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- ABSTRACT

Wefshdwfthat critical 1on§.distance behaviour for a

two-body. potential, defining the finitenéss.or infinitude of the

number of negative eigenvalues of Schrodinger operators in v-

" ) . . - V=2 1

dlmenSLQns,_are g;yen_by vk(r)-= - [75;] 2z Fn 517 .o
Zrfnr. F.n.Enr..-f—n(k)l’-)z' where k=.(.)"1"“ for v#2 and

k=1,2,... 1f wv= 2u This result is ‘a. cohsequence of logarithmic

corrections to an lnequallty known as Uncertalnty Prlnclple.

If the continuum threshold in the N-body problem is
defined by a two-cluster break up our results generate correc—
tlons o the ex1st1ng sufflc;ent conditions forthe existence of

‘lnflnltely many bound states.

{*)Partially supported by the CNPg.

I, INTRODUCTION

It is well known that the finiteness or infinitude

‘of the number ‘of bound—states of negative enexrgy of a Schnmhnger

operator [- A+V] is controlled by the long—dlstance behaviour

of the potentlal {1,2,4,11]. For dlmenSLQn v#£2 a finiteness-

infinitude borderline is set by a fall-off - ;'? as
=

Lre - Not co:.nc:.dentally, for the. quadratlc form CP[A"'VM

"u e Ty (R IOJ and V. be:.ng a Kato potent1al+, the following

*results hold:

oA "Uncertainty Principle. Lemma®. [2,3,8,12]

£ VX2 - (%-;2' " " then
(B LaruI¥) 30 o (1.1)
' ~and

. _ ' : ) < =2 ’
B) If, for WX/ . F2Re>0  V(x)€- { ) _then
there exists an infinite. sequence (% £ C; (& 'O)j,,sf ’

w1th disjoint supports, such that

'C%i, [:‘-‘4'_4. vl Wn) <O | (1.2)

fThrough ‘this paper we will assume that the potential functions

2 v L~
satlsfy the Kato condition, ¥ € £ (/P )7“' ‘{ (@j i.e., for

any €30, there exists a decomposxt;on

Ve Vier e witn Ve € LR, Up <l UR")

rd

and .AV#E,E /Zo < £

This condition will ensuré self-adjointness of the relevant

Hamilﬁonians,-bdth for the two-body and the N-body case. [2].




. 3.

From A} (as proved by Simon [1] for wv=3) it follows
that if W{x)}>- (%2_ for r 2Ry >0, then [=A+V]
has at most finitely many negative eigenvalues. Under the_
assumptions of B}, ther"min»max principle"” implies the existence
of- infinitely many eigenstates of negative energy.

For. v=2, however, property A is trivial and

The original purpese of our investigation was to

determine. the critical astptptic,behaviqur_of'the pptential

for Q%zﬁ' The answer is‘that_fq:xv=2'theucritical {in the same

sense, es aboﬁe) long distance;fallroff:is:/t;—- )2 . This .

. Qr"‘h("
follews from approprlately modlfled ver51on5 of-A and B. above.

Nevertheless, it turns-out that the V= 2 result is:
only the fz_rst term.of an- 1nf1n1te sexries- _of: lOgarlthmlc cor- .

rections.for v =71 and ¥ resul,ts;.l -...'_I‘hls is a conseq_uenc_e of the

fO’ll.OWil:‘Lg _c_h_ain- :._Q._f facts:

1} Under sultable domain restr:r.ct:mns, the unltary operator-

L3R, Pds) —> L3Ry, @), (T Y)or=r Fr i)

establlshes & unltary equlvalence between the radlal part of the '

2~ dlmenSLOnal Laplacean and_the crltlcally Eerturbed radlal part_

of the.. u-dlmensz.onal. Laplacean:

( L L :7:‘7"=:

5"/‘ a'f' o ' : S
2
; " ,_H#'Gy' V-;ia/7 " 4 & )
"[,-U-/ e ol 4',.2_ {1.3)
Hoxe. generally, if a: 42*””«—"/7» is C and a{r) >0 for.

all £€ /2,-\” : is a finite set, ther the unitary
op_eretqr,_-__ U; L {/2, adf) —ay L (/@f, c/f)

(L ) (r) = 2" ()

’ where N
r given by

-transforms the "radial a-Laplacean”

‘to find a critical potential vy

Lemma 1.

