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ABSTRACT

The compound nucleus.fiuctuation'éross section in
the intermediate absorption regime of T/D 2 @ is.discussed
within the optical background representation of Kawai, Kerman
and McVoy. A constrainingwinequality,'invblving Trg', a relévant
parameter in the cross section formula, on the 6ne Eand, and

£L

other statistical parameters -that appear in Oogt is derived

and analyzed.

‘
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A major problem which still confronts the statistical
theory of nuclear reactions mediated by the formation of a

compound nucleus (CN}, is the analytical evaluation of the
£
cc'
-1, with D the average

averaged fluctuation cross section, o , in the intermediate

coupling (absorption) situation of

L/l o]

nuclear level spacing and T the average nuclear decay width.

Cof course, czi, has been extensively discussed in the past,

with analytical results usually obtained in the domains £>> 1

= D
and £<< 1. Only numerical results based on Monte-Carlc
D = 1} -
calculations are available for g-—1 .
: D
Recently, Weidenmiiller and collaboratorsz), have

ocbtained an expression for, cii, ; which seems to be valid for

any value of E . The method they employed, Supersymmetry

. D . . .
averaging, enabled them, however, to derive a triple-integral
il
cc' )
with the experimental data rather difficult. Analytical, albeit

representation of o This makes a direct confrontation

approximate, version of the results of Ref. 2 are certainly
urgently called for.

On the other hand, several years age Kerman and

3 s : f
Sevgen ), derived an expression for o

aet 7 using the optical

background representation of Kawai et al. (KKM)4), which is

also adequate in the intermediate coupling regime. Their formila,

however, contains precisely the parameter ;. which is not

D
manifestly directly related to the optical transmission matrix.
This features renders the Kerman-Sevgen cross section, model-

dependent. A gquestion naturally arises as to whether there is




any way of eliminating or, at least, reducing this model
dependence.

It is tihe purpose of this Letter to supply a

constraining relationship invelving i on the one hand, and
v
other parameters that appear in czﬁ, on the other. This

relation appears more generally in the form of an inequality

Rw(ysh sxL LaeT(YE) W

where Y is a matrix {(in channel space} that appears in cii'

{see below) and § is the opticél S-matrix. The lower limit,
is attained under conditions of weak absorption and neutral
channels, whereas the upper limit corresponds to strong
absorption with strong Coulomb repulsion in the channels
contained implicitly in the trace.

The starting point in our discussion is the optical

background representation of the S-matrix element Scc'3,4)

; ]

(=3 o3

< = — Z _.A'.___.__S Tpee {2)

wnere the complex reésonance energies, Eu , are given by,

%»—_- E:;-—;I.;/l (3)

and the form factors, guc are constructed in such a way as to

-4

guarantee thdt the energy average of the sum¥over—poles term in

Eg. (2) , the fluctuating S-matrix, Sf£ , is identically ﬁﬂ@g'a‘
Using the above property of the g,s together with

general analytic unitarity arguments, Kerman and Sevger, were

£3 £L 2,

a T r |

cc cc

LT e

able to derive the following expression for £ <8

Sy
o =X X, +X X v L
)

where X- and Y- matrices are defined by

3.9 - 5)
e #C’Z | :

s ee— SRS 82
The optical transmission matrix, P, deéefined by'
™

' _+
P:ﬂ.-—-s

P

107

comes out to beZ},

18)

P=XTX~+X-2

— I _ T N
In the limit of Large T~ {strong .absorptien), the g's

acquire rapidly oseillating phases, which renders the Y-matrix




~amplv discussed in Refs. 3 ar_1<_i_'_-4. The Green funct:.on f‘

w

small, enabling Thus the nec_:lect of the last two terms in {4}

anc (2} nc E.CCOJ:'O.J.ngJ.V onivy X 1is reguired for the obtention
: . fn

of buth P anc ccc' . One can tnus eliminate X, by iteration,
' i £ . :
o, obtain an- expression Ior I terms of the elements
cc‘ of P and its trace. The result, is a series expansion
. £2 X -1 . . . .
of @_l. 'is powers in (Tr P} . In the intermediate absorption
case, -——-~1 , which is considered here, both X and Y are
5 R o .

_..mDortant, recrulrlng, at least mere constraining relation,
besides the one SuDDLled bv un:.tar:.ty. In the rfellcwing, we
present general arguments in favor of Eg. {13 . .

The expressior for T . Eq' (3) , ‘is easily obtained

- . 3)
following EKKM™-

Mo o= =2 AN &0 Vo LAY ] (9)

5 C

where <fi/p>=1, and V., and V are coupling matrices
- QF R 0N )

operates in the open~channel subspace ', P,(Q ={1-P} and represents
the compound nuclieus subDspace). Using now a spectral
representation for: 'g‘ , namely

&) LS 2 Ao 78 . '

472 for SEED)

v

L e,
:.Z fd‘g’ ]JC > Seer £ | S (10b)
4 E—"E-;‘—Lé : .

ce’

where tne relation {(10b) is obtained from the

~ =
Secr =<K 1 ¥ >

conditicn

and the ccmpieteness
(58

relation satisfied by the biorthogonai states ] .?C > and
=y —~
< DCC | , namely 2 f"’E | DCCCE')><DC (e} = we
c c
obtain for TL_

E = "—i—‘iht$ fdél ‘Z‘C € S;:/fg) g/’_efé') : 7 (1)
/ ™ L3 R

ce’

