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" ABSTRACT

Non-constant. vaculn expectation values of scalar

fields in cu:vé&'spaée—times generate important physical
consequences. We here show this to be the case for a class

of spatialiy-homogeneous.and anisotropic metrics.

*FAPESPE: ‘Fellow.

propagating on a Friedmann universe of the open ‘type

.2,

The vast literature on field theories in curved.

spaces(1) is justified by the great difficulty of the equations

" of gravity coupled to ‘matter fields. 1In fact, even in this

approximation {gravity treated'as a background metric},.life

is not'easy. Oon the other hand, quite: interesting and- unusual

phenomena appear in ratheér simple settings. This is}'fbr

instance, the case of massléss; scalar, conformal—COUPled fields -

(2), where
the non-constancy {i.e., time dependence) of the vacuumm expectation
value of the. scalar fleld gives rise to a host of phenomena,
and eveh to concelvahle phenomenologlcal consequences( ]
We" start by examining, quite generally, how these

abnormal vacuum: expectation values can appear in General

‘Relativity or other theories of gravity. ‘Subsequently it wilk

be. shown that this is the case for a class of homodeneous and

anisotropic expanding universes which:-have been studied: by - :

Kasnar‘4) l.{s)

and Lifshitz et a ;, and are potentially useful in
casmology.

' We characterized the fcurved) vacuum as foIlows(E],

taking Minkowski vacuum as a model. The vacuum should be
invariant under the transformatluns generated by the Kllllng

7}

fields of its metrlc tensor. That is, glven a coordlnate

transformation

1% B (1

where EM is an infinitesimal 4-vector field, must obsy

Tyu
the eguation

Lg S = o , R (2

where LE stands for the Lie derivative with respect to the




-

fion

.3.

vectof field £M(x) .  This is the same as requiring that
g .+ & = 0 - ' o3

and,. in this situation, one says that guu is form-invariant
under- the. transformations. (1}). The complete characterization

iz this:-every tensor. field present in the vacuum must be form

- invariant.: In: particular,

.L;'<Q!?uv(x}[0§_hf ] o (4)

JERY)

T ,beinq_the=?métterﬂ energywmomentum,tensbn- This immediately

.sugééété fhét
:"<Q}Tﬁﬁ(x}fﬂ>r‘¥ hexdg ) - {5)

~where - A(x) . is.a scalar.field:such. that. .

I.g Alx) = £7(x} auA(x) = 0 . [13]

The congec£igp between:théquoémaiQQical constant” A(x) and
v =<0 o (xr10> , ¢lx) being'a.scalan t"Higgs") field present

8)

in ﬁhe.ﬁatter_Lagrangiah; is known sincé a long time
time:aépéhdent v can.only océur-whén A-is itself time
dependent.

Now, if General'Relativityris used in its full

attire, . a-conseguence of Einstein's eguation is that

= 0 - | (7,
which, cémbined with g‘“".]J = 0, leads, used in Eq. (5), to
- I .
A{x) = coenstant . (8)

This, however, is not the case when gmJ is a priori

fixed, as in the case under analysis. This approximation
THY

K

truncates General Relativity, in the sense that does not
necessarily vanish, as the matter Lagrangian in quesfion-does
not participate of Einstein's equation. Therefore the restrictions
on A(x) come only from the symmetries (Killing fields) of the
metric., Suppose the metric is such that no time-like Killing

field exists, whereas three independent space-tike ones do

exist. In this case one can, in principle, have
A= Aty . (9)

Whether the time dependence actually exists must ke decided by
closer examination ¢f the equations of motion.
Kasner spaces have 3-dimensional sections that are

homagenecus but anisotropic. Near the singularity {(£=0) it
{57

suffices to. consider the empty space field equations: The.
metric is given by
as® ; ae? - e 0 g2 _ tzpz_dyz _ P g2 - aoa)
Py # P, # by . o)
By + éz +pgy = | ”-1 (1ec)
p12 + 922 + p33 =1 ..(11&0.5}_.

the space being anisotropic because of Eg. {(10b}. We are using
the notation and conventions of Ref. {5}, and putting c=1.
We now consider a A¢T scalar field theory defined

on this space-time. If t is kept small, the result is independent

of the matter distribution. However, the case of the wvoid

N
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Kasner space-time ‘is interesting in its own right. ' The reader -

" shouild keep in mind that the Kasner space, in this paper, is a

background field; its metric is not due to the k¢4 energy—
momentum tensor, but to some other source.

