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ABSTRACT

As an.-illustration, the time dependent variational
principle with parametrized wave funection is applied to describe
the free motion of a gaussian wave packet and its deformation

when interacting with a potential barrier.

.
'supported by FAPESP.

I. INTRODUCTION -

The time dependent variational principie (TDVP)
{introduced by Dirac' in 1930) has proved to be a useful tool in
generating approximate solutions in nuélear.physics Problens.
Different types of approximate solutions are obtained'by using
the variational principle restricted to a_subspace of the
Hilbert space., The time dependent Hartree-Fack theory2'3 , for
instance, is the result of using the.va;iational ﬁrinciple in
the subspace of Slater determinants. . | .

The most convenient way of using the TDVE is by
pafametrizing the trial wave.function. The_parametrized wave
function_will span a subspace of the Hilbert space and using it
in the TDVP obtains classical equations of m§tion-for“the chosen

4.5

parameters A particular subspace of the Hilbert space is

.selected by appropriately choosing the parameters, guided by

the physical collective aspect of the system to be investigated.
The interesting feature of this method is that it
provides some quantum information despite the classical
character of the parameters equations of motion. . Of- course
there are also quantum inﬁormations that cannot be directly

extracted from those classical equations and reguire previously

some reguantization procedure such as WKB or Bohr—Sommerfeld§Z

The main purpose of this work is to apply the method
of parametrized TDVP in describing the motion of a gaussian wave
packet when interacting with a potential barrier. It is a
simple example bhut of great pedagogical value as it completely
illustrates the method, including the procedure for choosing
the parametrization. In. section IT we derive the equations fof

a parametrized trial function and in section III apply it to

s




describe the deformation of a gaussian wave packet due to its
interaction with a potential barrier. In section IV we describe
the free_motioe (no barrier) of the wave packet and, for smail
time in;e:valsp.itséspreadinq ié-shown to be exactly as @&ﬁic&ﬁ
bw quehtuﬁ_ﬁeehgnice; In. section V we present the results for
the case. of an expenential ber:iet'and-tﬁe.conclgsions are

summarized: in section. VI.

1I. THE TDVE- AND THE CLASSICAL EQUATIONS OF MOTION.

.ThelTpVE;may‘pehdeseripeq-as-a3p;incipleﬁe£ least

acticn4‘5} Theféctiqn;is.giuen@bye.

with' the real Lagrangian

- ik <gld> = <ly>  <y[H{p>
Libg) = S s -
. R L SSVRRVES

whe;en B - is.the-Hamiltonian of ‘the system and |¢>. a unhormalized
wave. function: (the bar. indicates complex conjugatien and the

doti.time. derivative}. 'And_the'TDVP is -given by

with: the: boundary conditions

Slu(e;)> = Sule,)> = scutey) | s<pity)] =0 L (2.4)

VR S C{2.1)

. (2.2)

It is easy to see that unconstrained variaticns of
|w> . and <y| 1lead to the time dependent Schrddinger eguation

(TDSE) for unnormalized wave-function

(ih L -y jus - llﬁ il e s L {
ih S - > = o, L 42.5)
e <w|w> S

and its: &d]Olnt equatlon.

The nice feature of thlS method is that.appnmugﬂtlons
are naturally obtalned by restrlctlng the. varlatlons of éwi
and |¥>  to a subspace of the. Hllbert spade. . A-slmple-ﬁa?"
of doing thls is by parametrlZlng the trlal functlon {¢>.
Dependlng on the parameter ch01ce, a partlcular subspace of the
Hilbert sPace will. be. selected.. We: shall. con51der the wave
function parametrized. in terms of a set of complex parameters

z = (ZT' 22,..., z ), and we shall write

: lm1ti>; = lzE)> . (2.7

of" course, the particular: ch01ce of parameters
depends - on. the preblem to be solved as they are related to some.’
collective maodes of-the‘phy51cal-system We shall con51der two
cases of parametrization that w1ll be useful for onx purposes.

