UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE FÍSICA CAIXA POSTAL 20516 01498 - SÃO PAULO - SP BRASIL

PUBLICAÇÕES

IFUSP/P-548

LOGARITHMIC CORRECTIONS TO THE UNCERTAINTY PRINCIPLE AND INFINITUDE OF THE NUMBER OF BOUND STATES OF N-PARTICLE SYSTEMS

by

J. Fernando Perez, F.A.B. Coutinho and C.P. Malta Instituto de Física, Universidade de São Paulo

Outubro/1985

LOGARITHMIC CORRECTIONS TO THE UNCERTAINTY PRINCIPLE AND INFINITUDE OF THE NUMBER OF BOUND STATES OF N-PARTICLE SYSTEMS

J. Fernando Perez^(*), F.A.B. Coutinho^(*) and C.P. Malta

Instituto de Física, Universidade de São Paulo

CP 20516, 01498 São Paulo, SP, Brazil

ABSTRACT

We show that critical long distance behaviour for a two-body potential, defining the finiteness or infinitude of the number of negative eigenvalues of Schrödinger operators in ν -dimensions, are given by $v_k(r) = -\left(\frac{\nu-2}{2r}\right)^2 - \frac{1}{(2r\ln r)^2} + \dots - \frac{1}{(2r\ln r)\ln \ln r \dots \ln r}$ where $k = 0,1,\dots$ for $\nu \neq 2$ and $k = 1,2,\dots$ if $\nu = 2$. This result is a consequence of logarithmic corrections to an inequality known as Uncertainty Principle.

If the continuum threshold in the N-body problem is defined by a two-cluster break up our results generate corrections to the existing sufficient conditions for the existence of infinitely many bound states.

I. INTRODUCTION

It is well known that the finiteness or infinitude of the number of bound-states of negative energy of a Schrödinger operator $[-\Delta+V]$ is controlled by the long-distance behaviour of the potential [1,2,4,11]. For dimension $v\neq 2$ a finiteness-infinitude borderline is set by a fall-off $\sim \left(\frac{V-2}{2r}\right)^2$ as $r \rightarrow \infty$. Not coincidentally, for the quadratic form (V,CA+VTV), $V \in C_0(R^10)$ and V being a Kato potential, the following results hold:

A) "Uncertainty Principle Lemma" [2,3,8,12]

If $V(x) \ge -\left(\frac{V-2}{2C}\right)^2$ then

$$(\mathcal{Y}, \mathcal{L} - \Delta + \nu \mathcal{I} \mathcal{Y}) \geqslant 0 \tag{1.1}$$

and

B) If, for d > 1, f > 2, f > 0, f < 2 then there exists an infinite sequence $\{ \psi_n \in C^{\infty}(\mathbb{R}^{N} \mid 0) \}_{n \ge 1}$ with disjoint supports, such that

$$V = V_{i,\varepsilon} + V_{2,\varepsilon}$$
 with $V_{i,\varepsilon} \in L^2(\mathbb{R}^{\nu}), V_{2,\varepsilon} \in L^{\infty}(\mathbb{R}^{\nu})$ and $||V_{2,\varepsilon}||_{\infty} < \varepsilon$.

This condition will ensure self-adjointness of the relevant Hamiltonians, both for the two-body and the N-body case. [2].

^(*) Partially supported by the CNPq.

Through this paper we will assume that the potential functions satisfy the Kato condition, $V \in L^2(\mathbb{R}^0) + L^\infty_{\epsilon}(\mathbb{R}^0)$ i.e., for any $\epsilon > 0$, there exists a decomposition

From A) (as proved by Simon [1] for $\nu=3$) it follows that if $V(x) \ge -\left(\frac{\nu-2}{2\,r}\right)^2$ for $r \ge R_0 > 0$, then $[-\Delta+V]$ has at most finitely many negative eigenvalues. Under the assumptions of B), the "min-max principle" implies the existence of infinitely many eigenstates of negative energy.

For $\nu{=}2$, however, property A is trivial and property B is false!

