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ABSTRACT

We study in a general covariant gauge the structure
of the 3-point function with one and two external gluons on-shell.
The contributions which result in one loop approximation are
expressed in terms of simple functions containing collinear and
soft singularities. Furthermore we analyse the contributions
associated with the 4-point vertex when all external gluons are
on-shell. As an application of these results, we study the

infrared structure of glucn-gluon scattering amnlitude.

I - INTRODUCTION
As is well kndwn, the infrared singularities do not
cancel in non-abelian gauge theories [ 1] for processes containing

at least two coloured particles in the initial state. This

_ praperty was first discovered in connec¢tion with the Drell-Yan

process evaluated to 4R order [ 2] and subseguently confirmed

alsé by other investigations | 3] . Afterwards this result was

' generalized to all leading ofders [ 4] and recently it Has been. -

proved to all orders in perturbative QCD [5] . It was- in
conﬁéction-with this work that a study of the infrared stricture’
of Green's fuhctions becamé relevant , since these appéar — as
subdiagrams- of higher order QCD graphs contributing'to the

Drell-Yan process.

Of .course, the study of Yang-Mills vertex functions-is
sihteresting also_in_dther connecticns and for {his'reéSoh it has

‘been' considered by other authors. In reference [GjAthe 3~poiht‘

function was evaluated at a particulaf off?shell éymmetric point

‘in a ‘general covariant .gauge and in reference E?] it has been
'ca]_.culated in the Feyriman gauge when two of its external gluons

“are on shell. These calculations were done in the ‘one-loop

approximation using the dimensional regularization scheme [ &)

in a space-time of dimension n=4+2f . In general for arbitrary

‘€ this wertex cannot be evaluated in termg of known functions
,WHén:all gluons are off-shell. Similarly, many aspects of the

-56Qntributions.releVaﬁt'to the calculation of the 4-point Green's

r

lfungfion have been investigated in the literature L9j

. 'In-this3paper we coneider in the one-loop approximation
the 3—poin£ vertex in a general covariant gauge for the case when
at least ohe external gluon is on-shell, which is relevant to

the study of its infrared structure. Its contributions can be




L3,
expressed analytically for arbitrary values of the parameter £ in
terms. of .elementary functions. In section IT we discuss our
approach-and'drganization of the calculation, which was dcne
using the algebraic computational method SCHOONSHIP, in terms of
a basic set of parametric integrals. In section IIT we evaluate
explicrtly.these integrals when one external gluon is on shell.
Some3éséeg;é.of.tﬁe results obtained in this case are analysed
,in_connéét;on with the Slavnov-Taylor identities for the 3-gluon
vertex EiQ]'- In sectipn_lv.ﬁeidiscuss the structure of

_:its;i_frared'sipgularities in .all ;relevant cases. When only one

'_exﬁgrn&ilgiﬁpn_is on shell we obtain single poles which result

..fronxc&lliﬁearsingularities. With two. gluons on shell these
SLngularltles operate together with: lnfrared soft divergences
yleldlng double poles. Flnaly, in'section V, we use these
results to: study the 1nfr&red structure of gluon-gluen scaterlng

'famplltude, with all external momenta on shell -and transverse,

~]whlch represents a gauge invariant. process. To. this end, we

S lnvestlgate first the structure of the correspondlng reducible

—p01nt'functlon and then we extend the analysis to the case

involving-the irreducible 4-point vertex. We find for the amplitude

a Bose and gauge invariant expresslon whlch exhibits single: and

double pole infrared: 51ngular1t1es.

II - THREE—GLUON.FUNCTION IN A GENERAL..COVARTIANT GAUGE
The Feynman. diagrams contributing in the .one-loop
apgro;imation-to the;3&glﬁon irreducible vertex are shown in

Figure I.

The Feynman rules [ll] for calculatlng the contributions

of these dlagrams are  given 1n appendix A. In a general covariant
gauge characterized by a gauge parameter A rthese yield a very
large number of terms. We have found that the simplest way to
express the results was in terms of the independent types . of

integrals which appear in the calculations.

4.

Graph 1 gives rise to integrals of the following tvpe:

Ia.azm _ S amQ QM,_...O\m . - L
PP Ty ™ (o) ] ™ (0 in) ™

On the other hand diagram 2

Yo

where o..1 =oz_=c%=l and |
yields integrals where 1 & Q % o, & and 0= 1< 5
Finally the graph shown in flgure 3 produces basic integrals of

the form:

3—-0“*-“‘ | J 0 G . Gra 2
Peps T ) o [(@ k) ,mg " (0 %

where LS o, ,a, €2 and O€ A T.

