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ABSTRACT

We discuss a dielectric model of QCP in 2-space
dimensions which. yields confinement of two opposite color
charges via .a static linear potential. We study anglytically
and numerically the non-leading contribﬁtions to the asymptotic
potential as well as the structure of the confinement domain.
For large separations of the color.charges, we find a behavior

which contrasts with the usual string-~like picture.

I. INTRODUCTION

In thé past years there have been many investigations
of classical'models ‘of confinement [1-31 which represent
approximations of the quantum chromddynamics-theory. ‘This
approach gives an ihtuitive.picture of QCD vacwin as a dielectric
médium,arising in consequence of the guantum fluctuations of
Yang-Mills fields [4-6], the propefty of which gives rise to
confinement. In .an important serie of papers Adler and Piran [7}
have studied many aspects of this ptoblem and developed general
numefical methoés for its investigation. On the other hand
Lehmann and Wu [8] have devised aﬁ interésting perturbative
ﬁreatment for the analytical investigation of the structure of
classical models of confinement.

In .this work we study, with the help of analytical
and numerical methods motivated by these authors, a dielectric
model of confinement in 2+1 dimensional QCD. The situation in
this case is comparatively simpler than in 3+1 dimensional

space~time, due to the fact that the guantum corrections of

Yang-Mills fields to the effective coupling constant become

very small at short distances. Consequently, by considering
infinitely massive sources when éuark—antiquark pairs are
suppressed, we see that in this case the dielectric vacuum at
short disténces behaves like in classical electrodynamics where
e=1 . In general, the effective QCD Euler-Lagrange egurations
reduce, in the quasi-abelian approximation for the guark color
charges, to those of non-linear electrodynamics with a field
dependent dielectric parameter e{(E) [7]). This approximation
is motivated by the fact that, in the infinite quark mass limit,

a quark charge cannot be screened by the color cctet of the
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gluon fields. Thus from a color charge in the 3 representation
a net color flux emerges which must end on the charge in the 3
representation. The quasi-abelian approximation models this
flux as a conserved abelian flux.

In order to see the self-consistency of this
approximation, consider the effective static equations of two
dimensional QCD which are given by:

a (1.a)

a
p. £E.} =
{ 3 j p
where a denotes color indices, J represents the spatial
coordinates x,y and T stands for the covariant derivative

in texms of which the color field E? is represented as:

a a a abe b _c
B} = - (0gR)T = - (3yBy ¢ g E ASA) {1.b)
with fabc denoting the BSU(N) group structure coastants.

Similarly, the eguations determining the magnetic field B?

where:

abe b ¢

BT = BxAy - ayBk + gf Ak Ay (2.a)
are given by:
a abec . b c
. EB = O & A {eRED, 2.b
(0, €B) gn s o EES)) (2.b)

where n is a two dimensional antisymmetric tensor with nxy=1.
With the help of the identity:

ébc Bb Fc

([P, P IFNT = gf (3)

applied to eguation (2}, it is easy to show making use of
(1}, that in order to obtain consistent static solutions the

following condition must be obeyed:

abc b c

P AP° - 0 . (4)
. . . : . ) b b [} c
This constraint is satisfied if Ay =V Ay, and p =V p ,

where V is a fixed unit vector in the color space. Furthermore
if we make the quasi-abelian ansatz A? =VaAj so that E? =Van
and B® =v®B , equations (1) and (2} reduce respectively to
these of non-linear static two dimensional electromagnetism,

with a field dependent dielectric parameter e:
B (EE) + B (B ) = V. (B = o (5.a)
ax(EB) = By(sB) = 0 (5.b})

to which we must also add the eguation describing the

irrotational nature of the electric field;
3_E - 3. E = 0 . (5.c}

Equation (5.b) states that €B must be a constant. Since we
are interested in configurations with minimal energy, which
are cbhtained for vanishing magnetic fields [7] we will have
B=0,