The original purpose of our investigation was to determine the critical asymptotic behaviour of the potential for $\nu=2$. The answer is that for $\nu=2$ the critical (in the same sense as above) long distance fall-off is $n = \frac{1}{(2\pi \ln c)^2}$. This follows from appropriately modified versions of A and B above.

Nevertheless, it turns out that the $\nu=2$ result is only the first term of an infinite series of logarithmic corrections for $\nu=1$ and 3 results! This is a consequence of the following chain of facts:

i) Under <u>suitable</u> domain restrictions, the unitary operator $T_{\nu}: L^{2}(\mathbb{R}_{+}, \Gamma^{\nu-1}dr) \longrightarrow L^{2}(\mathbb{R}_{+}, dr), (T_{\nu}\psi)(r) = r^{\frac{\nu-1}{2}}\psi(r)$ establishes a unitary equivalence between the radial part of the 2-dimensional Laplacean and the critically perturbed radial part of the ν -dimensional Laplacean:

 $= T_{\nu} \left[-\frac{1}{r^{\nu-1}} \frac{d}{dr} r^{\nu-1} \frac{d}{dr} - \left(\frac{\nu-2}{2r} \right)^{2} \right] T_{\nu} = -\frac{d^{2}}{dr^{2}} - \frac{1}{4r^{2}}$ (1.3)

More generally, if $a: \mathbb{R}_+ \upharpoonright N_a \to \mathbb{R}_+$ is C^{∞} and a(r) > 0 for all $f \in \mathbb{R}_+ \upharpoonright N_a$, where N_a is a finite set, then the unitary operator $U_a: L^2(\mathbb{R}_+, adr) \to L^2(\mathbb{R}_+, dr)$, given by $(U_a \mathcal{Y})(r) = a^{V_2}\mathcal{Y}(r)$ transforms the "radial a-Laplacean"

as:

$$V_{\alpha}\left(-\frac{1}{a}\frac{d}{dr}\frac{\alpha}{dr}\right)V_{\alpha}^{-1} = \left[-\frac{\alpha^{2}}{dr^{2}} - \frac{1}{4}\left(\frac{\alpha}{a}\right)^{2} + \frac{1}{2}\left(\frac{\alpha''}{a}\right)\right]$$
(1.4)

when restricted, for instance, to $C_{\bullet}(R_{+},Na)$. (From now on we shall use a prime to denote derivatives with respect to r.)

Remark. Since $\left(-\frac{d}{dr} - \frac{d}{dr}\right)$ is a positive operator, when restricted to $C_{\bullet}(P_{+} \setminus N_{\bullet})$, (1.3) provides a trivial proof of the "Uncertainty Principle Lemma".

ii) For a class of functions a(r) as above, it is possible to find a critical potential $v_{\bar a}$ for the a-Laplacean. It is given by

$$V_0(r) = -\frac{1}{(2a(r)h(r))^2}$$
 (1.5)

where h is a monotonic function satisfying

$$h'(r) = \frac{1}{a(r)} \tag{1.6}$$

In fact, denoting by $\mathbf{S}_{\mathbf{a}}$ the finite set where \mathbf{a} or \mathbf{h} are zero, we prove

Lemma 1. If $\psi \in C_0^{\infty}(\mathbb{R}_+ | S_a)$ then

Lemma 2. If $\lim_{r\to\infty} h(r) = \infty$ then, given $\epsilon > 0$ arbitrary, there exists an infinite family of non-zero functions, with disjoint

supports, $\{Y_n \in C_o(\mathbb{R}_+ \mid S_o)\}_{n \geq 1}$ such that

Remarks. (1.7) is a version of an inequality of Hardy [2,3,8,12] known as the "Uncertainty Principle Lemma". Lemma 2 says that the constants appearing in the definition v_a are best possible.

iii) Finally, the whole procedure may be iterated provided we can find b: $\mathbb{R}_+ \setminus \mathbb{N}_6 \to \mathbb{R}_+$, with the same assumed properties of a(r), such that