Lemma 2.

as:

0.[__/_9!..9_.) — Lol e’ /a"
ol E D)L E ()2 ()] oo

L)
co. (@-ﬁ- “Vﬂ) . (From now

on we shall use & prime to denote derivatives with respect to

when restricted, for instance, to

r.)

2o -4
adr a'/

restrlc_ted to C°(/E+ \ e ) r {1.3) provides a trivial

proof of the "Uncertainty Principle Lemma".

Remark. Since (- is a positive operator, when

ii} For a class of functions al(r) as above, it is possible

for the a-Laplacean. It is

given by

U lr) = = e
o C2ain b (m)? s

h_vh,ere' h is a monotonic function satisfying
s
Allry= L (1.6)
Caer)

In fact, denoting. by §, the finite set where a or h are.

zero, we prove

If e C",'”(/E,; \ S’.—;) then.
.5
ST aar

If fi’l/’("}=°"

2
> /21; Y qor . (1.7

then, given £ >0 arbitrary, thers

exists an infinite family of non-zero functions, with disjcint
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supports, {'{J,, E'c‘;‘(@,.‘ lJ"q)}n > such that
s T . R . |
j(?»ﬁ)'ad!‘ <(/+E)-_/V&'¢,, oo’” . (1.8)

'Remarks. (l.?)lis.a versioh: of an“inequality'of Hardy 12,3;8,12)

known as the “Uncertalnty PrlnClple Lemma Lemna 2-gays that

the- constants appearing in the deflnrtlon va- are best possible.

_iii) Pinally, the whole procedure may:he iteratediprcvided'

we can find b:-ﬁg,\ﬂ@-bﬂa;-r-hithfthe-seMe?assnmedfproperties

of alx)

sqch that

G (- adr' ar)U‘ @ o ol

Starting'With ‘asr  and 1terat1ng the whole procedure we ohtaln

the result that the potentlals_ f_l

a’

G {2.-) /,-e.,r-)" B '.3* 2rt’m~\'f; £ -’%’) (110

‘For k20 if v¢2 : qndﬂ._:kay if v=2 are critical, i.e., for
some dr Ry >0 _ _
{a) if -V'(x) ¥ (1+e:)v (r) then [-A+V} ‘has fihitely many
negative elgenvalues or
/+e
(b) 1f V(k) & ,4.,(!‘)

(2renr r{,r'J“
then - “ARV] has 1nfln1tely many negative eigemvalues.

, for some £ >0,

Notation: For kzz, '{”{1 = ‘6, (% d Ia
and 45in'-— Lnr

-break up.we can extend the results ‘of« Slmon [1] cong

[—’z 9—"w~o~ju B

.b.

Our results amount, in fact, to logarithmic correc—

'tlons to: the “Uncertalnty Prlnc1ple“, a w1dely used tool in the

:_proofs of self-ad301ntness of - strongly ;singular potentials {see,

for: lnstance, [8],_[12} and {2]) In a separate paper [13] we-

.dlSCUSS the 1mpllcatlons of our results to thls problem.-

Relatlve to - the two-body problem, the Nabody problem

presents the extra dlfflculty of lccatlng the threshold '(the'

flnflmum of the essent1al spectrum of the N—body Hamlltonlan wrth

. center of mass. motlon removed) However, if the threshold ‘As .

glven by Hun21ker & theorem [5], 1s deflned by a- two—cluster

'Q_

esufflclent condltlons for the exlstence of 1nf1n1tely many

"bound—states."

ThlS paper is organlzed as follews 3 Iﬁjﬁéctibn“li -

sectlon IiT the N-body problem is brlefly dlscussed.

II. THE TWO-BODY PROBLEM: FINITENESS.AND INFINITUDE

A general proof of ] 1nequa11t1es of type (1 7) can be.

found in [8] . Por oompleteness-we;present-the followrng_slmple

Proof of Lemma 1.—'”

Let \p(r).. ._ (r}{ﬂ(r) , where_' g?_:h. -Then.

f{'{u’] adr > f(p [99 er,,.g/g? Pf'aa(r'
= u/fpbztﬁggl.zzlcfﬁ* ;+ E;'J/?;’f)?g?f)l‘?"h- =
= /;&2215 aar . g.e.d.




Proof of Lemma 2:-

1) Let. us first consider the case: alr) =1 _and_- hir}) =1.