We must now indicate the manner in which ¢ (E)
depends on the electric field. As it will be justified in the

next section, we take this relation to be given by:
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eE = 1 -5 . for R z E, {(6)

where Ep >0 denotes an arbitrary, fixed electric field.
Despite the simplicity of this form, we shall see that no exact
solutions are available due to the intrinsic non-linear nature
‘of the problem. However many interesting features can be
revealed in this case, such as the transverse width of the
confinement domain as well as the behavicur of subdominant terms
in the static potential at large distances. 1In section II we
present the medel and formulate ﬁn analytic approach which
giveés its asymptotic properties in the case of two opposite
static charges separated by a large distance R. In secfion III
we evaluate the first order corrections arising in a perturbative
treatment ahd discuss some general features characterizing the
boundéry which delimits tﬁe confinement domain. Finally in
section IV we describe a numerical analysis of the problem and
find an excellent agreement with the analytic results. These
results indicate a transverse width of the confinemert domain

%

of order R as well as non-leading contributions to the

b
linear potential which are proportional to I{k. This behavicur
is in contrast with the usual picture which assumes a string-

like form for the £f£lux tube connecting the color charges at

large distances.

II. THE MODEL AND ITS ASYMPTOTIC PROPERTIES

In order to justify the choice (6) for the dielectric
parameter consider the constitutive relation for the displacement

field D given by B=c(EE. By inverting it we can express

" this case E = Ey determinegs a boundary of the confinement

6.

‘the "electric field as a function of D: E=E,f(D) . When the

following conditions are satisfied:

=1 at D=0 (7.a)

£z 1 for E 2 Ey (7.0}

it was shown by t'Hooft [1] that the electrostatic energy of

two point charges increases linearly for large separations. In

domain, outside which the energy density wanishes and
conseguently D=0. The class of models we are concerned

with -[7,8] maké the physically reascnable assumption tﬁat the

D fields are continuous across the boundary so that D increases
from zero towards the interior of the confinement regicn. Since
the 2+1 dimensional QCD leads to the confinement of the color
chqrges by a linear potential, as shown by Feynman [9]), it is
reasonable to assume that the conditions given in {7) are
satisfied. Due to the céntinuity of the D field, we can make

a Taylor expansion in the interior of the domain in the.vicinity

of the boundary as follows:
£(D) = 1+cD+0({D?) , for D << E, . " (8.a)

On the other hand, for large values of the electric fields
which eccur at small distances in the neighbourheed of the
color charges, as we have mentioned we have e=1, i.e D=E.
Using the relation E =E,£f(D) , this condition can be written
as follows:

£{D) = D ’ for D >> Eu . (8.0}

a1
Eg
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Of course the exact form of f£{D) is unknown until we solve
completely the QCD theory. For this reason we choose the
simplest analytic expression consistent with the boundary
conditions (7,8) and the continuity of the D field, namely:

£{p) = 1 + D (9}

L
Eo
which then leads to the form indicated in eguation (6}.
{Alternative bag models have discontinuous dielectric constant
and D fields across the boundary E=E;, . A simple model of
this type with € =constant for E>E; and =0 for E<E
was investigated [10] and shown to be exactly soluble for two
space dimensions].

A solution of the non-linear differential eéuation'
{5) with the dielectric parameter e(E) given by (6), depends
in a cruciai way on the boundary conditions which must be
satisfied by the fields. 1In such eguations the boundary
conditions cannot be imposed a priori, in general, but depend
on the selution. A convenient way of handling this situation
is via the flux function introduced by Adler. In this method
one. expresses E as a function of the electric flux ¢, on
which the boundary conditions can be expressed in a convenient
way. To see this, note that outside the sources, which we take
to be two opposite point charges separated by a large distance

R =2a, eguation (5.a) can be written as
V.(cE) = V.D =0 {10.a)

which is satisfied if B is expressed as the rotational of a

functicn ¢ :

=}
)
&
(w}
I
2
-

. {10.b)

"
1
Qar
o
L
Qz
W

Thé physical interpretation of ¢ = JE .dé is that of the
electric flux through the curve C, which intersects the charge

axis at a point x>a, as shown in figure 1.

y 4

{x,y) 4

|
asp

ol )

Figure 1 - The curve C used in the evaluation of the flux,
bounded by the symmetrical peints (x,y) and (x,-y).