Starting with a=r and iterating the whole procedure we obtain the result that the potentials

$$V_{k}(r) = -\left(\frac{y-2}{2r}\right)^{2} - \left(\frac{1}{2r \ln r}\right)^{2} - \cdots - \left(\frac{2r \ln \log r}{2r \ln \log r}\right)^{2} \tag{1.10}$$

for $k \ge 0$ if $\nu \ne 2$ and $k \ge 1$ if $\nu = 2$ are critical, i.e., for some $r \ge R_0 \ge 0$,

- (a) if $V(x) > (1+\epsilon)v_k(r)$ then $[-\Delta+V)$ has finitely many negative eigenvalues or
- (b) if $V(x) < V_{k-1}(r) \frac{1+\epsilon}{(2r\epsilon_{n-1}...\epsilon_{n-1})^2}$, for some $\epsilon > 0$ then $[-\Delta + V]$ has infinitely many negative eigenvalues.

Notation: For $k \ge 2$, $ln_{(k)} = ln ln_{k-1}$ and $ln_{(n)} = ln r$.

Our results amount, in fact, to logarithmic corrections to the "Uncertainty Principle", a widely used tool in the proofs of self-adjointness of strongly singular potentials (see, for instance, [8], [12] and [2]). In a separate paper [13] we discuss the implications of our results to this problem.

Relative to the two-body problem, the N-body problem presents the extra difficulty of locating the threshold (the infimum of the essential spectrum of the N-body Hamiltonian with center of mass motion removed). However, if the threshold as given by Hunziker's theorem [5], is defined by a two-cluster break up we can extend the results of Simon [1] concerning sufficient conditions for the existence of infinitely many bound-states.

This paper is organized as follows. In section II we prove lemmas 1 and 2 and discuss the 2-body problem. In section III the N-body problem is briefly discussed.

II. THE TWO-BODY PROBLEM: FINITENESS AND INFINITUDE

A general proof of inequalities of type (1.7) can be found in [8]. For completeness we present the following simple Proof of Lemma 1:-

Let $\psi(r) = g(r) \psi(r)$, where $g^2 = h$. Then $\int (\psi')^2 \alpha dr \ge \int \varphi^2 (g')^2 \alpha dr + 2 \int g g' \varphi \varphi' \alpha dr =$ $= \int \psi^2 \left(\frac{g'}{g}\right)^2 \alpha dr + \frac{1}{2} \int (\varphi^2)' (g^2)' \alpha dr =$ $= \int \psi^2 v_a \alpha dr. \qquad q.e.d.$

Proof of Lemma 2:-

1) Let us first consider the case a(r) = 1 and h(r) = r. Since for $\psi = r^{\frac{1}{2}} \varphi$

it is enough to show the existence of an infinite sequence $\{ \mathcal{C}_n \in \mathcal{C}_n^{\infty}(\mathbb{R}_+ \setminus \mathcal{S}_n) \}_{n \geq 1}$ such that

$$\frac{\int (\varphi_n^i)^2 r dr}{\int \frac{\varphi_n^2}{r} dr} < \varepsilon \tag{2.1}$$

The ℓ .h.s. of (2.1) is scale invariant, i.e.,

$$\frac{\int (\varphi_{n}^{\prime})^{2} dr}{\int \frac{\varphi_{n}^{\prime}}{r} dr} = \frac{\int (\varphi^{\prime})^{2} r dr}{\int \frac{\varphi^{\prime}}{r} dr}$$

where $\varphi_{\mathcal{C}}(r) = \varphi(\varphi_r)$. It is, therefore, sufficient to find just one $\varphi \in C^{\infty}_{\mathcal{C}}(\mathbb{R}_+ \setminus \mathcal{G}_+)$ satisfying (2.1) and the infinite sequence $\varphi_n = \varphi(\varphi_n r)$ will be generated by suitably choosing α_n to make the supports disjoint. A possible choice of φ is, as given in [9],

$$\varphi(r) = \begin{cases}
0, & r \leq R_0 \\
f(r-R_0), & R_0 \leq r \leq R_0 + 1
\end{cases}$$