.-km_w 3 TN - Ry, 0
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Figure I - Wavy llnes represent gluons and dashed lines stand
for ghost particles. Graphs obtained by cyeclic permutations aof

external gluone in diagram (3) are ‘o be understood.
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5.
After a straightforward application of the Feynman ruleg, we
obtain that the diagram 1 yields the following contributicn

for the SU(N) Yang-~Mills theory:

Dt =B, K

/M

where J'o.bc

Kd.pw '.\/“l-"]'d.l

are structure constants of the theory and

dencte Lorentz tensors given by:

AV )
K = -PaPpdup + (v p T a)

3pY
K-wa v = Piépvé'y.r + P[ncg,;_(-_.gvr ¥ (/‘*’V)P t:"g]-)

K&;-w 3 F,‘fp _:

with p €> g representing permutations of the fourvectors
P and -4 as well as of q and -p -
For the contribution resulting from graph 2 the situation

is much more complicated in a general gauge, where it gives

rise to terms proportional to variocus powers of the gauge
parameter: XS with “;\=O,]_,2,3. We characterize the
corresponding Lorentz tensors in this case by an index 3 and

by the wvaricus indices Oy a?_, 0\'-5 which appear in the calculation:

K&rww:---p*s.

Aty 7, &y . These tensors are presented explicitly in

appendix B. In terms of these functions we obtain:

]
w

,lrw“,v\i..,}ﬁl Ay, OLy q
ZDJ;:: = A J\EI-_ Sa‘oc > > > Ka.aia«,','ﬁ Ij“rn/".ﬂ S

$20 00007t 9=

Doee = aar 6

- vanishing Lorentz tensors TN TERN

2 800 Sy Svp —

..

Finally, the diagrams in figure 3 give the contribution:

>>>

1—0 A, =1 6 =0

APV My AY ia—z. A | '
Ka,a 5 j j‘.L/X (6)

where cyclic permutations are to be understood, with th'e_n'on-

ook ‘given by:

K -2 [lzﬁ.éw;-\ ) K-Tf:‘;it 34 &) K:ﬂw =3k ["?5)"@]

d;);\:;l:“ - [ }z,, S"’P ;\f-}- lep &dr\- Sv\'] k .lrw P‘P= % [é')“a.g\-'P Sp'ﬁx

1

K3n =3 _[ babp Svp + B Svs Snp )

X
2‘?:‘: = 2 [lzpéva.fs ¥ + ’Zv Sa‘c 6;4‘-:,—1

. Kaﬁﬂj{‘*i - }E[}za.b-v ke Spe + ]2 }2}‘ g;r Svp] , ._._.(7)
where the square brackets imply that one nust antiisyrﬁmetri.ze o
with respect to (r\-H‘i\-

Our bagic task consists now in evaluafin'g ';tiie séﬁ: df
integréls described by egquations (1) and (2). To this end .we
combine first the denominators using the Feynman paramefrization
given in (Ad4}. We next perform appropriate shifts in the
integration 4-momenta dropping odd powers which vanish by
symmetry. The resulting dimensional integrals containing even
powers of the momenta are carried out with the help of (A5). In
this way, after a straightforward algebra, we can express the

O O 2 G.s,
et I in terms of the guantities:
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5=px-9y ;M= Pxl-x=Y}+rQ Y (-x-¥)+ KXY~ Am (8)

(:‘17)2

in the follpwing form:
_5-7_ <R.> _
Ia‘.azﬂ% _ A("HT) : R : f E
L F(a-)P azW[ﬂa) P(m m =5 P(,». Pae¥
[-e-v+araay aa-z}jd,{ j'& S g
(211 (2wl cb 230 &0 o {oread”

ot

Cl;‘i ya31(4 -x =Y

z) £ =r 4+ 9\1 + -2

S P
where P  denotes permutations over the -corresponaing indices.
and <L 3 is given by (1-1}/1 or x[a respectlvely, when L is
odd cor even.

Proceedlng in. a 51m11ar WAY . We obtaln for the

set of integrals given in equatlon {2) ‘the result:

- <Ji.'> '
— Qi Gz gqn,} : R
]’j_vl;---/ﬂl P(O-QP(Q;} > > >

P(}‘ f"j_\ T=o P(}‘l e Mar)

L .
Plescraianes) | go 1 [Ratioi]
{2e 01 (i—zr)! viza¥ g '

ErC-G- Gt 2

aﬁ')""?— »Mzr'lft" ‘zj‘znq 3"

These. expressions contain uitr_avio_let- divergences which manifest
themselves for € » O .when the arguments of the gamma functions
become vanishingly small. In order to renormalize the vextex

‘function .it is convenient to use.the MS. scheme [12 | where
one substracts, in addition to the pure pole parts,alsoc some

finite quantities which always appear in the dimensicnal

5}"291}“21‘ - ) . (9)

.8,

regularization method. This prescription can be implemented by

2 A
taking. [see AZ:I SR :/Az'e /'-i'lT' and substracting {/ g vpoles

“only, ‘where Y denctes the Euler constant. In this way we

obtain from-equatid_ns (3}, (5) and (6) the following renormalized

quantities: .
D == e W VAR I W VA 2 imysmy
‘-:Da.bc - (”.\):?‘ —Z ? ey V Dab:, (11)
EmY Lk sy ey
=~ A% N__i_(ﬂ__ﬂ_:\) oy 12

D = aD- H ?( 2 m 1) obe - thbe (13)

ENTEN) :
where. o,):c, (_'ﬁ-;?\‘i\ is given by the lowest order 3-gluon vertex

(a2). 'In,orde_r' tc determine the above renormalized expressions,

we must caléu_].ate the parametric integrals (%) and (10) to which

we now turn.