The lagrangian is written as

R A 21 -
g 0% - 7 (4*9) } (1)

. . *
L= /g {glk 3 ]
x> 3x

R standing. for the scalar curvature of space-time. For
arguments favoring the presence of the term %, see Ref. (2} and
references cited therein. In Eg.(11), R=0, as the space is

void. However, the presence of the term % ¢*p is far from
' SR

trivial, as the term —Tk ¢ which contributes a term to the
&g
momentum-energy tensor, does not vanish . for R=0.
One has
_ 1 . - ik
SR = {Rik -3 (Vin + “{Vi) + i 0 }Sg _ (12)

where Vi is the i-th compomnent of the covariant derivative,

and
o= = L[/ gtk -—3]{} . (13)
Y=g 23X
The energy-momentum tensor c¢an now be computed and
reads

3¢% 3¢ 2g* 8¢ L .1[ ] &
T = - + =g .o + 7 V.V -9, O (6*$) .
ik 3xt Bxk 3xk axl ik Ca 4 1'1'k ik
(14)

This derivation follows rather closely the one

.6.

found in Ref. (9), and is omitted here.

Corresponding to the lagrangian of Eg. (11} one has

the Euler-Lagrange eguations
O¢ + % ¢*1x)¢2(x). = 0 . : - {15}

Homdgeneity of 3-space means that thefe are Killing
fields correspondlng to (1nf1n1te51mal) translations along three
1ndependent spatial directions. One expects . the vacuum to be
invariant under these translations.

A qompletely different situation is met when we
examine translations along the time direction, the metric being
time-dependent. In fact, as shown in Ref. (5), the Kasner
universe is an expapding one.

. This_means:that _
<0[¢{x)|0> = &(t) ’ : : S ; ikqé)

whére the time dependence of v must the'determined'by the

“eqguations of motion. Using the invariance of the theory under

charge conjugation we .get the following, semi-classical

approximation for Eq. (15):

Ovit) + % v3(t} = 0 ’ {17)
- that is,

d_.z,y,,,l'd_v.;-l_{ﬁ = 6 SO 418)

dtz t dt " 3 :

Putting v==% , and taer ;, one has, instead of (18),




-2 == +u + A u’ = 0 . (19)
x PER :

This is puffing's equation, and its stability (in
the Liapunov sense} has. been- studied in detail. In Ref. {(10) it
is shown that. the seiution . u=0 {(that is, <0|¢(x)|0> = 0) 1is

dx
negative. So, the vacuum expeC£ati¢h ﬁalue’qf the scalar field

unstable, as the coefficient of the “dissipative" term % is

canno£ be,ﬁefo, and the'vaéuum dGoes not prééérﬁe the invariance
¢+ —-¢ of the lagraﬁgian. Ne other solufiqns of Eq. {(19) exist
corresécndihg?fd:conétantuEQ Théréfpreg v must be a function
offtﬁﬁrtiQQQ: .

g get-Sdme,@g;e;inf0rmatipn_§bbﬁt ) ., let ué'

axam;n&;the;engrgyrdensity-of ;he fieid;.”This;is?gigen;by Too..

calculated, with: the vacuum, field configuration. vi(t) . Using

(14) one ges: for- the: emer

and
R T . P ()

Suppose v is not negative. Then, e(t} has its
minimum {as a function of v} for v=0 . But this would mean

<0}¢(x)]0>=0, which we have seen not to be stable., 8o, vv

¢13)

.8.

must be negative. Therefore, |v{ decreases with t, a result
analogous to that of Ref. {2).

For gravity theories like the ones of Ref. {11}, this
would imply, under certain circumstances, & Newton's - "constant”
that increases with time; when symmetry,restoration.is possible,
our results. (hoth here and in Ref. (2)) imply a time. dependence
also‘qf the "critical température"{-as,discussed-in_Bgf.{12).

In conc;gsion,_time;deﬁendent vacuum_expeqfation
values of sc§lar;ﬁ;élgs”frppagating”on hom@geﬁequs.gpgceftime
fie}ﬁéiare;n9t3expiic;ob5e§ts, but can happén in-quite usual

circimstancés..
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