The boundary conditions on the flux function

di{x,y) are:
¢(x,0) = {11)

together with the reguirement that ¢ vanishes when x%+y?+w,
which ensures that no additional sources are present at spatial
infinity.

By expressing E in function of ¢ with the help of




(10.b) , equaticn’ {5.c) becomes:

Y2 + E,V . [ﬂ—} -0 - (12)

3
In generdl this non-linear equation.cannot be solved in.cldsed
form. When D = |V¢| »>> E,, which is the situation near the
sources, (12) reducges to the lineér'form of the electrostatic
theory, which is characterized by £=1 and hence E;=0. In
this cése the solation satisffiné the boundary condition- (11)
is given by: l )

X-a x+a

o i{x,y) = % [tan'l{—zh] - tan"[—l—]J . (13}

Apart from this case we must resert to pertufbativé methods in
order to-solve {12}. To this end it is convenient to rescale
¢, ¥ and y in terms of dimeﬁsionless parameters, 6 * Q¢ ;
&x,y}+é%lx;y) ‘which are to be understood in what foildws. In
other words, all guantities are to be expressed in units of

' Q

charge ¢ and length g * Expanding (12} we f£ind in this way

the equation:

3 . 3z,
2 2 /2 2 . { 2 2 /2 2} ¢
%+ ¢ U3 RN LR R R

2¢x¢y¢ky = @ (14.a)

where

b = 2 Y = —a—z—i PR = ﬂ e.t.c.

XX 3x® ! Xy ~ OX3y : (14.b}

In order to get an orientation toward the solution of this

.10,

equation we rescale the cocrdinates x and y respectively by a
o

and "a” . S8ince o=t for ordinary electrostatic, we expect

R 'in a confining model. In this case the dominant order of

magnitude of the:three sets of terms in (14.a) are respectively

-2~ i—2-2 -5 -
a 1 T o, o 720

B a , a . These orders are comparable

if @ =2/3. " With this motivation we introduce the variables
z
¥ =as ; yealt {(15.a)

in terms. of which equation (14) becomes:

. .. 2 . " 3/2. 2 2 3/2
(o ogeet] o v atfogg » {[0re0r] e i) e

T 20ty = 0 e (15.b)
. ) _1/
This form.shows that the relévant expansion parameter is & 3.
y -2
Then, provided the condition a 7 ¢; << ¢§ is satisfied,

{15.b} ‘reduces to the equation

U Ebf:*ﬁ] Spp = 28,0, 9, = O {16.a)

determining the asymptotic form of the f£lux function which we
denote by . A solution to this equation can be obtained by
éxpressing t as a function of $ and s. The resulting
partial differential eguation can then be solved by the method
of separation of variables. Using the boundary cendition (11)

we obtain for ¢ result:

- 3
&(E,t) = 1 - Z_.iu:..l.... + l _IE.J.._..... . {16.b}

(-1sh % 27 (1ogsh?
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In terms of the original variables x,y given in (15.a) , we

can express % in the form

2
Y =%
. 2 tyl 2 _lll_r
¢{=,¥y) = |1 - T+ (17)
[ 3 (a-lxl)r’ﬂ] [ > a-lx

From this form we see that the characteristic curve along which
&I together with its first derivatives éx and @Y vanish is

given by

-1 2
1P| = 3.2 % {a-|x|) /s . (18)

This curve delimits the domain confining the asymptotic flux

function ¢ , which positions the charges on the characteristic

boundary.
We now proceed to calculate the- total electrostatic
energy:
D
V(R) = dedy J E(D’) dp' = dedy(D+J2-D2] . {(19)
0