$$\varphi(r) = \begin{cases}
1, & R_0 + 1 \leq r \leq R_0 + 2N \\
f(1 - \frac{r-R_0}{N}), & R_0 + N \leq r \leq R_0 + 2N \\
0, & r \geq R_0 + 2N
\end{cases}$$

with $R_0 > \max_{r \in S_0} r$ and $\rho \in C^{\infty}(R_r)$ with $\rho(r) = 0$ if $0 \le r \le \frac{1}{4}$, $\rho(r) = 1$ if $r \ge \frac{3}{4}$. Since $\lim_{N \to \infty} \left(\int (\phi')^2 r dr / f \phi' dr \right) = 0$, it is enough to take N sufficiently large to verify (2.1).

2) Let now
$$\widetilde{\psi}(r) = \psi(h(r))$$
. Then
$$\int (\widetilde{\psi}')^2 a a r = \int (\psi')^2 dr$$

and

Taking then $\mathcal{H}=\mathcal{H}\circ f$ with ψ_n as given in part 1) makes the proof complete.

Remarks. The assumption $\mu_n(r) = \infty$ is used to guarantee that the functions $\mu_n(r) = \psi_n(h(r))$ are not identically zero. It is not the best possible assumption for the result is still true if $a(r) = r^n$, $n \ge 1$. However, some assumption on a(r) is required as the result is false if $a(r)h(r) = r^n$, $n \ge 1$.

We now describe how, starting with $a_0 = r$, it is

possible to generate an infinite chain of logarithmic corrections to the "Uncertainty Principle" as described by Lemmas 1 and 2.

Let $Q_n(r) = Q_{n-r}(r) \ln_{(n)} r$, n = 1, 2,

A straightforward computation gives, for all $\gamma \in C_0^{\infty}(R+1S_{2n})$

$$U_{\alpha_{n}}\left(-\frac{1}{\alpha_{n}}\frac{d}{dr}O_{n}\frac{d}{dr}\right)U_{\alpha_{n}}^{-1}\psi = U_{\alpha_{n-1}}\left(-\frac{1}{\alpha_{n-1}}\frac{d}{dr}O_{n-1}\frac{d}{dr}+v_{\alpha_{n-1}}\right)U_{\alpha_{n-1}}^{-1}\psi , \qquad (2.2)$$

with $\mathbf{U}_{\mathbf{a}}$ as given in the introduction. Therefore, applying Lemmas 1 and 2 to $\mathbf{a}_{\mathbf{n}}$ obtains

Lemma 3. Let $v_k(r)$ be given by

$$V_0(r) = -\frac{(v-2)^2}{4r^2}$$
 (2.3a)

$$v_{k}(r) = v_{k-1}(r) - \frac{1}{(2r\pi m_{eq} r)^{2}}, k=1,2,...$$
 (2.3b)

Then:

(a) For WE Co (R+ \ So.)

$$\int (\psi)^2 dr \ge \int \psi^2 v_{\overline{k}} dr \tag{2.4}$$

and

(b) For $\varepsilon > 0$, there exists an infinite sequence of non-zero functions, with disjoint supports, $\{\psi_n \in C_{\varepsilon}^{\infty}(\mathbb{R}_+ \setminus S_{0\varepsilon})\}$ such that

One of the main ingredients in our discussion below is the so called "Min-Max Principle": Let H be a self-adjoint operator in Hilbert space with quadratic form domain Q(H), and for $n=1,2,\ldots$ let

where $[\mathcal{A}_{i}, \dots, \mathcal{A}_{n-1}]^{\mathcal{A}}$ indicates the orthogonal complement of the subspace generated by $\mathcal{A}_{i}, \dots, \mathcal{A}_{n-1}$. Then, for each n, either

- (a) there are n eigenvalues (counting multiplicities) below the bottom of the essential spectrum, and μ_n (H) is the n-th eigenvalue counting multiplicity in increasing order or
- (b) μ_n is the bottom of the essential spectrum, and in this case, $\mu_n=\mu_{n+1}=\dots$ and there are at most (n-1) eigenvalues (counting multiplicity) below μ_n .