III - E.VAL_UATION OF PARAMETRIC INTEGRALS AND S-T IDENTITIES

The integral which appears in equation (10) can be
expressed in terms of Euler's beta function B (o,\ |:>\ [13:[. We
then obt&in for’ 3'0.40.,,

A gy, the result:

<&y

—Sau‘az _ ( )E z > . > >
lj’\l_ P[mj!‘l(az\ Pl gy vw=o0 P (- Mo

M-e-r +ai+a,-2)
(2\'3! (-2t r ) pzv

B(a SCHane 2, €4 0 as+2) (B- dl\£+~f'—0\ra;+2_

gz 5142",/*" }z peas EF,Q | | (14)
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" change of variable to Z2 =ox + Y

9.

On the other hand, it is not possible in general, to evaluate
analitically the integrals appearing in equation {(9). Onily
when ohe gluon is on-shell we can evaluate them explicity in
terms of known {and simple) functions. To this end we proceed
now by making an analytic continuation of the parameter 3

to positive values in érder to regulate the infrared singularities
and letting  for definiteness k}z o) . Then, by making a

with X<z < 4 -, we can express

all relevant infegials,in terms of:

i 4
Iim (P‘, qz) = 5 dx'.s-d X" _(.?:-x)ﬁ;[( ql_t) X + Cf-@] (J- )S (15)

' o . - 2z
where an' —im; iz vnderstood to-be-asseciated with P and

q_" . Working in the- e'_quival‘ént region o< <1, 04X L 2,
the_above'intégrationsncan'be easily performed with the result

that:

=SEmEned | 2S5t

s O P SO 0 M )
I'm‘f\ (P qr\ [ {mim-25+43) B(P)mé(‘%"m Ez' % *

(16}

Finally, with: the help of this equatlon, we obtain after some

(M CI.;_ Dy
Toere

calculations that the set of integrals can . be

expressed in the following form:

e s STV )

.10,

ey = (Hﬁ’\m Plh-pe) €20 Pla g Plera PRy 322S

P-£-T4ai+a: £04-2) Fz(zw—a.—éz—aﬁﬂ
() (220 e (G2)) (13 227 P (e -Gy -0y 20, F 145 )

acmq,-zvﬂl— z. | | (3 \i -aa + 8- TH
B{?z)a;%.-zc-« a(.q,)o.;&-l-_}_q : P ~ 0'}2

£-ap4l-v 3 4
@)

80-5'?. [ (_g___ 3 2\ (P‘} E4l-¥ (qz) 5+ﬂ-‘{‘_
2-5 "a\'ﬂ;_'za..}.}—ﬂ_-q-_’j | 'B!PZ aQ‘z’ . . P?_ q"z,

Sopa S fee B P r{“%ﬁm- o Oy (17)

Therefore, the resultS'givgn By:the.fsfmg (ié’ and.(l7) allow
in this case an explicit determinatipn; in tgrﬁs_of elementafy
functibqs, of the renormalized 3-giuon vertex expressed via
the contributions . (11), (lQ}Iand-(LS).

In order to check these expressions and obtain a better
understanding of their content, we will_éonsider_now the -Slavnov-
Taylor identities for the 3-gluon. vertex F;ix: . These
identities can be represented diagramatically {147 'in our case

as’ indicated in Figure IIL, where the permutations

[P Ll kai—-»\f 1hes C-l are to be understood on the right hand side.
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Figure II - The cross & denotes that the momenta
associated with the ghost-gluon vertex is absent,

being replaced by a Kronecker delta function.

2
Using the explicit results previcusly derived in the case k::o,

v
we calculated htfpiﬁ; (h,P:q\

Similarly, with the help of

the algebraic method SCHODNSHIP we calculated in a general
covariant gauge the right hand side, which we denote F{mbc lqu
The explicit result is rather invelved, being a polynomial in

the gauge parameter A . However, it is worth noticing

that due to the structure of the graphs appearing on the right hand
3 .

X' contributions are absent.

side , We obtained as expected,

an identity which represenits a check on our calculations, namely:

l'i& :\):1 (h’P’a-D = R;:;: ("-JPI‘%) {18

It is interesting to study, with the help of this relation, the
behaviour of the 3-gluon vertex in the limit &-ﬁ o ;when as a

conseguence of momentum conservation we have prg=0 . Using

W12,

P»W
equations (14) and {17) it can be verified that [?P ah&[}abc i’-\Pﬂ.)
vanishes in this limit. Hence, taking the derivative on bcth

sides of (18) with respect to hi , we obtain in this case that:

a\oc, UZ 0.pyP ) Ska R&\’G-(h P q’)’ (19)

k<o

MY
With the help of the result cobtained for F{uhc , we then find

explicitly:

a;w

T (oo & 4, [(hrae ) e

. * :
N [%ﬁ_-%ﬂn;‘g—(émh%)k*%l]cgfwmi" (20)

AR RS ISR (LAY

=1 oA MV
As we have seen, although in general rra be (12. P,q) contains

N k- ¥ “py
contributions proportional to A ¢ the fact that in Fab¢(k=hFV“P)