Since . for - '{J:P}&gﬂ o

it is enough to show the existence of an.infinite sequence

ftn € TRNS)],, ~ weh e

': fcw:a-‘;;ag |

The £.h.s. of (2.1} is scale _i_;_'i,\_z,a.riaht}.; _i,.'e_.._,_

f(sa.:) car  feeVren
/% dr’ ./——-o/r"

where V () = @ (O‘d: . .It..is, 'the:::efore, eufficieht to
£ind just one fﬂe C (/@ l&z) sat;sfylng (2.7). and the
1nf1nlte sequence Sﬂfl f’("(ﬂ"j . w:l.l}_ be generated by
su-ité.bly- choosing. o to make the supports disjoint. A

possible choice of {2 is, as given in (9],

<& . en

(=} ’ ol .=

P(r-Ro), Ro S r g Ro¥+/

/ K 29""/'5"'\(20*/\'
PlU-LBe) posng rgRovon

o .-,;_n‘?_,-..n -

with Re >’f:_?,: r and £€C (@f) with p(r) =0 if

.O'Sré_%, p(r).=1 if rzy. Since ”_.g (f“"}""'/gdr).zo_

it is enough to take N su’ffica‘.ently large to verify (2.1).

w

. 2) Let now a:(f‘);_‘ ‘y‘(}’("}) . Then

[ aar = fu)ar

" and

f(¢)*%_' cotr = L /;g .

A ~
Taking then % Y59/ with % . as given in part 1) makes

the proof complete.
' : qg.e.d.

 Remarks. - The assumption ;f:’; Alr)=c0 is used to.guarantee

_that the functions Y, (=%, (A1) are not identically zero.

It is not the best possible agsumption for the result is still

: n .
true if afr) =r , nz1. However, some assumption on al{r)

is required as the result is false if a({rih{r) = r" nz1.

r

We now. describe how, starting with . ag=r , it is
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possible to generate an infinite chain of logarithmic correc—
tions to the "Uncertainty Principle" as described by Lemmas 1

ang 2.

Let  Qp(ri=  @pey () €, . no= 1,2,

A straightforward computation gives, for all w &

(/24':&")
'O’L :: &y,
{'0 Gr it o ) lar, Y

(2.2)

with U, as given. in the introduction. Therefore, applying

‘Lemmas 1 and 2 t_o" a, obtains.

_ Lemda 3. Let - vk(f.) be given by

Vel(r)i= — _(0-2{}' . . o (27,.3a)

(2.3D)

- Then: .

“ad .'For' ke C;‘ (/E-ﬁ . g"ﬁ)

f(u) dr fs&

{2.4)
al_"xd‘

(b} For € >0, there exists an infinite sequence of non-zero

. - - _
functions, with disjoint supports,. {%’., € C, (E-ﬁ \ 6.,% )}
such that

.10

(2r 75"—( T

‘-/(%ders/(%,)’[ e ’r)/afr- .

-One jof the main: J.ngrech.ents J,n “our dlSCU.SSJ.Bn below :

is ‘the -s0- called "Mln-Max Prlnc.lple"-'

Le’c “H be ‘aisel

fad_}.olnt-'
operator 1n Hllbert space w:.th quadratlc form domaln

-._Q ("), ‘ang:
for ‘n =172, L

i ,_1'-et'
(H}_ Aty inf ‘
/“" ;a a_’ V'e[w,,. e _,_7
' //z.w- 1 ueafw

- where [‘P,,,%-,] 1ndicates the orthogonal © i emenE "
of ‘thé- subspace generated by -’14,-' DS _54.-;,. :;... -The_n, for each

n..," e:l.ther

(a) ‘there are -n '.eigehvalqes.f-(;gbunting.-' multipl—i'éitiée)-f be:low.—_. e
th‘e --bdtt'oiri ‘of the’ esseni:'ié.-l‘ sﬁécffﬁm’,- Iandf'""u (my! J.s tﬁe

n-th elgenvalue countz_ng mult:.plxc;ty in 1ncreas.1ng order

or

'('-b:_).'.;.n-:' .'LS the bottom of the essent:.al sPectrum, and 1n thJ.s

CaSE' :

and there are at most (n—?) eJ.gen-

values (countlng multlpllcltyl below 11
. :'W_e Lare’ now -prepai*e’d"-td- st_a;tea_and ;pifb_ﬁ?:e":'eii;:- main

: i‘e'sulﬁts .

