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ABSTRACT

The vacuum equation of state required by cosmological
inflation is taken seriously as a general property of the
cosmelegical vacuum. This correctly restricts the class of
theories which admit inflation. A model of such a vacuum is

presented that leads naturally to the cosmological principle.

1. INTRODUCTION

Modern theoxetical'physiCS has found many uses for
the vacuum, the most sensational of which is probably that of
source of ésymmetry (spontaneous breakdown of symmetry}. More
recently it has been éroposed that the vacuum itself (though
an-unstable, excited one) is the dominant scufce of the
cosmological gravitational field for a certain pericd in the
very eafly universe, allowing it to expand exponentially. This

‘1’2). Exponential inflation is.

is thé inflationary cosmq;ogy
neatly described, in terms of a Robertson-Walker metric, by
General.Relativity,.and proposes elegant solu;ions to the so
called hérizon, flatness>apd monopole préb;ems, provided that
the vacuum has a pressure P and an energy density p oonnected
by the equation of state p=-p.

It is important to understand to what extent this
equationrof state is demanded by the vacuum properties, as
opposed to being an "ad hoc" assumption.

In this paper the origin of the equation of state
of the vacuum is traced back to its symmetries, which are
characterized in a simple geometric way.. Section 2 describes
this characterization. In Section 3 it is used to show that
the most reasonable scalar-tensor theories. of gravity cannot
accomodate inflation. In Section 4 a model of the vacuum is
presented that provides some justification for the cosmological

principles.

2, THE VACUUM STATE OF INFLATIONARY COSMOLOGY

(1,2)

Inflation . assumes that for some time during

the first second the universe underwehnt exponential expansion.
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In terms of a Robertson-Walker metric(3) one has.  (Einstein

equations):

2 R .
g—t% = - 4%‘; alp+3p) (1)
1{dal®_ 416 . _ k.
Zide; T3 PP = -3 (2)
p+32 (psp) = 0 (3)

where "a is the scale factor of the ﬁniﬁefse {"radius of the
universe"), p is the pressure, p the energy density. A dot
stands for differentiation in the time.

For very early fimes, k=0. If we take as

equation of state

p+p = 0

(4)
o>0

then it easily follows from the above equations that

aft) = exp{ /ﬁggg.t} = exp{Ht}) - - (5)

B  being Hubble's constant. -

What is the-physical: interpretation of inflation?
Of course: p=~-p is not: a- usual. egquation of state, so that
the medium must be peculiar. In the elegant scheme of-Guth(1)
this medium is the vacuum, though an excited, uns;able one.

The argument is the following: consider a field
theory defined in a curved space-time whose metric tensor is:.
g‘mJ . Let _Tu\(g)h denote the energy—momentum tensor of the

field. At tne vacuum conflguratlon one has, if the vacuum has

.4,
(global) Lorentz invariance,
<0lT,,ix)[0> = Ag, ., (6)
A being a constant(1). Now, the general expression for the

energy-momentum tensor of a relativistic fluid is

T = (p+p)uuu - pg (7)

uv v Uy

so that (6) leads to A=-p=constant, and also to p=-p.
This is Eq. (4). However, the vacuum configuration of quantum
field theories defined in a curved space~time does not have, in
(7)
r

general, global Loarentz invariance as this would imply a

Minkowskian vacuum. For homogeneous space—times one can proceed

(4,

as follows invoking lgggl Lorentz invariance one can write
(6} for every single point. Homogeneity then states that A
is point independent, that is, a constant. This is, however,
somewhat narrow, as one wouLd like to characterize, through the
quantity <0£T fx)|0>, vacua with a wider class of symmetries.

- In what follows we offer a more general derlvatlon
of (6) by separatlng the conseguences of the vacum symmetries
from the dlrect consequences of Einstein's eguations. . In so
doing we w1ll be able to extend the dlSCHSSlOH also to alter~
hative theories of gravitation.

' Let us take as a medel the Minkowski vacuum. If we
construct idealized particle detectors(s's) in different inertial
motions in Minskowski space-time, they will all agree as to the
absence or presence of particles(7). This shows that the
MlnkOWSkl vacuum state is invariant under transformatlons of

the Poincaré group. These transformatlons also happen to be

those generated by the Killing fields(3! of the Minkowski
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metric tensor. This'observaticn.is the key to understandihg
the symmetries of the vacuum state. Consider a field theory
defined in a curved spaceétimé whose metric tenscor is 'guv'
The vacuum state should be invariant under the transformations

generated by the Killing fields of guu. Given ccoordinate
transformations

AL At (8)
where Eu is an infinitesimal 4-vector field, the Killing

fields of the metric are those Eu which satisfy the equations

E.v * By, = 0 - £9)

Tt easily follows 3 that the transformed metric
1 :
guv has the same form as gu“, that is
gl X)) = g,  {x) {10}

uv uv

or, in a more suggestive way, eguivalent obervers (connected
by (8} and (9)} experience the same gravitational field.

