
c q
(3.10)
in which
(B = Hyped 6P = 0 (-1

defines the coupled-channel optical wave functions,
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(E - &QQ)Iq»q) =0 (3.12)

defines the closed=channel resonant states, and the average in the

second term of (3.10) is over these gq-stares; G

opt 1s the coupled-~

channel optical (matrix} Green's functions ia p'. From this we

recagnize.

1<, |
_qn_qa

q

~wHg @ = wf,;‘ (3.13)
as the absorptive part of the open—channel optical hamiltonian marrix
in p', which is penerally assupedl2) to be diagonal,

WEL = b WYL, (3.14)

so the implied double chanmel sum in (3.10) reduces to a single one.
Hence we hiwe directly the total imaginary part of the p,-channel
optical potential,
R R Vpp, = WilT 4 GEX (3.15)
 Po E-Hopt‘fia o P, pol -
the two terms comfing from the rwo terms of Eq. (3.10); in faet, ﬁgl
o
contains (from Hp B ) a similar term from Py directly to Q. If we
oo
define a new Gopt to include all open channels, we can write (see also

Ref. 12)

18.

.t-
SEXL +)opt cl+eopt .
e v"oP[‘:G‘S 14g.68 PN £3.18)

in which the implied sums over the open channels in P show £hat ng
comes Trom flux loss out of all open chanmels inte @, mot just thatr oﬁt
of the entrance channel. We remark in passing that Eq. (3.5), with
(3.16) for ﬁgi,vbears a close tesamb}ance to the formula obtained by
Kasano and Ichimural3) from post-form DWBA. Though wvery similar im
structure, thelr expressions and ours differ in containing the post and

prier interaction potentials, respectively, as 1s to be expected from

their different starting points.

With the aid of Eq. (3.18), a rather simple
2 1
structure may be immediately obtained for %ﬁ%f_ of Eq. {(3.8).
b

(+) opt v jB:C?)
P PR, X

> with the exact wave

~ (+]

function inm the p space and call it ipP >, Using our

We first identify G

agsumption that W_ is diagonal in the channels, and identifying

P
~ (+} ~ (]

2 . . . - c

—<< > .

ﬁvc Pq lWC|Dc with the fusion cross section g, in

channel ¢ (contained in p}, we finally obtain
dchl vc c
£9_ . r £ - .
ioan PLEL) - cF(Ei + B, E s (3.17)

b cEp a

4)

an inrcoherent sum of fusion cross sections1 in all p {(=xA)
channels. We sheould mention at this point that the angular
dependeﬁce of the inclusive fluctuacting b cross—-section
(incomplete fusion) is entirely contained in these angle~

dependent xA fusion cross sectioms. This is mzde transparent

with the aid of Glauber theory in the next section.
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In summary, £q. {3.5) for the inclusive specrator spectrum still
holds, provided oaly that WIIT 14 repjaced by GAIF 4 Wi which 1s in
fact the imaginary part of the empirical -optical potentisl in the (xA)
entrance chanpel. If one wishes to decompoée this inclusive spectrum
inte “direct" and "incomplete fusion™ (break-up~-fusion) parts, the
latrer does ¥ndeed give a term of the Udagawa-Tamura form. However (as
pointed out in Ref. 12), the wid which appears in the formula, as
Eq- (3.16) makes clear, is really a sum over the ﬁc's from all open
chanwels. These are quantities which are more difficult to obtain than
the single ﬁpo, since they require fitting a complex channel optical
matrix to the energy-averaged (xA) data. Our conclusion is that the UT
formula, 1f corrected asg indicated above, is a possible means of
calenlating incemplete fusion (i.e., fluctuation) cross sections, but

it requires optical parameters from all open channels.

18.

—IV. _FURTHER INSIGHT VIA GLAUBER DISTORTION

In spit:;. of the appealing simplicity of Eq. (3.5 or its gemerali-
zarion), it ‘does mot display very explicitly the dependence of the
Eb—spectrum on the zero-point internal motion of the projectile, nor
the influence of absorption of x aand b by the target. All these can be
demonstrated very nicely by employing a WKB or Glauber approximation to
the optical wave functions for b amd a. At sufficleatly high energies,
thig should be quite accurate, but our purpose here is primarily to
provide helpful ingight into complex numerical computations.

The Glauber approximation to am elastic-scattering distorted wave
is

z ' '
x}%ﬂ(?) - xg)(z,ﬁ’) - eig.g eﬂ'f" Ae(z',b)dz ,
. | . '(,"._15
\ Ty ~AfTM(z,b)ydz" A
x]%")(-r*) = glker , =z . L.

