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ABSTRACT

We show the existence of long range order in the
ground state of the two-dimensional isotropic Heisenberg anti-
ferromagnet for S z% . The method yields also long range
order for the ground state of a larger class of anisotropic

guantum antiferromagnetic spin systems with or without transverse

magnetic fields,
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“isotropic guantum antiferromagnetic spin model for spin Sz

In this letter we ‘show the éxistence of long range

order {(£.r.o.) in the ground state of the two-dimensicnal

e

The ground state of this model as opposed to the
ferromagnetic one (where all the spins are aligned) is highly

non-trivial, even in cne-dimension [13]. In two-dimensions

- numerical results of Betts and Oitmaa [2] indicate £.r.o.

already for =%-. At non zero temperatures the Mermin-Wagner

phenomenon {11,12] precludes the existence of £.r.o.. Dyson,

Lieb and Simon [3] showed £.r.o. at sufficiently small tempera-

tures- for dimension vz23.
The v=2 anisotropic case was considered by

Frohlich and Lieb [1].  From their analysis it follows that the

system exhibits £.r.c. at low enough temperatures provided the

- coupling in the =Xy spin direction is small encugh {(depending

on 8}; for the ground state the anisotropy can go to zero only
in the classical limit S+,

6ur methods involve the combination of infrared
bounds (IRB) and sum rules for the Gibbs state of the system
at inverse temperature B in a volume A . This combination
has been used-[3] to shﬁw £.r.0. at finite inverse temperature
g for a class of spin systems having.the s¢ called RP property.
If the interactions are short ranged the method works well only
for dimension- vz 3, since for v$2 the relevant IRB when
inserted in the sum rule gives rise to a divergent integral in
the limit A+« (for fixed finite B). Since however we are
interested in the ground state of the system we must first take
the 8-+« ‘limit and only then the A-+= limit. In v=2
dimensions this procedure annihilates the otherwise divergent

contribution.
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This is connected to the fact that the path space
formulation of the F£-« model would be given by a 3-dimensional
classical spin system [6].

The model in a finite volume AC %' is described

by the Hamiltonian

H=Z (2S5l

xe A Py
mef2

where {Sm ,m=1,2} are the unit vectors of the lattice,
s* ,. 82, 5* are the spin operators at the lattice site
41 ¢

o EA, with the usual commutation rules
[ | j . '
3 -
\ig QS = ¢ ds 6?_”
> s S wp ~ 4k

5.3, = SCs+1)

and

Phe expectation value of an observable A at

inverse teémperature B is given By
LAY = ﬁ-féﬁ%)/Trféﬁ’H)

. T = ds e ¢
=<5 >
with

,ZJ V"‘Z -L{Dx‘sﬁf s PE /I* (cnl laftice )

reAn

. . '. = Y,
" where (A ,B) = 2/7;(2'-1/3% e_(,—x%;é)dx
o
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The existence of £.r.0. in the ground state of the

gystem is a conseguence of

: / ¢ (1)
m3= dim 2% A Zg > o R
Aba B e p=T
The theorem below gives sufficient conditions for
(1} -to hold. It is an extension to the two-dimensional T =0

problem of Theorem 5.1 of reference [3].

Theorem: Suppose the model (1) satisfies the following uxiutkﬁﬁ:

i) "Gaussian Domination":
. Bi 2
i giy ¢ B, '
(SP ,S_P) § g ; pPET for all B

is the Duhamel two-point function.

ii) Existence of an upper bound for the expectation value of

the double commutator:

LS4 LHSETT>

iii) ’
G ca

iv} ©Existence of a lower bound for the usual two-point function:

;E:: <f:; (\/g5 ;3 zf>
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Then, there exists £.r.o. if:

_ 4
2D >@g/d%[(;£;)(g@€yz (2)
Fm, 0f*

Proof: As in [3], from {i), (ii) and the Bruch-Falk inecuality [7]

we get a domination for the uswal two peoint function:

, ‘ st ZG z

Together with the sum rule

+ 2 2 =<sL8l>

1 pen*

{3) implies

/ « .
77{2T§;=a"; 57“'?fi£;; é;’ (4)

Using the ineguality [3]:
* ) .EJL £
G <FNZEBENL G+ 4(Z25) o

we obtain for the ground state

m?= bew Zfr‘?— 7

N-se0 ﬂ""‘” A

st / "%/Zzgp // Z C/J//

Remark: For B< =, inequality (3) is useless (for v=2} as

L0 fin A2 6 -

APG?A

. As shown in [3] , property {i) is fulfilled with B;‘ given by

-5;‘: o_z-iﬁ_-(}?) L wi;th E-CP) —Zf/-cas,bt (6)

=

The relevant double commutator bound is given by [3]

Zaqo“3<—/4> :_(_-Qc, ]

=t

where

2
A=t D (1-005m LSSk s0 # S5l #5538
m=|

and ao 1is the lowest eigenvalue of ' A.

-For a; we have the bound of Anderson .[5]:
<
—Qo & 35(54%{—)%, (/“‘0‘%2] _ (8)

So that we have f.r.o. if
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S5ince the r.h.s, is finite, it follows that the
system exhibits f£.r.o. for sufficiently large S. Numerical

integration yields

L
)

and therefore (9%} holds for 82-23- .

With the same technigues we can prove [4,10] £.r.o.
for the ground state of a large clasé of. anisotropic ﬁodels
with or without external magnetic fields provided Reflection
Positivity is verified. For these models however the bound (7}
is more delicate as it involves estimating the lowest eigen-
value of the Hamiltonian of a spin system with a p-dependent
anisotropy. For the isotropic xy moedel our bounds so far are

not gocd encugh to imply £.r.o. even for large 8!
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