Using the symmetry of our problem we obtain:

R/2 ]§b&di

V(R) = 4| ax dy(D+%Dz) (20.a)

where §b{x] is given by (18) and, up to corrections of order

R—%G:

1

D= [Fo] ¢Ty[1 + % (q‘;x/asy)ﬂ' (20.b)

parameter is a

12,

with 3 denoting the asymptotic flux function (17). Performing

the integrations over the energy density H = D4~%D2 we find:

. 2
V{R) = 2R|:1+—1—5-2— R"/a + ] . (21)

This expression shows that, in addition to the dominant linear

contributions to the static potential, there are subdominant

s

terms behaving like R for large éeparations of the charges.

TII. PERTUREBATIVE CORRECTIONS AND BOUNDARY BEHAVIOR

As we have seen in our case the relevant expansion
Y
= /3

so that we can writé the solution to the

flux function as a perturbative serie:
Y =% 1
$ = ¢° + a (.2 P {22)

where ¢° is given by the asymptotic form (17), up to corrections

A

of order a 7.

Substituting this expression into (15} we find, to

~ the required accuracy, the following equation:

’ 2
(62)% 02 + [mf;)a + <¢.g)i 42, - 2000060 +a"hE = 0

{23.a}

where E is given by:
B e 670, ¢ [0+ 0 ol - 20203 n, + 2otet, - ater ] o2

[ 32 0,2 3 3
cafatai-atet e 3 e el ¢ DT s Bantenan,
. ) {23.b)




el

P

13,

This represents a fairly complicated expression which can
however be simplified by choosing appropriate variables. We
recall that in non-linear eguations the solution and boundary
conditions are strongly interdependent, so this choice must be
made in a way which allows these conditions to be more conveniently
expressed. To this end let us expand perturbatively the form
giving the characteristic boundary curve. With the help of
equations (18) and (15.a) we have:

1 2 27 ’
1tP(s) | = 3.270501= s} 2 + a7 E(s) ¢ ...

1]

- 2 -
Pisy +a=® F(s) + ... } (24.a)

Then, motivated by the work in reference [8] we introduce a new

variable u:
w = t/P(s) 5 ot = t(s)u {24.b)

which vanishes at t=0 and equals unity on the boundary. After
expressing t in terms of the variable u and choosing

$° = {u-1)* (%+ 1) , we Find that eguation (23} reduces to:

(u2-1)u[—fss + % {(1-ls)~t £+ % (1-|slr2f:| +

+ % ?;3 (u2-1)u(3u-1r (1-jsP7? +
b
2 N 3 1 2 1 _5 1 -
t3 [wss "3 IEET; (u®-1} qJuu * 2"b wS] =0 (25

where in the notation of equation (24.a) we have £ = 310
Since the form chosen for ¢° is such that it equals unity at

u=0 while together with its first derivative vanishes on the

.14,

boundary u=1, conditiocn {11) together with the requirement .

that the bcunéary should be a characteristic curve regquires:

¢t (u=0) =0 and ¢t fu=t) = ¢111(u=1) =0 . (26.a)

Then from equation (25) we see that ¢! must have the form:
p* (s, 1) = ulu?-1)2his) .. {26.b)

Substituting this expression into (25) yields two ordinary
differential equations which determine. the behaviour of the

functions £(s) and his) :

' 4 ' - 20 — 15 -
ho -3 1-|spy—t h, - 5 (=[s]y ’h + g {1-1s]372% =0 (27.a)

4 - - -2 . . —2 .
%Efss+'§'(1"is') Ifs +§(1'ISI, 2f:| *%‘HSU zh*%%“‘isl' :0.