'only first and second powers of the gauge parameter appear can

be understood as a consequence of the $-T identities.
LR
Fahc Uho,p;#?\

This may be understood if we think of this 3-gluon

We notice
furthermore that is a completely finite
quantity .
vertex as resulting from inserting an external gluon with zero
momenta inte the self-energy gluon function:in both cases the
off-shell gluon is controlling yielding an infrared finite
contribution. However, with ]22: 0 , but IZ;E 0 ., thexre will appear
as we shall next show,additional singularities resulting from

configurations whexre R is'parallel to an internal gluon

at




.13, .14,

IV - INFRARED BEHAVIOUR OF THE 3-GLUON VERTEX

function of degree -2 in its momenta, like it is in the Feynman

In this section we will concentrate on the infrared gauge, it is simpler and sufficient for our gualitative analysis

structure of the contributions given explicitly in (11), (12) to restrict ourselves to this gauge. We then see from eguation

and (13) via the expressions (14) and {(17). We will begin by (2) that in this case, with@;=0,=1 and $- 0 , there are no

analysing gualitatively the structure expected from the diagrams soft divergences even when_E:: © . The collinear divergences

of Figure I which are associated with these expressions. As we which potentially could be presente vanish by symmetric

have seen, graph 1l gives a contribution expressed with the help integration in this case. Actually, as can be clearly seen from

of equation (1) with G4=0=0,=1 . Clearly when all momenta are equation (14) the whole contribution vanishes in this case.

off- shell there are no infrared singularities present. When The only singularity surviving,results from the ultra viclet

one of the external momenta goes on-shéell, we see by power counting substraeted pole left over in equation {13}. So we obtain in

that alse in this case there will be no. soft singularities. this case an infrared contribition given by:

However there will appear now a colinear gsingularity when the v .
' * =- % N t-
internal momenta becomes parallel to this external momenta. LY Ao k= 0) =" IMT;"' 2 ‘E‘ Sabc. (’% )f )(é}ﬂ. !zy Sv;_ ]Zj“\) {22)

Indeed, as expected from this discussion we obtain for the

infrared divergent contribution .associated with this graph the e relevant Contribﬁtions-résulting from diagram 2 when E%: 0

result:

-\.!"DOLb(,Kk }"’ s T abc 5 qz{[?.% (S-l"! 9_{'-],& _E 5]
v av .
(\DI*PW%*@V)""[% (z +3§+‘1)K+ Z.} +2§ + Ly } T qrAPer/Q T = 9, P;*q!v/g

are nost conveniently expressed in. terms of the following

independent Lorentz tensors:

&

el ’ N oy ( ) v z ¥
(-lqﬁqy—qﬁpv-wq}«)‘g r (prevy pergsb C) 2 ’Eow = %@;«Wq 3—[:.&’““: -O.';a.q,uq,v/qz

. (23)
"Wh.dﬁv

where |z q—z/(Pz‘ g} 2= In(*fq=) . The contribution associated 5 -7 ‘gqud‘ J =- év& qr‘ > |:f = _é/v‘iqlv

with diagram (2) is gualitatively similar, although in this case

the number of relevant contributions is much higher, and will be Including the contributions associated with graphs 1 and 3, the

discussed below. sum of all infrared divergent contributions can then be expressed

Consider now the contribution associated with graph 3. in the form:

Since in a general covariant gauge the gluon propagator is a
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where the factors G? are given in terms of a serie in the

gauge parameter A as follows:

G’ = -4 4 ?Jrz+468»34-9;(382—16&3—45{”) +

u

R R
Nk #1 +l—43—{ f-exy 22301748 (#1730 +304" )]
RV %7*;7; R +£(-f+é_,j(’+g_§ ﬂ

. _u,g”+1(s+2+zuf,"+m,“)+
)\ +2B( 120647 124 ) +l(“% “’fff 384> 20" )1\

RNES
[J_

(}Z

0.4 -464

MR RS -

>J>~

thag-udaps op)]

ﬁ!ﬁb_; +30!r-.1——f—7 ;&( IEI; -234 _uq _z,ojt“)] ¥
{4

v (24}
1T% 6 - (pev; PHQ})}

(25.a)

(25.b)

.16.

G‘*z-%i,_u,gtu,g‘u(ap1u4l+au;3+wm+
+)\[ug+2é&z+zu%3+i(-%'15}?'—3953-2“1(”)]*
el 3P0l L E4 ) - Y- ueg>- 3014 +
PR R s 68700598 1Y) |

SIS SR CHNISTRTR LS SIS SO

LR P g s 2
PR30 (B 127 6208 )]
2525 b A5 APy g*ﬁ*ﬂ

Go= 14105 + Qb2 -4 -10y?) + A [L-§ 42 lf*ﬂ(z”ﬂ
el et 0 - Len 9]

| sz;z-z;r+,q(e+?++z4=3+x[—l-2++it~k+%§+2§2ﬂ+

’J{+5L

+ }? [T! *Zj}
6*:-%2%M—z-%%+42ﬂ+>{-%--i—-z+ -

{25.¢c)

(25.4d)

(25.e)

(25.£)