Theorem 1. Let ¥ be'a Kato potential in L (R / i ve1,2,3,

“such that for some Ro>1 and €>0:

¥ (1) — ————p————— . b
. ) ‘( (2r- 7',‘!4"}("'{')1 L =r2 y v=2
nx,
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Then, the operator [-A+V] has infinitely many negative eigen- - it is therefore sufficient to show that the operator -4 + Xy Ve
values. T : : ‘ : : has finitely many negative eigenvalues.  If vz2 it is
sufficient to consider the operator -A+ X,V restricted to

Proof. By the min-max principle, it is sufficient to exhibit an - ‘ h
) o : ) the  subspace o of spherically symmetric functions since in
infinite. sequence {?,6,, __E‘Q(—A"‘ V)}n&/ , with disjoint L ) - ; - ° :
‘ SR - . ) - : 7(; “the .cperator is positive! The restriction te \7'6, is
supports, such that (¥, (~4-+¢7 zé,) <O . The existence 3 : : .
" ; _ o given by the operator’
of such: & sequence -follows from Lemma. 3. : S :

.g..e:.d' ' ]
2 /¥ e ' B . . Vot of ) oy
Theorem 2. Let V be a Kato potential in L (/E ) P V=21,2,3, S h& = {_ A .i... ~ _Qf, » zz %(f)}
Theorem 2 - . : CE T ot ol e - :
such that, for:  Rp>1l, c<l. and %, ) = )
| | £ r- > Ra- R S 1 . .d. . th P 1}‘ IR
’ i s . o : for  v=1 we consider e operator 6._ ) iy - with
V() 3 e ¥fr) FRe perator (<S5 PR . wien

: _Dlrlchlet boundary conditions on *R; .

where k=90,1,.... if "’62 and” k=1,2,... i v—2'.-'£ For v=2, 3 a similar argument applres for ‘the-

Then [-A+V] has at most: finitely many negative. elgenvalues. _ operator Hk. restrlcted o Jfo . thus concludlng the proof

- q e d.
Proof. We first decompose: our operator into

-hi_liemarks.. From the proofs it is clear that the :Ein'teness or

~A+r = (~cd + Kk, )"'T-("’.("'CJA-'!‘-- fo) .."‘ '_ :-lnf.rm.tude is controlled by the follow:.ng 11m1t5. 3 L
where Z, e.-.C:b‘ ¥, ("?)-‘-'/ i SR ) : D‘Z,;I “,z /tm /2,-) y(g o, /“:Ii— /,m (2,.;(.,., r)[[/(ﬁr} (:&)
and I—; (k): [.- Z (x) . - o .
: From.a. 51mple apph.catlon cf the- m1n—max .prlnc:l.ple. :
it follows that if both. operators A—-(I-C)A-f- WC, ' a_nd___. e_... .
= —c4 -~ K'Zz . (wh_-_,_-oh are: e_es,s_er__ltj_a]_-;y .se-_'_l;f;-adjoint in tifle-. " Indeed finiteness .is. lmplledby .
same 'd'o_ma_.ji.n- and- ha.lv_e' the s@mo_.e-sSéntial .sgeotru_m).-_ have f;;i;._;zitely _ _ ' _ ‘ ' :
many rie_gative eigenvalues then the same helds for. -:A+V__--_‘A'-i-:B . {4‘-‘:-_-,.‘.. éu‘_’ ==/, u‘ b f’or__sor‘ne' ﬂ-be if u.:gea
" (see for iﬁstance [2_]; vol. IV exercise 129 pg 379) . ‘ ' . S . . .
V That the 'operotor A has finite.ly many negative U, = T U, T4, %>”/ . for some ;.‘A'/ J‘f vae 2. L
eigenvalues is a standard result since the potential. VX1 hc'rs' | | |
compact support (see for instance [2], vol. IV exercise 20 pg o whereas infinitude is guaranteed by

366). 'On the other hand, by assu_mptioh,_ B>c. (~MX,v ). and . o



=
" two-body Kato .potentials V;‘J’ (f} - )

.f3.
/R '=.u‘_"_ ==/, Mo &=/ for some M3 o if Vv#2

u; ve TlUp o/, pg L=/ Tor some b £ if V=2 .

III. YHE N-~BODY PROBLEM: INFINITUDE

This section constitutes a sort of appendix of
section 3 of Barry Simon's work [1]. Therefore we shall not give

all the. details a_.n'd. instead we shall be rather sketchy.