(27.b)

When scolving-these equations we must realize that these
functions must vield, from (22) and {(24), small perturbative
corrections to the asymptotic flux function and its boundary.
With this constraint we find for h and f +the following

expressions:

=2 ’ 2 5
his}) = {1-}s]|) Co(1=]s]) - % (28.a)
_2 i 5 3
ffs) = .(1~|s|) 7 E:I(Hsi;/a __32C1° (1-|s])? +—%,—2/3:! . (28.b)

Using these results we cbtain for the flux function including

first order corrections, the expression:
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2, L, 2
¢ = u-1)* (%+1} va e u(uzhﬂzlglo (1-1s|) A —E/'S' (1“|S|)—/3] {29)
2

with the bhoundary tb given by:

12| E:;/—s {tgsn ™+ a7 [c1u_|5;)"/3—§§1£ (1_|s|)2+§{;§]}. (30
The determination of Cy and C; would require information
about the sclution near the charges situated at |s] =1, where
D is large. However since a necessary condition for the
applicability of the perturbative method is that D is small,
the above sclutions are not valid near the charges. This can
be seen alsc from the remarks following eguation (15), where it
was assumed that a\_z"'r3 @; << ¢; . This condition does not hold
in the region |[s| =1, as can be seen from the asymptotic
expression {16.b).

In order to gain further insight of the behaviour
of the boundary we will use an alternative approach [7]. This
is obtained by putting equation (12) into the standard form for
a second order differential equation and analysing the structure
of its characteristics. Defining the inward directed unit

normal 0 and the corresponding normal derivative an:

=
1
’4
<

Qi

i
)
(=]

{31.a)

<
<
=]

we obtain through a straightforward calculation that (12) is

equivalent to:

2 |§¢
(ax+a§-a§}¢+1ﬁha;¢ = 0 . (31.b)

.16,

An approximate soluticn of this equation near the boundary where
$=0 can be obtained thrcugh the introduction of tangencial and
normal coordinates denoted respectively by £ and n, as shown

in figure 2.
yd yl‘x}
Figuire 2 - Representation of normal

and tangencial coordinates
near the boundary yb(xl.

Then eguaticn (31) reduces in this region to:
82¢ + |Vo| 82¢ = o0 . {32}
£ n

When the radius of curvature at B is r, then to a good
approximation the boundary in the wvicinity of B is described

by a circle characterized by n=£2/2r . Since ¢ vanishes on

© the boundary we see that to the needed accuracy in this region

¢ has the form:
$ = F 14 : F =
= n-% = H {0) = 0 . (33}

Substituting (33} into (32} determines ¢ to be given in

leading order by:

2
- £2
$ = 3F Ei- "r—] . (34)

N =

.
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Because ¢ decreases towards the boundary for increasing values
of £, we see that one must have r >0 which implies that the

boundary is evervwhere convex.

IV, NUMERICAL ANALYSIS

In order to formulate the continuum problem of

equation (12} which in ocur units can be written as:

ﬁ.{[ L +1:|$¢}z$.{h$¢}'=o (35)
174

we must approximate it by a similar problem defined on a
discrete computational lattice. We introduce it, following
the work in reference [7], by replacing the continuous variables
¥ and y by discrete ones:

R i, % .. =1,0,1... (36.a)

and the corresponding half-node lattice:

1
i+

= (i+-’?:m P vy (j+-12-)A 9 = eee=1,0,1...  {36.b)

In discretizing our model we put the charge coordinates x=a

on a neode of the computational lattice:
a = nh {37.a)

and enforce the step function boundary condition (11} by

reguiring:

¢i,0 =1 0 < jil < n
¢ =1 [i] = n {37.0)
i,0 2 - -

' ¢i,0 =0 n < |i] € ng

where ¢ denotes the values of the flux function on the

3
lattice. Because the solution of ¢ is confined within a

finite boundary, the numerical solution is independent of

Xpax * Ypax provided that these are large enough for the

boundary to lie entirely within the computational mesh.