N e e A h)]
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P*#'-‘i

contributions cancel out, in accordance with the finiteness

It can be verified that as .all the above infrared
M expected from (iO) for the renormalized 3-gluon vertex.
We consider now the sztuatlon when two external gluons
are on-shell. To understand what happens in this case let us look
for instance-at equation {l). We obtain, as before, a collinear
singﬁlarity which results when thé internal gluons becomes parallel
to one or another on-shell exterhal.gluon. However we see that
in this case will appear in addition in the denominators more
powers of the ihternal momenta, which can potentially yield soft
infrared divergences. This is precisely -the case with the
contributions associated with graph 2, where we obtain a double
pole structure resulting from the superposition of these twc
effects. |
For the contributions giveh by diagram 1, it turns out

. that due to the appearence of additicnal powers of Q also in .
' the numerator, we obtain in this case only single collinear

singularities. Taking for definitness E and P s on=shell,

these are given by:

a M k} :
a):c (Ef \ = —,%E]-"*-% %qb_,;-';,- ué-?'_ [ "{3" PJ-P}“‘PV -

(26)

5 B (ppky + Prkp) -(pessk Hﬂ]

@ The -singularx contributions associated with graph 3 have a similar
crigin as in the previous case: they result from the uncancelled

substracted ultraviolet poles connected with letting Pz=}§ =D

.18.

in eguation (13). We obtain then:

SRV 9 3 |
DI (o) =T (T )
[—Pyéju\;_-r ‘Pa_gf'\v + by éjq& - ‘2}-« S;v‘l ) (27}

The contributions connected with diagram 2 are most conveniently

expressed in terms of the féllowing Lorentz tensors:

7 = pabon 5 L7 = 0S5 Y = pug

by 17 kabapy

i
v

3
Y
v
P
o
};’
L'y
—
g -

L = PePp Py
qz.

(28)
Then the infrared divergent contributions to -the. renormalized
vertex_corresponding to the case when k and P are on-shell

can be expressed as:

J\.T

} | ay z
abc. (h = _O\ Hﬂf" ;‘“‘ ]\-;{ [Lf (\?,p)- E; (P‘h)] FA (Qlé‘?-) e

where the factors Fi are gauge dependent and exhibit double

and single infrared poles given by:

£)-3 ol 4

b e (30.a)

RiE)= bris)deda
sl G4 “%ﬁ‘“?‘;z-z)% * g ’é‘b-_l (30.b)
F'*.:(j%\{)= (5-2%;‘&;")% B %a ) ,\(AZ_E) (30.¢}
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— [/ a* ..__%Zi_ _3_._;_:"‘_@: _L-!.—iw
ul%‘)" > E 3\[(1 wﬂ“)i £* (39

(30
;b{i%}:{-?'%'?Jp.m%;’)%+%+11(’%+5L‘ﬂ}%§)%+%].}-
LR BN R AR (F i B L
(30,
3 2
BE) = (a2 (den 2 ) Lo LTy
1
o lHrimaE et b ] 0

Finaly we mention that the case when all gluons are on-shell
would require them to be in a parallel configuraticn, which is
not allowed by angular momentum conservation,

Thereby, we have obtained an analytic expression
in terms of simple functions for the renormalized 3-gluon vertex,
in the case when at least one external gluon is on-shell ,We have
determined, by consistently expanding it in powers of £ ,all
the infrared singularities as well as the finite contributions,
which inveolve in a general covériant gauge an extremely large
number of terms. The calculation is straightforward and, in
particular, we find in the Feynman gauge, for the case when two

gluons are on-shel,an expression in agreement with reference[7]

V - INFRARED STRUCTURE OF THE £-GLUCN FUNCTION

In this section we wish to study, in one loor aproximation,
the structure of the gluon-gluon scattering amplitude, when all
external gluon are on-shell and transverse. Since this is a gauge
invariant preocess, it is sufficient for our purpose te perform the
analvsis in the Feynman gauge. We can write this amplitude as:

) o b \ c . & hcd A
(AUZ:P,Q}:T)‘ \{a. (HV/\ (P;Vy (%) \f(,’ () /\Wp(}ZJPJQ},\-(:}l)

.d}

-9)

L20,

where \/ denote the transverse polarization vectors of the four
gluong with momenta By, [ ; Qv o and colors &, b, c and d
respectively. For simplicity, we will restrict in what follows to
the color gauge group SU(2).

ﬁe begin by considering the éth order reducible graphs
contributing to this process which are shown in Pigure III, where

all external momenta are incoming, with }Z+p +0 47 = 0.

'R)*i O P,)-'n'l:x 213“\:0- P-‘)‘hb
o qmc o pad 4, ¢
(o) ()
kodio BAh Bya, o Pitts b
.("(;,.d VL;)’;C f)[‘ald q,v,c

(c.) (d)

Figure IIT - Self-enefgy and vertexcorrections contributing to
the reducible 4-point vertex. All distinct permutations are to be
understood.

Using the well known expression for the gluon self energy
[14}, we obtain, from graphscontaining self-energy insertions, the

contribution:

abed

MQ.;VP [ PJ‘?)"-‘%%{L —g—- {\go\‘bgcc] M:WP-P (bt—bc ‘)fte—'-\)‘,Pe—iq,)}
+ <c.p.

(32)

where c.p..denotes cyclic permutations over the external legs with

corresponding momenta k P, and q - keeping the v leg fixed. This

nrocedure vields, as expected, a Bose invariant expression.