(8}

Formally, the Lie derivative , with respect to Eu , of g

v’
vanishes:

LE I 0 . (11)

In an analcogous way, two equivalent observers which
probe intc the vacuum should cobserve the same energy-momentum
tensor.

That is to say,

€

Le<olT  x)[0> = o . (12}
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Comparing (11) and (12} one is led to

<0|Tuﬂ(x)|0> = A(x)g“v(x)- _ (13)
where A(x) is a scalar field such that

LeAtx) = EMGd Ax) = 0 . (14)

Form invariance cannot be restricted to gu\J and
Tyv' We therefore require that all fields present in the
vacuum be form invariant under the transformations generated
by the Kil;ing fields of guv' This.ends our characterization
of the wvacuum,

Remark that, to this point, we have made no use of
General Relativity: we just assimed the érévitational'theéry to
be a metrical one. If, now, the space-time is one of maximum -
symmetry, then it fcllows,'withéut more ado(3),:that Ax) is
a constant. This covers the case of Minkowski, and shows that
(12} is a generalization of (6).' Remark that the Robertson-

Walkexr metrics do not correspond to spacé-times of maximum

symmetry: in fhis case we have
<0|Tuv(x,[g> = A(t)guv(x). S 7 {15)

as there are no Killing fields in the tedirection.
Let us now, for the first time, use a direct

consequenée_of Einstein equations, namely,

to get, from. {13),

<o|T™V lo> = g""(x)'a\,A =.0




<.
so that
L = constant - (16)
in General Relativity.
Taking now
vac - _ -
Too = <0§Tuv(x)lo> = (prpduyu, - Py, {17}
it follows that
p = -A = constant
(18)
p+p =0

so that also p is a constant. Nq;ice that in alternative
theories in. which Tuv;\?# 0(?I, p would not necessarily be a
constant, although one would still have p+p=10. So, the
symmetries of the vacuum imply the equation of state, but not
the cqpstapgy.of, p and p. 'Notice Fhat the constancy of p

is needed for exponential expansiomn.

3. NON STANDARD THEORIES

We here study situations in which the vacuum states
do not necessarily have constant p and p. This happens
either when T]’m”I #0 or when g"w;u £0. Typical of the
former case are field theories defined in a bhackground metric:
the energy-momentum tensor of the field does not saﬁisfy the
Einstein equa:tions, so that AT“\’;B,J. 0 for the total energy—
momentun tensor. General Relativity is, therefore, truncated.

We give an example. Consider a scalar field ¢ with Lagrangian

density

1w R oz A g
=5 a¥V e 00,0 4 5 0~ 5 0 (19)

defined in Friedmann's open universe, with metric

dr®
t+r?

ds? = dt? - a®{t) { + ri(as?+ sinzedaz)} . {20}

The space-time is fixed, in the sense that the

energy-momentum tensor of ¢,
B oM BpM kg o, gk $% _ n
t\,_3¢8“¢+[§1u Vv\)+6\)D]6 6\)1. (21)

is such that

(10)

It is net difficult to show that

It _ aC o
<0|t\)(x)l0> = m § v {22)
where the minimum value of C = -%-. Then, redefining the

density of the true vacuum to be zero, the false vacuum with
the lowest energy will have

3 1
pft) = 1 TEy o - p(t} . {23)

As a second example we congider scalar-tensor
theories of gravity. 1In order that the scalar field ¢ be a

legitimate gravitational field, its source must be the trace

of the-energy-momentum tensor(11). This condition turns out




. 9.

to be too restrictive to allow for a "bona fide" inflationary

stage. We demonstrate this in the context of the scalar-tensor

theofy due to Schwinger(Tz).

(13)

The result extends trivially to

Brans-Dicke The gravitational fields, g and o(x) ,

pv
are coupled to a "matter" scalar field ¢ as expressed by the

Lagrangian
1 2
Lig,o,¢) = i? V=g {R -3 g““aucauc} -
e T uv 2.2 R 2
- V=g 59 au¢av_¢ + (m°o +€)¢ . {24)

The "matter" Lagrangian is made invariant under local dilatations
by adequate use of ¢ and R. ¢ is a new dimensionless
coupling constant. «k is Newton's constant. fThe scalar gravity

field obeys

- Bp {v;g g"v avci} = %%% t (25)

V=g
where t*= tuy H t”v is the energy-momentum tensor associated
to the Lagrangian of Eg. (24). According to Section 2 we have;

for the false vacuum,

<0]t” (x)]0> = a8t {26)
and
<oltio> = 44 . {27}

This gives, using (25),

’ T+ 1 . : uv 2 4y
T 3 (V=g g~ 3, <0|o%{x)]|0> = 44 . {28)
oK N v
Y=g
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In the tree approximation, consistent with our classical

approach,
| <0f02(x)]0>. = <010(x)§o><o|a(§)|o>
and, in the abse_nce of a self-interaction for ofx),
<Olc(x}§0>‘ = 0 - ©{29)

So (28} gives A:O, implying that p=0. This gives no
expansion, hence no inflation. The same is true for Brans-
Dicke(13); Scalér—tensor theories like.Zee's(g) escaﬁe this
mechanism, as a selfwintéraction term for the scalar field

o (x) all&ws for a nonvanishing vacuum.expectation value and
introducgs-a.new term in Eq.(28i. Inﬁlation is thén allbwed,
but at a.price: the scalar field ié not a clean-cut gravitational

field.