Let us consider a system of N-particles, with masses -

m,, i=%,...,N, in wv=1, 2 or 3 dimensions, interacting via
The Hamiltonian HN ;

after removal of the center of mass motion,

: 2
. N . : v 0 3 Y.
X - - (2»
Hy= V'.?L_ 3 Y (r-q) - ) ,
i -?’"" i<y | 2(Zrm:)

has. the infinum Z of its essential spectrum given by Hunziker's

-theorem [5]:

pin [Gew]

)
ey = fi., ~3

where o .= 1nf1num spectrum HD' here HD denctes the

D

Hamiltonian of the'cluster pe{1,...,8}, with center of mass

kinetic energy removed. If @ -—»Uj' + and H and H
-3 D1 D

have discrete ground states at the bottom of their spectra we

2

say, after [1], that the system has a "two-cluster continuum

limit".

'D

.14,

It should be remarked that there is a number of
ISJ_tuatrons for wh:.ch 1t .can - be proved that the- system has’ a
"two—cluster .c_:o_nt:..z_mum -_lz.m;t“,. n_amely: a} for v= 1_,2 a suffi-
qien-t conaition is '-thélt _f“’;‘,(?)dtf<0 [61: Db) fo_r- v=3 "a

sufficient condition is that V are purely_attractive and

2" S
ij

“hold a bound state [7}.

AS in'{i},-lf we are 1n the two~cluster llmlt case,.
SUfflClent condltlons for lnflnltude can be: cbtained by reducxng

the .—ena_lysis to that of an. effective two—bc_)dy problem..

. Theprem 3. Let- Vij. be Kato potentials that are € - functians

on’.an, open se’t of /R _whose complement has zero measure and

.1et }: be given by a two cluster break D.p (D D2) . 'with

4 .
reduced mass ﬂa 31 (Z'ﬂi. fm.l ) e De_noting:» bY'ﬁ the

ied, Jg): .

'rela.tlve ceord].nate of . the center of masses. cf clusters D‘l 'and‘-_

if the potentlal -
f\. S0 2
¥, 2, _(E)‘"‘ 2/‘37’3 cze'a ( )
;633

57

satisfies’ the:assumptions -of theorem.l, then “HN:Vhasiiﬁfiﬁitely

many eigenve-lue’s. below ] .

Rem'eirk.' We believe .thet"this'-theorem"fholas" for Kato, igpot;en—tials

w:.thout that extra smoothness assumpt:.on.

IRV

‘. £. S -* V : -r;.-'wﬁere.
- Proo | ince "/ﬂ/ a’ A/aa a‘az 2/{43 ¥ =
V-ZJ.D =5 U:J(Xt - ){l) is the"intercluster potent;.al for

Fe

’l# = % u% ¢ | ..we .he.\.re
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(V}l Ho W) =.€b’._+ Eaz * (¢, éé/fgmds + ;/56) s

were V(E)< S (oo, Uy (%) Y14, )
| =,
Jelda

is the effective intercluster potential when the clusters _D.I

2

with corresponding energies ED and . ED
. 1 2 :
The proof of the theorem is completed: by the

and D are in their bound states IJJD and (PD . respecti\_rely, o
2 . .

following generalization of. Broposition 5 in [11:

Lemma 4. Let %, Dbe a bound state of H, ', a ki_bd&y system

B L »
with Xato potentials that are _Ca-" functions: on an open set of
'8 )
J/ whose: complement has zero measure. Let Vij' be Xato

potentials such that for some Y.§2 ana £z

¢ o
S (2r771”’ ") [-KJC*) ]gg Y

e o>

v, -g_iven by {2.3). Let

. VOhey o)
7 (%)= //%(r)//as,(a')/ L(GE R s @ n

where /7 (’al 3 6.) is the distance between particles ¢ e:‘b‘r
.6 22 :. in terms. of the internal coordinates ’,f (;';)

of J’ (2‘) and the distance & between the centers of mass

of D, and D Then

21

,tw. (22fr,ém ) [ (e*}—?;_,]s Co

.16.

Proof The proof follows by repetition of the steps in

{1, Prop051tlon 51 havlng in mind that the extra smoothness

assumption on. the potentials ensures that the functieon

#E) = [4 550 g @) 1,00

. ’ -_,. Lty --o el e I g
,(w;th J.ntegratlon over all.coordinates but /g = CJ(R, - F';),;Q....f: )

‘decays. fa-st_er'than any powers:

b /f(r.)(/+ )/<°° .
Iy

LN

for all n. This is a_._:_esuit by H#nziker [5].. _ o
' ' o ' _qﬂe.d;
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