&
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The Lorentz tensor /Niakavrﬁ is given by:

o
M_,\NP_ L [(E pSap t2Padn ) b
¥ (pr gdvp + zlzp Py )Ja./w—
&) —2( %MPV‘S&(‘: + Pd-cq]m.gvp Papy CS )
? | ey speal) |
' ' (33)

We have'ékhibited explicity only the infrared divergent contributions,

iﬁ equafion {32) ,' with a gauge invariant result, proportional
to the tree aﬁplitude. .

On the other hand, the graphs contalnlng vertex corrections

vield, with- the help of equation (29), infrared singularities containing

single and double poles:

‘ bed. i L
VMZL(,’( )Pr"-!') -3— [cgobgcc\[(‘g- +—E— ) .wap a dﬁ“rj

= : + (b:-—u: }ﬁwvj pa—aq) ’% T ¢ p.

! 34

where ‘the Lorehtz tensors: /V\ayava (i=1,2} are expressed as follows:

M:;vr» Fq[ @'(‘?*S/‘*V (5""5451“\*-‘5]?;*%)5&(\

(35 a)

Yz .
. Mogosp” M[(H}z”‘h 617?5””)'”""*"*(55/“’*

+1 O(Pd-qr}* 8'\){'.7 = Papy %AP" P”O]lP gg_lu\) =M vy Pﬁq’}}

{35.b)
These contributions are not gauge invariant and must be added to the
corresponding ones resulting from the irreducible 4th order graphs, '

shown in figure IV . in order to cbhtain a gauge invariant result.

+H(kp?vé#«+P&Pv§f&P PuLOJyuSvr,) MﬂvsPHq)}
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bdo Pipsh k.o Pk
Q. o o~
R
TN
f-',(:;‘c\. Vi C i 2 d DV, c
(=) _ (=)
' . ?UAlb
h'ld.’)ﬂ. N . hﬁ. -8 & p’f“ b
T a Vv,
e i %
{ch . (._'3 3

Figure 1V - Graphs cﬁntributing.to the irreducible 4-point function.
All other diag;ams, obtained by pérmutétioné-of external gluons, are
to be undérstopd.

The contributibns assoéiated_with the box diagrams (a)
and (5), can be conveniently described in terms of the invariants

'=-ala-.p 1 22z 2P 7 Pas zlz.q. ¢ S0 that 2;+2;425 =0 .

memmwammowrmemmmﬂmmmw,mmhemt%nmuﬂws

polynomlals up to 4th power in Q. However, after combining the

.4 -denominators using the Feynman parametrization, and performing

appropriate-shifts,.the resulfing numerator will contain only even
powers in @ which we denotée by 2" » so that W= Q- { or
2 . Performing these intégratiens, one is left with parametric
integrals characteriiea;by ‘the -expression:
1 4

H (my kyzi e, 2)= § ax{ay x> y*
. NGBy 20, ‘, ; Y o (XZ,-I-‘}Zz}XYf’,)FE-‘m*Z

(36)
Note that these integrals are symmetric under the interchange

( &tﬁ k= H 2; &> 2, ) so that it is sufficient to restrict ourselves
})?/}2\,'/0

3, k are related to m in the following manner:

to the case It turns out that in our case the indices




.23.

o < 5,|—L 4y & ™m=0 (37.2)

0 <€ Atk €2 b om= (37.5)
7.

b k= 0 i % wWi= 2 (37-¢)

As shown by Karasinski in reference E9J, these integrals can be

expressed in terms of hypergeometric functions as follows:

¥k

M(ewm-1) A
32k 2y

P g4mais) 2,

H("“)S)h) 2‘:22,23) = -

£+ '3 ) i
{(Zz) ) a ‘ (Vhii-'m*—agia-’?h}ﬁri}“%l.)‘\'
dzr " !
+)L2i**22) _
2")-‘-'2!_.21
{38}

In addition, these integralé appear multiplied by simple functions
containing poles in & , so alltogether the resulting expression
contains single and double poles. Physically, the single infrared
poles arise when the internal momenta Q is soft or parallel to a
given external momenta, whereas the double poles result when both
these effects operate together.

It is convenient to sinmplify these expressions by
expanding them in powers of £ . With help of the transformation
formulas relating the hypergeometric functions [13] it is
straightforward to show that:

£+t = . 1
E({,ﬂ?,zwﬂ l}ﬂ:%[% L,;i(z)(z) -

1

g 2
=1 BT
(39)

where Lig (2) denote the polylogarithmic functions defined recursively

by:
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Ly ) i%-{ () 4%

v}

L—i (E) = &Aﬂ
g
(40)
Actually; for the purpose of studing the infrared structure, it is
sufficient to consider, in cur case, only terms with =1 .
We now turn to contributions associated with diagram (g}, >
which have three dencminators, and where the virtual momenta appear

at most with a power two in the numerator. This represents a

I o 4] G—: Oy
particular case of the general type of integral e pad,
considered in equation (1), corresponding to Cu= Az = Ol = 1 and

A=z

, ﬁe obtain the_reéu;tf:

=0 A4 or T . For instance, when

0> o+ p

T Gl [PBeon [E 5

", using

equation (17) with

‘}4.:(1)’