Let h, .
1+5Q:3+56

half-node lattice. Working to secohd-order accuracy a? we

denote the wvalues of h on the

can then replace the differential operators by finite differences.
In terms of this disc:etizétién, the iteration consists of
alternating a complete sweep of the node lattice with a complete

sweep of the half node lattice. In the sweep of the mnode

n

n n+1
i, ¥s

lattice ¢ i, ¢ 3
r r

is updated by the iteration where:

-1
n+1 Ti.n T 1 i1l
. =N - R h; X X . X S
5,52 [hl+1/2r3+_1/2 i 15 By 1,943 * hl-lfzfj-%]
ni+1

T1 Il Il I It
x l:[hi+1/2.j+% * hi+‘/2,j~1/z} i1, [hi—l/z:j"':l/z * hi—‘/z,j—l/z] 1,3

n n n I In n+1
: . : . 1 : . HY . i+
+[hl+:'/z:'_‘l+1/2 * hl—%,:ﬁllz] 50 F [h1+1/z.j—1/z * 1-1/2.3—1/2] ¢JL.-:|-1:|

{(38)
while in the subsegquent sweep of the half-ncde. lattice,
n . n n+1i
hi+1/2,j+1/z is updated by the replacement hi+1/2,j+1/2 - hi+1/2’j+;/2

where:




i,
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n+1 1
. = —_———— 39,
hi+1/2::l+l/z ':Iﬁ‘blr}-” y * 1:| { a)
2

l'*'l/ZJj'*‘

2

n+1 n+1 N+ n+1 2
o] _on | %aen T % o %5, 501 7 %, e
¢ i+Y%,9+% - 12 A 2 A
1
¢n+1 ¢n+1 2 ¢n+1 _ ¢n+1 27
. l[i,jﬂ - i,j:| N _:I_[ i+1,3+1 i+‘1,jJ (39.5)
2 A 2 A : )

Sample results on a 240 x 240 mesh computed for the
parameters ¢@=1=E; for varicus separations R=2a of the
charges are presented in figure 3. This shows the flux function
$ and the energy density H ploﬁted vertically over an
horizontal plane through the charge axis. From the figure we
can clearly see the boundary condition on $ at y=0 as well
as the Coulomb self-energy peaks associated with H. We also

observe that ¢ and H are confined within a finite domain . ! 7

Dy
A
bounded by & characteristic curve. The shape of ¢ agrees , %%%',/
i,
well with the one obtained analytically in equations (17-18), i : /”%%W’[’I,
| Y
reflecting the fact that the distance between the charges and %

the boundary is of order 1. This behaviour was actually '
assumed in the derivation of the subdominant terms in the
analytic expression of the potential (2%). Integrating
numerically A over the confinement domain, we obtain. the

following fit for the potential:
-
V(R} = 2.01R{1+2.21TR" 7 + ...) {40)

which agrees within one percent with the analytical result

given in equation {21). The agreement is excellent given that,

Figure 3 - Representation of the flux function ¢ (a;,a.) and
energy density H(bi,b;) for charge Separations
Ri = 48 and R; = 96, respectively.
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due to the limitétions of the available computer facilities,
the maximum range of R was limited to moderately large values
of order of 100.

Finally we note that the transversal width of the
%y

confinement domain grows like R for large values of R. A

similér feature cccurs in 3-dimensional models [7,8] when the
width behaves asymptotically like Rl’{2 if condition (Ba) is
satisfied. We can understand this behavior by censidering twe
opposite charges =Q .separated by a large distance R in a

Nz? dimensional space. If we denote by I the transversal width
of the confinement domain in the region eguidistant from the
charges, we obtain that the total flux Q is proportional to
GLN“1 , where ¢ denotes the mean flux density. We expect
qualitatively ¢ to be inversely proporticnal to some power of
R: o~ 1/RP. Hence it follows from these considerations that
the transversal width behaves for large values of R 1like

L - RP/(N"1). The results obtained in the class of models studied
above indicate that p 1is a parameter of order unity. This

is very different from the traditional flux tube picture where,

essentially, one assumes that p is a vanishing quantity for

large separations between the color charges.
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