B

(i) |z(t)> depends only on.

|

(i1} |§(t)> depends on both - and 'z .
‘Case (i} has been treated in many Other.papers$'6'7
s0 we shall make a brief review only. The_Leg:angian:in’this

case reads .

L'(zz)=_iE§[éa . 3 '
' 2 gL LT T % e | faN - H o, (2.8)



~where
N(z,Z) = <z|z> _ (2.9}
and -
_ <z|H|z>
‘Hizyz) . = -—ﬁff—— {2.10})
Variations of the action (2.1) with respect to z; and Ei
leads to the system of equatiens
-1 BH(%,?} .
oz o= z (gﬂ ?ij: — and c.o. . {2.11)
3 i . 3
where the matrix
32 EnN(z,3) | '
g = ———— T (2.12)
1] 9Z., JE,
1 ]

is assumed to be invertible (det g £ 0} .

Defining a generalized Poisson brackets of functions

cf z and z -as

{F,G} = {gg;-(gr1)ij = - %g" CaUp gg;} o 12:33)
15 L%, z Z, 'z

equations (2.11) assume an explicit canonical form:

in Ek = {zk;H} . (2.14)

Case (ii} is a bit more complicated. In that case

the Lagrangian (2.2} reads

6.
P xr . - ) ) S .
t(z,z) = 7} éi Xy ¥ 2, %, - H . (2.15)
i=1
where we have defined
3
. <§|Bz.lg> - <§iaz.13’
_ ih i i
X; = 2 N "

the arrows indicating the side on which the operator is acting.

The stationarity of the action with respect to =z, and z

=i i
leads to the following system of eguations:
ax,  ax,] . [e%. sx,
s jed o i, % G R
zj(az. Bz.] * zj[az. a*;] T Bz, - (2.16)
i J i 3 i

As we can see, these equations- are far from the desirable

canonical form. Héwever, in the particular caser of one parameter

thesé equations are very simple because the first term on the

left goes to zero and we get

. [3E _ax)7V am
h at 92 Az f
{2.17)
5 - [ax )7 e
© T 3T T Bz 3T :

IIIX. THE TRIAL WAVE FUNCTION FOR THE CALCULATION OF DEFORMATION
AMPLITUDES

The wave function that will be used. for describing

the deformation of ‘a wave packet when interacting with a




potential barrier will be. a combination of parametrizations (i}
and (ii) presented in section II.

In many applications of the TBVF the coherent state
wave packet has proved to be a useful wvariational function. It
is suitable for describing the elastic sqatterinq of light
nucleis. The'parametérs in:this case describe the relative
motion of the coliiding nuclei and no internal excita;ion can
be. described by using this simpie:parametr;zation. The unde-
formable {and unncrmalized) ceherent state dgscribing the

relative motion is written- as

=T

z> = &% |o» _ (3.1}

where
1 [g . g] : . _
z = — - ib ' [{3.2a}
ST b b1 )

h I

b o= J . {3.2b)

g and- - p.’ being. the coordinate.'and momentum parameters
respectively, and |0> the ground-state of the harmonic
oscillator. of epergy spacing. hw, ﬁ[0> = ¢ {(m is the reduced
mass of the;coilid;ng nublei}.

In our. case, as we want to describe the deformation
of & wave_packet_during_its interaction with a potential barrier,
the ﬁatu:ai choice of trial wave function is a superposition of

generalized coherent states8

_ =t -
ap () e*F 7P

™18

lz> =

£=0

Wiz, z) |a> ;- {3.3)

where

Wiz,z)

n
1)
1]

is the unnormalized Weyl operator and

o
a> = § ow,(r) e
£=0

(3.4)

(3.5)

is a superpesition of harmenic oscillator states [ £> with 

time dependent amplitudes az(t).

For this parametrized function the norm is.given by

Niz,z,q,8) = Ml(z,z) 6lo,2}

with

M(z,Z) = e*%Z  ana aigﬁg),=_24q£|23'”

and the Lagrangian (2.2} can be written in the mixed form

{compare with (2.8) and (2.15)):

Qr,
L = Alg,d) « E(a,8,2,Z) - H(4,%,2,2)
where
E o= BX o+ zX .
_ <z|H]z>
Ho = - .