4. A MODEL COF THE VACUUM

In this section'we will exploit our characterization
of a vacuum state in a more ambitious way. It is conceivable
that matterfdetermines not only the particular Riemannian
geometry of space-time, but the very nature (Riemannian or
other} of that geometry. This is because matter provides

(14)

standards of length and time In the absence of matter one

is free to 1liberally change all standards, from point to point,

without any consequences. Weyl(15)

discovered a generalization
of Riemannian geometry which allows for a natural formulation

of this possibility,of changing standards in an arbitrary
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manher. We propose that the vacuum state is naturally described -

by Weyl's geometry. This is inconsistent with the presence of

w{16)

matter unless F , the "length curvature vanishes at the

uv
polnts where matter is located. The physics of wvacuum is then

described by the action

, we {1 oAy 1 w _ m? o
= v/mg @' {- gy (R-3) S FLF - T ¢ - 30
i

We are adopting.the'notation and conventions of the
excellent review of Weyl's theory contained in Ref. (16). Eq. (30
is équi%alenf to Eq. {15.82) of this.refefence. Formally we

have the coupling of gravity,rwith a cosmalogical constant, to

massive electrodynamics (Fuu ES BEPV- %)Qu). The equation of

state of vacuum is a relation between Fuv and ¢, which is
not difficult to find out. In fact, from the general expression

of 7T ,
uv

T = lp+p)uuuv -pP9g

Hw Hv

we see that p+p=0 implies that T;, « the energy-flux

density ("Poynting vector"}, is vanishing:

(P+D)Vi

Tio = -3z = 0 . {(31)

In terms of the electromagnetic analogy of the

action of Eg. (30}, therefore, the vacuum equation of state is
- -3
8 =0 ,

N .
S being the Poyinting vector. This means that

2.
ExB + m2@ § = 0 . (32)

As is always the case in field theories in curved
épace, the vacuum geometry is the same as that of the state
containing matter. The following question is, therefore,
relevant: are there situations in which the Weyl geometry of
the vacuum degenerates inte a Riemann geometry in a natural
way (tha;-is, without introducing more dynamics)? Weyl gecmetry
is Riemann gecmetry if Fuv= 0. We will show that if the
vacﬁuﬁ hés a certain amount of symmetry, this turns out to be
the case.

Aé a first solution, suppose the vacuum is a
maximally symmetric space-time. Then, as shown in Ref. (3},
Chapter 13, a form invariant antisymmetric tensor must vanish.
Therefore Fuv= 0, Eg. {32} is satisfied and the gecmetry is
Riemannian. Adding matter in such a way that vacuum symmetry
is respected leads to the so-called perfect cosmological
principle. HNotice that this is the real vacuum, as p=p=20.

As a second solution, suppose the vacuum is of the
Robertson-Walker type, that is, that the spatial part of its
space-time is maximally symmetric. Then (Ref. (3), Chapﬁer 13)
the form invariance of E and B implies that E=0 and
B=0. This alsc satisfies (32) and, as Fuv= 0, the geometry
is Riemannian. AaAdding matter in such a way that vacumm symmetry
is respected leads to the standard cosmological principle.

S0, in our model of the wvacuum, the cosmeclogical
principle comes out in a natural way.

A less symmetric space-time is not able to enforce,

by sole symmetry arguments, F v=0- Therefore, addition of

5
matter would require the unnatural, ad hoc assumpfion of - the
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vanishing of Fuv' Consider, fgr instance, the solution of
Eq. (32} given by @;=0 and %%: . This implies E =0, but,
if the space-time has no particular symmetry, B£0 . Theﬁ, of
course, Fuv# 0.

To summarize: the vacuum configuration of a quantum
field in a curved space-time is supposed, as usually, to have
the same symmetry as the nonvoid configuration. If it is
described by Weyl's geometry with the requirement that the sole
symmetry lead to Fuu= 0, that is, to a {compatible with
matter) Riemannian geometry, then the space-time satisfies the

perfect cosmological principle or the standard cosmological

principle.

(1}
(2)

(3)

(4)

(5)
{6}

(7}

(8)

(2)

(10}

(11)

(12)

{13}

(14}

(15}
(16)
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