The incident n;omentum K is taken to poiat along the positive z—axis,
and g is the component of £ perpendicular te z, assumed t.o vary little
along a smallwangle trajectory. The exponent of the second factor im
x&-’-) is the amount of (generally complex) Bornm approximation phase
shift accumulated along the trajectory up to the polnt (z,.g), with the

integrand defiped as

Mk{z*,b) =~ z—liz‘ U(z,b) , (4-2)
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where -U{r)} = V¥{r) + iw(r)‘"f3——the“-6ptitzﬂ?—putéuttaf7———The—ﬂcustvmzr7**
optical phase shift, accumulated aleng the entire trajectory, 1s given

by

25(b) = f&(z‘.mz' -_2[ k(2 b)dz" (4.3)

== =0
and the_partialfwava,optical.S—matrix'elemenc_is
The optical pﬁtential UaA.is..

Ugp = U + 0, 4 (4.5)

and since the Glauber phase is linear io the po:eﬁtial, the phage shift
for 2 composite particle is simply the sum of those for its components,

each at its respective ilmpact parameter, '

Ba(by) = &y(by) + &(by) (4.6)

i.e., the Glauber distorted wave for the projectile is just

P X t ] b t . ]
.‘J(E(;.F) - ei('kx'-rx'{'kb'?h) ei'r: Al ’bX)dz:' e'i"[: 'fskb(z 1bp)d=

»

C(h.T)

with

1—Ix = (mx/ma)ga’ lzb = (mb/ma)'l:a (4-8)

20.

as the average momenta of x and b in a. Substituting this -and  the
analogous expresaion for xﬁ':) into Eq. (3.4), we see that, within the
spectator assumption, the two phase integrals for particle b combine to
produce the -net optical phase shift 25,,(b,), whose exponential is

Sya(by2, giving for the "entrance channel wave function”
3 5 ()
B LE D) = J By GE 1o £

1 F szx ka(z',bx.)dz'
g XK, T%

- (4.9)
x f a3z, 1T Spaldy) alFyE0 o
with
q-abfﬁ’b—ﬁf, (4.10)

the average momentum transferred from b to A by elastic scattering.
The dependence of the scattering amplitude on the energy and angle of
the spectator thus appears explicitly in é', in the form of a Fourier
transform of the product S,, ¢,. I1f Sya Wwere not present {(as in the
plane~wave or Serber model), this would be just the Fourler tranaform
'cba(q) of the internal wave functicn ¢a(f) of the proiectile, giving the
apectrum in the form H:a(q)lz of the Serber model.

The factor S,,{(by) wmodifies this, however, for it ias small at
small by where b is strougly absorbed. ' The spectator 13 thus required
to miss the target in order to avold being absorbed. This will both

reduce the magnitude of the cross section from that of the Serber model
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and alse broaden the transverse momentum spec:rumr‘hy‘natruwtng—Tha
range of the by, integration. The 2y, lntegration, on the other hand, is

unaffected by Spa» 80, for a glven ?x' the longitudingl (f.e.,

grazing~angle) wmomentum spectrum, dofdq,, will be thegame a8 1n the

Serber model. However, ?% values which cause the Spectator to overlap
the target are eliminated by absorption. The result 1s generally to
perazlt only those Zy, Integrations which pass through the surface reglon
of $,(t). This shows explicitly that dcs/dqII is primarily sensitive to
the surface parameters of ¢a' rather than to 1its entire yolume, in

complete agreement with Friedmand) and Hufner and Nemes.4)

If we define the integral in Eq. (4.9) to be

> >

ig-r. ig,z
jd%b e sy ity =e R G @Ry,

then
Bl il = f b 18, (3,812

= L e [*y
x| dz W, e x (4.12)

L aPhy 1By (GBI - Is 0012

SN

using the fact that Glayber distorticn neglects the difference between

wa and wa' and neglecting its energy depeandence. This is clearly
just an expansion in terms of partial waves of the participant‘i. so 1f

we recall that the partial~wave xA reaction cross section is

T,

T TE,) = RTIFDLT= TS0012 4 - (413

and use L = bk gnd Vg ™ V,, then Egs. (3.5) and (4.12) yield

4 R,
- P JEx) , (4.14)
thTE" p(Ey) ‘z& aa(X,) a,h(q
where
5 N ’e ) . .2
RSCR R R TS TN & ¥ VL (R £

¢ being the angle be:weequ'and_Ix ’”kxg¥'

Equation (4.14) 13 our final result, in the Glauber-distortion
spectator mo&el. The factor oig-e;plicitly indicares that the reaction
occurred because’ of a collision of A with x, leading to any possible
final Statéﬁhiffgtent from the .entrance chanmel. ‘“And. it shows clearly
that the m;mégtqm distribution arises from the zero-point . relative

motion ("Fermi motion”) of 5 and b within the projectile, which is

broadened,iﬁ ihe-transverse direction by absorption of the spectator. .

.In particular, if this absorption were absent (844 .= 1), we would have

Pa,p(00 2 = B 00 12, aad

Loy 2,2 (4.16)
_ = (E )1 o . .
ETowT P(Ep) [ ¥,(a A s
which 13 the originasl Serber model.