S8

{(3.7)

(3.8}

(3.9)

(3.10)



. 9.
and
if <§|%|§) = <§.l%i§>
X o= 5 ™ oo 3ama
i — Loy o q 7R+
= _}'Tz,ih 7 . {3.11b)
Tl |
k

The equations of motion for =z, z, a, and Ei are
_then.obtained: by imposing the stationarity of § = J Ldt , the

result being

LU [-:;‘-g - %] S G

ana its complex conjugate, and
%%1: = in :{l s éj + 2. gék N ?-gz—k. , (3.13)

and its complex cconjugate, with
32 En 8(e,q) |
9y * “—:;;—ggg—— . (3.14)

Equation (3.12) énd its complex conjugate describa
the translational motion of the wave packet while equation
{3.13) describes its deformation.

Now, the equations of motion will have a much
simpler form if the parameters can be chosen s¢ as to make the
matrix g (3.14} diagonal. In the present case this is achieved

by using. the normalized amplitudes

g = e . : (3.15)

For this normalized amplitude, -the Lagrangian has

the form

L= G.8-8.D 205,80 + 2XCLEE - Hiz, 56D
' _{3.1.5.)
with
N I
Xtz,z,8,8) = = ih [ /371 Bj_B = 5z : A3.07)

L J+T
j ¥

and the equations of motion are simply . .

e o 8t . 93X = 9%
ik 8. = aEr— — ot = 2 —iien
: 35 58, ~ % 3B,
J '3 85 3
. 3 1 [aH - ax aH 3x -
Tt [_.ai 36, 3T 35, . - (3.a8)

In fact, if we define the effective hamiltonian,

h iy a —— .
B amb? rzl (2-2) Yo+ (B B 4 - 8,8, {3.19)

the' equations of motion will have the canconical form
inF, = {3.20)
aBj

J

S50, given the Hamiltonian of the system,




1T

-2
i = 2 v ' (3.21)

2m
the=“de£§rmarion amplitudes™ Bz(t) are obtained by scolving
equations:(3;20} {or {3.18)) and {3.12). And the position

probability, given by

l<qlwier>|?

2
<> i

. (3.22)

ol e) = % |Bp | l<ait>

will describe the shape of.the packet as function of time.

In order to- solve the .eguations of motion it is
necessary to calculate Htz,2z,8,8) . This is a lengthy calcu-
lation done: in the Appendix.

. In the next section we discuss the free motion -
{(vig).=0}). of the packet for small t and in the'following'

section we calculate: the case. V_(q).==v0 e¥d

IV. FREE MOTION
The Hamiltonian for the system is

a2
H = : -

2m

and~the.£ranslational moméntum is simply -
p = const = Py . ) : (4.1}

The equations for the amplitudes BE are

.12,

i = 3K g 3 -
ih B, = —5— - = {¥X+X) , (4.2)
L5 8By pyz 3
where (see (A.3})
K o= 1 88, <z,i|%|z-.j> . (4.3)

ij

Or, explicitly, up to a glebal phase factor,
N AR 3
ih B, =B -——-—-—-—-l:\/(i’.+1)(£+2) B ~YE(E) B :]+ B(B”).
(7 R Raiwrs I 242 T Bz

(4.4}

Now, we want to describe. the time development of a gaussian wave.
packet and this_means_that equations (4.4) must be solved with
initial conditions Ei(O) =69 - Besides, .we are interested in
the short time behaviour of a gaussian wave packet in which

cqsé the terms 6(g3) in eguation (4.4) may'_be.drdppedT Iin

this case, the solutions of equation (4.4) are

Bopapitd = 0 ., XE
B (L) 1 ﬁztz
o' = - 2.4 ’
iém b
- ™ 2.2
B, tt) = iRt 5 + f t-z 5 + aety
2 V2 mky 4 /Zm“b
B, (6} = e8(td £ 222
22 A X r or : =
-and
glt) = 99 * & . (4.5)