In Eg. (11), we have used the KKM definition of ¢
e

__j_<#l IJ’} = L5 o 1A> (12)

,f “obtain T , by averaging Eq. (12). over the Dcrrmﬁd

states U, getting, with the defining equation of the Y-matrix

Eg. (6) , the following

' s
5 - T Yieh Seeh] -
il =_.;_Imfdg' T [ Yieb § o)) 13)
D T E-€'+ ‘e

Eguation {13) can also be written as a delta-part contribution

plus a principal integral, vis,

et

. RT(YS

tﬁl‘

(14)

p o FL Vi) Sees]

E-F“




To proceed further, we nave te nave a picture of the energy

variation ¢f Tr(¥3 ‘). Let us, for the moment, consider one

eiement of the trace anéd 5 to be dizgonal. At this point,
I remind the reader that all the formulae that have been
discussed so far refer to one particular partial wave, £. I

b= ‘r_f_. + L—KP[(-—,( + E¢ET) /i (5’)_]}—1.&)(;::({ é;(ga

-
4

Therefore §,€ ehr=§2 -,-“-ZXPE(—,F-%- 2(5.35/13(53]} E-XP(—" éptsj)

which I write in the following form

take for

_—1 —i &>
S iy = e £ e 115)

I further write & similar representation for the diagonal

elements of the Y-matrix,

Expanding the GL and Tp to first order in the off-shell
energy difference E'-E=2Z and the L;{(E') and JE(El) to

second order, namely

" ((D,} r-u)
y o~ |
b=4 +4 2
;
%o %‘°’+’7’ig ]
2 - r : o (17)
. (o) , el {2)
SR S Y Y
o A Fw
¢ _ -
Yy =~ Y=y z + 4 2t
A £ £ x£

b/ £ I = & £ £ | ) (16)

.8.

enables us to calculate the principal value integral fo¥ each

of the diagonal terms in TrYS~

justified in using (17), since botk ¥ and 5

straightforwardly. We feel

are energv-

—averaged (or ensemble averaged) matrices, and therefore their

elements are expected to vary smoothly with E. Since

__1 ____-1 __A . N .
to write YS = (¥§ ')1 + (YS ‘)2 , with the first térm

id : —=id-¢

associated with & and the second with e -,

5 |

"is composed of two distinct terms, Eq.tisd, it is convenient

The final expression I obtain for the prinéipal

value'integral of Eq.(14f, is the following

=in e (Y5 ey )]

whefe_
N & R ¢ I D) R
Z. = 7 - J - 1‘(3"f )'tf.
¢ ——— - —
“ Jd(ir_?_?ta,
(4 S .(ifx LS,

y ; v v b

T o ] T 7

1= 2L 1 2)
oAl EY)
and' erf{zi] is the .error fuhctioﬁs

z2)= =<
erd (2 \ﬁ?fe.__dx

c(18)

~{19)

(20)

{21}




e

1 titl 1 id ne sguare brackets
0f course, all guantities appearing inside t o

<w Ec. (18) refer toc a giver partial wave and a given diagonal
ir Eg.
eiement of X¥E R

Cieariv, wnen both Z, and Z. become very large,

erfl(Z_.‘.i zengs tTc unity ané the two terms inm Eg. (18] combine
o gi;e for the RES —inTr{YyS~'j, exactly the same as the
Gelts function contribution. Under these conditions, Eg. {14)
gives T; - 2Re Tr(¥YST'). 1In the opposite 1i.mj.4.:r z, and

2.+0, ﬁe obtain ﬁ; = Re Tr (Y_S-J'J . For intermediate (and

1 istic) vai ' e different
necessarilv realistic) values 0I z.1 and 22 for th

cnannelis could take any value within the above twe
cnar . v

exrtremes. Tnus the inequality, Eg. (1}).
The critical parameter that decides upon the values

of the 2. is &'/ /@Y gyl (19)).  wWhen this quantity

hecomes larce and negative, we obtain large positive values for
the 2.'s. This happens iZ the elastic scattering, described

bv & , in a given channel is dominated by strong Coulomb

(1) _ &&
¢ T Es "’

repulsion, wnich renders
sglement of Y have very slow variations with energy (within
our parametrization, Eg. (17}, such a variatiorn is described by
‘a very wide Gaussian} exemplified by small y(2)+£(2) . 1In
general it is expected that, owing te the Coulombk barrier
inhibition of ’chérg.ed particle decav channels with strong
Couiomb repuision (heavy fragments channels), the upper limit

is more likely to be attained throug‘r;r the smallness of

A2y - 12)
¥ +Z .

=

= negative, and the diagonal-

L0,

.- - . 6] .
In 2 recent articlie, Dagdeviren and Xerman i, nave

found, within & schematic reactior model (with no Coulombe

i } : T, . i . =%

interaction), that T3 1is close. to the vaiue ReTr (¥YS ') in
5 ; ;

a wide range of values of the transmission coefficient {up tc

G.8). We feel that in more reailistic situations T bacomes

=i RER]

larger than ReTr¥E™ {(limited by the upper value JReTrYE ")
even a2t intermediate vaiues of the transmission (-~ (.5) . Thus
a more careful application of Eg. (1) is. necessary iﬁ order to
pin down the required constraining relation among the parameters

EL

of Coat

In conclusion, we have discussed in this Letter the

compound nucleus fluctuation cross section in the intermediate

absorption regime of ;— 1. using the optical background

. 5 ; ‘
representation of KKM. 2 constraining ineguality involving
v; on the one hand, anéd Re TIY§_1 on the other h_anci is
obr;:ained. Since both %

and the elements of ¥ are important
parameters of the cross section in the =~ 1 case,

. ]
inequality should be useful in eliminating some of the model

=il le]

the derijived

dependence, ané in supplying useful criterion for reaiistic

model calculation ané subsequent confrontation with the datz.
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