Finally, 1f one is not interested inm the momentum spectra of b,

but only in the momentum-integrated cross sections giving relative
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abundances of various bls, one-sees from Eqs. (4.9.)";1hd {4.12) that the

tetal yleld of fragment b is

, :
r d o E

Yy = d3 = i 3 3 3

» 7 e, © Y v, o7 g | Topdny

(4.17)

% 15atep) 12 18,0220 1211 - 15,4050 12]

This displays the “overlap geomerry” of the reaction very clearly. It
can be- thm{ght of 'as basically :an 1nteéral_-.over I¢a(?b-:':"x)|2, but with
two absorptiom faetors. As Fig. Z indicates, one of them excludes
small values for by, and the other excludes large: values of b,, exactly
in. accord: with.one'ssintuition. 'In fact the latter comstraint, that
the: participant have some overlap wifh the target, is ' just the
"fireball geometry” comstraint; it is the basis of a recent model by
Harvey and Eomeyer,la which 1s ‘remarkably successful in predicting
relative croks sections for different spectators.

The  integrand of Eq. (4.17} becomes ~particularly simple in the
limir that rhe projectile is much smaller than the target. Replacing’

> >
C (T TL) by G(rb—?x) the 1}'b—-:Lm:eg:.-a:l. séts by = b, 80 the remaining

integrand becomes |SbA(bx)|2[1 - inA(bx)iz], which clearly peaks ar

the surface of A. E.g., if Spa = Sga = [1 + exp]”L, # = (b-R)/a, the

integrand 1s just coshZ(B/Z), very 'mich like the paramerrization Bauer
7

et al. ) bave found te be an accurate deseription of their DWBA

amplitudes.

TYTCORCLUSTION

In a two—body scattering problem described by .a complex potential,
the r-e—act:!.on croas —section out of any entrance channel ¢ -is given by

the Familiar expression
e 2 P u gl 51
GR’C'T—VC<¢C lw e > (5.1)

where -Hc is the Imaginary part of the optical potential in channel ¢
and tb((;}') 1ts corresponding optical wave function. In a three-body

model of the projectile fragmentation reaction

a+A>b+x+a", (5.2)

projectile-fragment spectra measured in certain regions of the
final-state phase space (e.g., b near its grazing aungle) strougly
suggest that one of the tuo fragments, here traken as b, does not.
participate directly in the br;a_akup.. In this spéc:ator model, the
breakup is produced by_ A interacting in any possible way with x, but
doing so ouly elasticélly with b. In this- limit it {s plausible r-:hal:
the inclusive "fragmeantation—reaction” cross section, for producing a
b, but summed over all xA final stares which leave A in an excited

state (%ncluding fuasion), might be writtenm in the analogous form

%oy 2 .
doE, ~ Fv, P <BlWpalay (5.3

where ﬁxA and ﬂx are the absorptive xA potential and corresponding wave

function for this peculiar xA entrance channmel. We find that this is
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indeed the case, and hence suggest that this may provide a useful
theoretical- approach to the problem. The above cross section, however,

excludes elastie fragmentation, in which the target remains inm 1irts

ground state, so0 before comparing it te singles data for apectator

particles, thelr elastic fragmentation cross section must be estimated
{DWBA should suffice, since it 1s known to be small) and added tao
Eq. (5.3).

Considerable further insight can be gained by using a Glauber
approximation to the distorteld waves entering the problem, since it
puts all particles omn the senergy shell. Withia this Further
approximation the above cross section takes the very simple
partizl-wave form
o = o)} oBce)p 5.4
o, pE ) L Oeal )Py plds &) - (5.4)

Pa’h(q,ﬂ.x) ig here the probability that the spectator has momentum
fc’t', = ‘Eb + 4§ within the projectile at the instant x is removed, provided
this occurs -when b wmisses the target and the ‘xA relative angular
momentum 1s fix; and c;xﬁ(ﬂy) is the xA reaction croses section at the
same ‘E'x' If the absorption of the spectator by the target is
neglected, Pa,b(q,ix) reduces to Hsa(q)|2, the square of the momentum—
space intermal wave function for the projectile, giving the Serber—
model limit,

42

R 2 R
Tg—baE—b |¢a(Q)‘ GxA 9(E‘b) - (5‘5)
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Thus the Glauber~distortion approximation clearly illustrates the
following general features of inclusive fragmentarion:

-1. The reaction occurs bhecause x interacts with A; iIn a

. b-inclusive measurement, all final xA states must be included, not just

the "breakup—_—fuéion' anes.

2. Thé spectator wmust not be absorbed by the tafger.. This
raquires tﬁ;al:_ the longitudinal momen:um.spect:rum of b come from the
surface regién’ of the projectile, and broadens its transverse momentum
spectrum.

3. Although the absorptive effects of the bA apd =xA optical
potentials are large, their refracﬁive effects are minimal. The Teal
part of the xA optical phase shift vanishes from s a( 012, and rhat of
the A ‘poteni:ial appears ian ., but oaly where ]SbAl iz amall,
suggesting a minimal effect. Both phases would presumabiy.be much more

important {n less inclusive reactions.
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