{The last eguation was obtained by solving (3.12} using (3.2a)}.
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The width of the wave packet at a time t 1is given

2 L2
wlg®|e> = <z|qiz>

, o
b 2 2 2 3 3
T'Esol + 318,17 + 518,17 + /2 (32+52):l + 8(E%)

Thus, the result of the TDVP applied to the free
motion of a gaussian wave packet is that for small time
intervals it movesllike a c<lassical particle and spreads by a

2 2) /2
™t

factor {1 + oy 4J {see ref. 9) as predicted by gquantum
m b

mechanics.

V. GAUSSIAN WAVE PACKET INTERACTING WITH AN EXPONENTIAL BARRIER

The Hamiltonian of the system is

and we shall solve numerically equations (3.12}) and (3.18)
{(or (3.20}}. In order to obtain a numerical solution it is
necessary to truncate the system of equations, For small
deformation, only a few terms should be sufficient. We shall
consider texrms Sn for n23. With this assumption, we

obtain the following equations for g and p by using {2.2a)

and (A.9) in (3.12)

+ B(t3) . {(4.6)

14.
24 p . in 2 - -
§ = 5 ° & +mn‘£0 V2 (n+T) (B B,y - BuBh) »  (5.13)

3. 0n - A=K 2k
. ~1) ! 2
pa-?ﬁ;—|80i2 UO'Yqu— ) z |Bn|2'-‘——2 (m-1) ! [2) UOY kHqu+
. n=l k=1 k-111kt L3

_ % '5 ©.F +8 B -k m=1) ! Vil [me-rHZk Ynx—n+2k+1 o1

men=1 k=0 © " T AT mendke1)tkr V2

{5.1b}

where

And the equations for Bn r %3, are obtained likewise by

using {3.2a} and (A.%) in (3.20), the result being

. 3
B = 1 _ah_ = 1 a .
fn T e, * 7 L, PnSme ¢ {5101
m n=0 . .
where Snz = stn is given by
2 n Tk 2k . :
3 =_.rl..2. (20+1) + U, eY‘_5160+_z -2 (n——ﬂ!{_]:l'] UO'szeW ,
e P n 2 k-1k s
2
1™ ‘/——— +
= - —— “i
Sn£ a2 (£+1) (£+2) En’£+2

£ £-k n-£+2% =
. 1 27 " (n-1)t VET [L] Yn—£+2kUO e nse.
k=0 v/n?! {(n-f+k-1)1k1 V2

(5.2)
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It should be noted that the first term of the
=xpression for- Snﬂ in (5.2} \is respoﬁsiﬁlerfor the free
spreading’ of the_wave:pqcket. As. we .want to investigate just
the effact qf]the p§tentigI.ba;rier-on the wave packet, the
nﬁmé:icél éélt#l@tiqﬁsfﬂerg-dbnégwitbout that term.. And the

:resuité of;ﬁhé,ﬂﬁﬁgfibéi.ééﬁ;élatioﬁr with that term removed
Srom (5.1), az§-§£§{ ;é;éd,iﬁzf;gg;é 1 for _Qéth 0.09 . Inter-
ference effecés q:e.égéérﬁédfﬁéa; ﬁhe.ciéssicgl tdrniﬁg point
and gmall oscillat;ons_a;e obsé;ved even asymptotically due to

phase factors, .

AR ot
dmp® T

. “The: final.

i

o

TR

-
STRE

o JR

!80[_" =

_ VI. CONCLUSIONS

We have analized the time evolution of a gaussian

~ wave. packet . in the- framework of the time. dependent variational

S sy

-16.

principle with parametrized trial function. It is a simpler
example but illustrates well the method. We considered two
cases: free motion and interaction with a potential barrier.
The choice of parametrization of the trial wave
function is determined by the particular physical aspects of

the system which is to be studied. The parametrization

appropriate for describing the shape evolution- of the wave

packet during its motion was shown to be a natural generalization
of the. parametrization used in describing the ellastic scattering
of two particles. .