I (F’}-"iq-}*z”?}ﬂ! Prz ) g b G Gus
£+9 2P 0{— - g1z zpq
+ e \B(ﬂnin\ SMIMZ .
Erd _?__’ s (41)

which contalns, in general, single and. double pole divérgences As
in the previous case, the infrared 51ngular1tles are assocxated
with conflgpratlons_where the. internal momenta_Q.ls soft_and/qr
colinear to that of aﬁ external gluon. . o
Finaly we cqnsider the .contributions resulting from
graph (4). Theée can. be expressed in terms of integrais gi%eh in,
equation (2), which contain twe denominators, by making in_parﬁicular

t=2

(14}, we find the expression: ®

Og= =4 and In this way, with help of eqguation

Mle) B(ert, e+ (2p. @r)i

"o
D (Hﬂ- E+2

(42)
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which contains.only ultravidlet divergent pecles.
With the help of the integrals given in equations {36-42),
we have performed the leﬁgthy algebra using the compufational method
SCHOONSHIP.

The calculation involves a very large number of terms

and, as check we have isolated the ultraviolet divergent contribution

.which is ‘given by

dba& _ s -
= _L& - Q\_( F&ay&am ) (bevcy mesy }‘r
’D‘f’“f\*vf" 2_%1 &J\\:Sc __cganjmé'vp &y ﬁp\ ( M )
roeb (43)

where the ekprgésidn in Bracket represents the 4-gluon tree vertex.
This is in agreement Qith the result expected for the irreducible
.4—pcint function which arises in consequence of the Slavnov—Taylor
identities [14] Next we perform the renormalization of tﬁe
ultraviolet Singularitiés according tﬁ the scheme described in
section II.

The_resulting expiession for the renormalized irreducible
4-point vertex contains single and double infrared poles. The
contributions with double'poles, when added te the corresponding ones

associated with. the reducible 4-point function, given in egquation {34),

yields -the result:

)\/\:L:ii(h'?’q 45,\,2 Ez. iéﬂb&cc‘ /\/L\)Av[b /VLQ,M

Y (j\l\t—?x-\).).'ﬁa—b.c_". P :—-:-0,,_3} FoCoPs

{44)
A

QY [

where the Lorentz tensors {(i=},2,3), are given

réspectively by:
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/VLi - _i; [(12}3.\[2\,1--%0 o By + 2 kv, + 2Py ) aps -
| ~(Mknkp + 40 kpPp + Gy ) day +
.(apa_ ke~ 2L A fopa- -,‘_'.Qigqlw*‘ioquN)va*
+(2kvkp + 22 kvpp 8 pykpt 2Py ppy + 40 kqévp)éar -
- (Hpeky +Qaley +4ZPaPy + Fapy) Sop +
3 ( sp;lzp 40 papp + zo‘(&a_ﬂrp\éﬂy ] +
+'.(/~}Hv3P?“Q3 |

(45 a)

o s (b g 12
+{heks a5 pag- Y )y »
+ Uzv \Z(x +'6-~Pv‘12ra; + Prhe b ks Pqévﬁ) cgek/a _
+(6quﬂ2pahv42qghy¥t+pyp&§éﬁh
( pake L ppa-2d.k, +60,P,- 6 k. C}éar,)cg/«v}

_ _ © (45.b)
B el (A s by - 2P vEpadey ) dupr
/\/LW{» P
(‘-l pa.lzp,- '{i PJ.Q]-'P,) é}u - 1'2/4}2(:; Sa.v 4+ '
+(Prop = prkp - P--f?%'*-=5-ﬁ"ff*_ Yo ¥
+(Pacip—pakyn - k) Sups |
' ' {45.¢)

This Bose invafiant expreSsion is'furthermore gauge independent ,
satisfying the transversality condition:

N

> aked
k¢Md_}Avp-(k‘P’o+"r): 0 ’ (46)

in accordance with the gauge invariance required by equation (31).
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The infrared single poles contributions associated with the gluon-'
gluon scattering amplitude invelve a large number of terms and are
presented in Avvendix C. It can be verified that these contributions
too, form a gauge independent set as expected for a gauge invariant
DIOCess. 7

We hope that these results, concerning the behaviour 6f
three and four gluon.vertices,_might pe useful also in othex

investigations of higherordér QCD corrections.
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APPENDIX A
The Feynman rules employed in this paper are mere fully
described in reference [ll] In particular,the gluon propagator

in a general covariant gauge is given by:

ab . Sab o el |
DR @)= i (& - i) )

The Feynman gauge is characterized by the vanishing of the gauge
parameter A . The basic 3-gluon vertex is defined with ail

momenta inwards:as follows:

Vals (1 pi@) = =08 fowe LS (@ 9)a + S (0 Gua (k)

(8.2}

where_in terms of the dimensionless coupling constant g we have

—  —="E
& = p O . Fox a SU(N) Yang-Mills theory, the structure
constants ioi:c satisfy the relations:
~ \‘ ~ N . s AN =
Jfaoig J\"‘o\:.C‘jl"itc ;= '&Ot\oc > &o.a\; 'gbo-b = N &olo (A.3)