We are now prepared to state and prove our main results.

Theorem 1. Let V be a Kato potential in $L^2(\mathbb{R}^4)$, v=1,2,3, such that for some $R_0>1$ and $\varepsilon>0$,

$$V(x) \in V_{k}(r) - \frac{1+\epsilon}{(2r^{\frac{2r}{1r}} \ln_{(n)}r)^{2}}$$
 $k = 1, 2, ... if u = 2$

Then, the operator $[-\Delta+V]$ has infinitely many negative eigenvalues.

<u>Proof.</u> By the min-max principle, it is sufficient to exhibit an infinite sequence $\{\mathcal{V}_n \in \mathcal{Q}(-\Delta + V)\}_{n \geq 1}$, with disjoint supports, such that $(\mathcal{V}_n, \mathcal{L}-\Delta + V) \mathcal{V}_n > 0$. The existence of such a sequence follows from Lemma 3.

Theorem 2. Let V be a Kato potential in $L^2(\mathbb{R}^3)$, v = 1, 2, 3, such that, for $R_0 > 1$, c < 1 and k,

where $k=0,1,\ldots$ if $\nu\neq 2$ and $k=1,2,\ldots$ if $\nu=2$. Then $[-\Delta+V]$ has at most finitely many negative eigenvalues.

Proof. We first decompose our operator into

$$-\Delta + V = (-c\Delta + V \times_2) + (-(I-c)\Delta + V \times_1),$$
where $X, \in C_0$, $X, (\vec{x}) = I$ if $r \in R_0$, $D \in X, \in I$ and $X_2(x) = I - X, (x)$.

From a simple application of the min-max principle, it follows that if both operators $A = -(I-C)\Delta + VX$, and $B = -CA + VX_2$ (which are essentially self-adjoint in the same domain and have the same essential spectrum) have finitely many negative eigenvalues then the same holds for $-\Delta + V = A + B$ (see for instance [2], vol. IV exercise 129 pg 379).

That the operator A has finitely many negative eigenvalues is a standard result since the potential VX_1 has compact support (see for instance [2], vol. IV exercise 20 pg 366). On the other hand, by assumption, B>c $(-\Delta+X_2 v_k)$ and

it is therefore sufficient to show that the operator $-\Delta + \chi_2 \, v_k$ has finitely many negative eigenvalues. If $\nu \ge 2$ it is sufficient to consider the operator $-\Delta + \chi_2 \, v_k$ restricted to the subspace \varkappa_\bullet of spherically symmetric functions since in the operator is positive! The restriction to \varkappa_\bullet is given by the operator

For v=1 we consider the operator $\left(-\frac{\omega^2}{\omega \kappa^2}\right)_D + \frac{\nu_e}{2}$, with Dirichlet boundary conditions on $\pm R_0$.

For $\nu=2,3$ a similar argument applies for the operator H_k restricted to $\not\leftarrow$, thus concluding the proof. q.e.d

Remarks. From the proofs it is clear that the finiteness or infinitude is controlled by the following limits:

Indeed finiteness is implied by

$$u_0 = \dots = u_{R-1} = -1$$
, $u_0 > -1$ for some $u_0 = 0$ if $v = 2$, $u_1 = \dots = u_{R-1} = -1$, $u_0 > -1$ for some $u_0 = 0$ if $v = 2$,

whereas infinitude is guaranteed by

$$u_0 = \dots = u_{k_1} = -1$$
, $u_k < -1$ for some $k \ge 0$ if $k \ne 2$ $u_1 = \dots = u_{k_2} = -1$, $u_k < -1$ for some $k \ge 1$ if $k = 2$

III. THE N-BODY PROBLEM: INFINITUDE

This section constitutes a sort of appendix of section 3 of Barry Simon's work [1]. Therefore we shall not give all the details and instead we shall be rather sketchy.