In the case of free motion we have shown that the
TDVE gives the gquantum mechanical results, for small time

intervals t: the center of the packet moves like a classical

particle and it spreads lingarly in t.

In the case of the qadsaian.wave-packet interacting

“with a barrier (we considered an exponential barrier) we

obtained interference of waves with different momenta when . the

center of the packet approaches the classical. turning. point,
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APPENDIX : - : _ ~ Before calculate the matrix elements for the

potential we notice that:

Here we shall calculate explicitly the expectation

value of the Hamiltonian _ : 1 Jz,n> = €% &7 In> - @ (1-.z3+...)in>
B " & T - nza™ )
= - = - + ..
H = i vig) _ (.A_.1) _ e
_ . _ ' ) o Ut ;T _ 40 - .
in the &tates I_E> : g : _ S . = (@ -2z)" fz,0> . 7, (2.6)
- Iy EE & 3 ' oy ' and
H = <zlBjz> = mIn B, By <2 nlS= 4+ Vi@ [z,m> A2y
I
: el n-1 =
: — _ B 2y I}(a},.s*] 1 [25* .1 i:] LAY (a.7)
where we have defined _ T . = /2 V2 33 3g
o . EET —z& | . where the- 5.+'s must be always put on the left when the hinawicn
]z,i’._> = e’ e | &> . (AL3)

is calculated. This last result can be demonstrated by induction

The .calculation: of the kinetic term is rather . from.
simple if we write P in terms of the creation and aniquilation
: _ _ . l:v(‘jl]'g‘f' . 2 3V
cperators and note that S5 9q
a2 'z,n> = ¥n+1) |z,n-2> + 22/0 |z,n-1> + z2 |z,n> (A.43) ~ Using these two relations and considering m > 0

and m2n we get

' lz.n> 2 /(nel) a2k [zine2> + 22/051 |z,n41> + 22 |z,n> (a.4b)
- S L : v = <zn|v@lzm = —— <2,0] G-2" V@ G -2 2,00
- &alzm> = (+zz)|z,n> + 2vn jz,nm12 + A0 lznel> (A.dc) : . nim!
oo 1 . - —n .t _.m_ - n ~F _m
' = <z,0{(@2)" @ -2} VI@ |z,0> + <z,0{{a~2}"|v, & ~2)"| |z, 0] .
So, we find . Ynim!
-2 2 - . . .
. — - For mzZn the first term gives simpl
K =<zmniBizm = - 2 _{lzz?2 - aet)| 6+ oGty & " ! g By
nm 2m 4rrb2 n,m n,me2

<z, 0ivI(g) |z, 0> &

. . r
v m+1) (n+2) &

+ v (m+1) (n+2} Rn,

— — —
me2 2vVm (z-z} 5n,m—1 + 2¥n+1 {z-2) 6n,m+1} . (A.5)
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The second one may alsc be calculated and the final result is
(aftef.ﬁome algebra)_

2n7k VIen 2k m-n+2k

v 2 ,(f"',]_)_l""m: !ll;:: <z,0]| a-m_mz\:(g) 1z,0> if m>n
0, E (meneke1) 1ky Y2 ag

<z, 0lw]Z;0> ¢ . i-—-f-r-‘-'-ll—'[}?—] ._<z',0-|:.a+2k‘7’—(9):|:z,_(}> if m=n
: R =17 K=k WE -

{A.8)

Jand

=2 L2 AB, B,
. n;&f .

) .3:—.:1'35"|2_'-(:2r1'+1):| o 1812 €77 <z,0]v(a 20> +
Comso U S

+

‘ 'ET::ﬁﬁkkr ﬁﬁ?
S k=07 VT ek Lk

.20.
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FIGURE ‘CAPTION

'?IG; i ;qTimé“evolution-qf-the shape . of -the wave packet

interéctingcwi;h an exponential barrier. 'The

. parameters-used. in the numerical.calculation are:
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