Furthermore, in a space-time with dimension n=4+2 £¢ we have

éﬂv%ﬁv= 4+ 2€ . The Feynman denominators are combined with the

help of the expression:

1 — Dok tapt ag,,)

DILLDEE DI Tl T (o)

‘ 4 @(J-X‘-...‘)(ﬂx?l-1---X?;h?1 (‘f"XW---Xlz\ah:' 1
S.“ devﬂdxk —_
o ¢ [X&(.Dl' Bh\'\—xz(bz—hk) Foeen +Diz.},‘1 it Ay,

{A.4)

Ly
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Finally we perform the n-dimensicnal integrations over the

internal momenta using the relation:

de &)‘"l"“&ﬂzf____-_ _‘L_ . ( Z) z+f jr‘( “ﬂ"}) %
J(ﬂﬂ'-“ (QZem?)h  Gm= P(I“':M )
Snpa s Spoipye 2.5
52¢ v

where P denotes permutations over the . indicated indices.

APPENDIX B
We list in this appendix the expréssions for the Lorentz

Ku\,ruh'v )V\‘_.. )\I\_Q_

factors d Ly B

associated with the contributions of

diagram 2. We obtain in a géneral covariant gauge the following

explicit results:

Sy o .
K““g = [(3_223 PGy +_3Ql}¢qv+j£(50.f’z+ B'Pz) Sf«v‘] PJ‘—'
- (ZPZPV‘]’L[Q]’Z?-V + SP?Q;,\;)(g;_IA. (B.1}

.
s = [3pepu-Gedppan + 90,00 g+

s [ {oe- €Y quay - (M€ %2) papy +3 pagqy - 13 %R ]S o +
G )Svra—?PvPrv “4%pe +20pqe ) Sap +
-\-Y_ 6?28&@ +3 PaPppt 3 P.LQ}p-lgp\l 5.2,
Ko%= (9649 (Sax§rp v =Sor Svp pa)-
- Y_ZSWO_H» »U v Py +3 Spr Qv | Sap+
Hodox po +3 Spy pa) v (3.3)
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o = P Syt [ (o) o P+ 2pzqzo,1,~]£m +
[ ? @‘)P?ﬁrw +2 Poupy | (parga)+
+[ (P7+232) (Pv+ @) P + P2 auy | Pan + |

L ( P +29%) Ao Pppy - (5.1)

G;}{?;.)i?) =2y (Q}ZSV[’: + 03;»'"@:'{") ES;L,%& 3
*’[ P e +Fpr (pp- 296 )25 ( PrPp +20.]]M°}(“> )] dave
+-2¥g? éac» F(preac) + a,(po-ap) ] uy +
+[q P ‘ZP’”' qﬂ) *P‘?}V -Pr\ ’fq’rp)] Sap -

S VLpa(pra) r asp)dpe ¢

4L (oprag) (paaa) #9720 pa) ) Svp

e rm e ravpe-25uqe T pube t
*T.Z?v?r' PV% Yo e Gapp

(8.5)
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Pr" (L‘P‘*?ﬁ Aayp) Sy "‘[PA (2} PAGv -2 %Py~ qy) *
e (2 0P +90 Qv ~zap py ] Sy
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= 2gm; (25&9 S,.\G—Sw- Secrgafn qu-)

(8.9}

11254 = F2¢ 4y Pe - ¥pvpe it +4 Qv Pe Py - zoivpgaoq.ﬂ&m-r

4

LJS;-W PaPp Py *‘[ 0-'} &Pﬂv*uﬁa?vqlp BBAQ\, PP]&MH—

+[5(590) Svp po + 9o l2Pvpe - 3@ b +@vae) +

o3 R
231
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(B.10)

= ~4 & Svp pp (Preqy) +4 5;4\' $op Po?y +
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o = LW Sue + 4Py Pe - PoAp F6Qu Pe~ Ay Tp | Sam ¥
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KaL)U\.V [S\SP
zzzy

= Pl padyy - Pt G ) Iy 1o (Ppeap) +
FPapady (,Pm-% + 909y Pp )

© {B.30)

When Qy=O,, the permutat:.ons ,uut-bv and p & q, are always to be

understead A1l other non—va.n:;sh:.ng functions are obtained from the

-.above expressions, by the symulta_neous J.nterchange of Lorentz factors

+ ‘gluon momenta pes q and .indices Q;ev @, -

APPENDIX C

We prese'n{: here the contributions with éinqle infrared poles

' resulting from:the one particleirreducible 4 point function, together

with the corresponding ones associated with the 4 point vertex given

in eq. (34). Using wmomenta: conservation }?.+p+q.*f' = 0 , we can express

then ig terms ‘of . ther 'folowinq-—'HOSe invariant function:

"}‘Wl" /VL}VP o\;w;s *
+M°5w{;, /\/ky\p ) *

. _(/vu.-?v", bt—‘sc ‘3 Pg_—‘f,q_)

{ éab gcd

MY P 45’1’1 €
Mo ) +
} *l-c:,.p_

C(e.n

" - where the Lorentz tensors Maﬂvp are given explicitly as follows:
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6%t 2Ga ke ) Sy ]

, 4 gauge invariant contribution
satisfying the transversality cendition (46} .
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