Let us consider a system of N-particles, with masses m_1 , $i=1,\ldots,N$, in $\nu=1,2$ or 3 dimensions, interacting via two-body Kato potentials $V_{ij}(\vec{r}_i-\vec{r}_j)$. The Hamiltonian H_N , after removal of the center of mass motion,

$$H_{N} = \sum_{i=1}^{N} \frac{p_{i}^{2}}{2m_{i}} + \sum_{i < j}^{N} V_{ij} (\vec{r_{i}} - \vec{r_{j}}) - \frac{(\vec{\Sigma} p_{i}^{3})^{2}}{2(\vec{\Sigma} m_{i})}$$

has the infimum Σ of its essential spectrum given by Hunziker's theorem [5]:

$$\sum_{n} = \sum_{n=0}^{m} \left[\sigma_{n} + \sigma_{n} \right]$$

$$\sum_{n} \sigma_{n} = 0$$

$$\sum_{n} \sigma_{n} = 0$$

$$\sum_{n} \sigma_{n} = 0$$

where σ_D = infinum spectrum H_D ; here H_D denotes the Hamiltonian of the cluster $D \subset \{1,\ldots,N\}$, with center of mass kinetic energy removed. If $\mathbf{T} = \mathbf{T}_{\mathbf{D}_{\mathbf{A}}} + \mathbf{T}_{\mathbf{D}_{\mathbf{A}}}$ and H_{D_1} and H_{D_2} have discrete ground states at the bottom of their spectra we say, after [1], that the system has a "two-cluster continuum limit".

It should be remarked that there is a number of situations for which it can be proved that the system has a "two-cluster continuum limit", namely: a) for v=1,2 a sufficient condition is that $\int V_{ij}(\vec{x}) d^3x < 0$ [6]; b) for v=3 a sufficient condition is that V_{ij} 's are purely attractive and hold a bound state [7].

As in [1], if we are in the two-cluster limit case, sufficient conditions for infinitude can be obtained by reducing the analysis to that of an effective two-body problem.

Theorem 3. Let V_{ij} be Kato potentials that are C^{∞} functions on an open set of \mathcal{R} whose complement has zero measure and let Σ be given by a two cluster break up (D_1,D_2) , with reduced mass $M_{0,02} = \left(\frac{1}{\sum_{i \in D_1}},\frac{1}{\sum_{i \in D_2}}\right)$. Denoting by \mathbb{R} the relative coordinate of the center of masses of clusters D_1 and

$$\widetilde{V}_{2,\,2}\left(\vec{R}\right) = 2\,\mu_{2,\,2}\,\sum_{\substack{i\in\mathcal{D},\\j\in\partial_2}}V_{ij}\left(\vec{R}\right)$$

D, if the potential

Remark. We believe that this theorem holds for Kato potentials without that extra smoothness assumption.

<u>Proof.</u> Since $H_N = H_{D_i} + H_{D_2} + V_{D_i}D_2 - \frac{1}{2\mu_{D_3}}\Delta \vec{z}$, where $V_{D_i}D_2 = \sum_{i \in D_i} V_{ij}(\vec{x}_i - \vec{x}_j)$ is the intercluster potential, for $j \in \Delta_2$

$$\psi = \frac{1}{2} \psi_{2} \phi$$
 we have

$$(\Psi, H_{n} \Psi) = \varepsilon_{D_{1}} + \varepsilon_{D_{2}} + (\phi, \left[-\frac{1}{2\mu_{D_{1}D_{2}}}\Delta_{\overline{Z}} + \overline{V}\right]\phi)$$

where
$$V(\vec{z}) = \sum_{i \in \mathcal{D}_i} (Y_{\mathcal{D}_i} Y_{\mathcal{D}_2}, V_{ij} (\vec{x}_i - \vec{x}_i) Y_{\mathcal{D}_i} Y_{\mathcal{D}_i})$$

 $j \in \mathcal{D}_2$

is the effective intercluster potential when the clusters $^{\rm D}{}_1$ and $^{\rm D}{}_2$ are in their bound states $^{\rm \Psi}{}_{\rm D}{}_1$ and $^{\rm \Psi}{}_{\rm D}{}_2$, respectively, with corresponding energies $^{\rm E}{}_{\rm D}{}_1$ and $^{\rm E}{}_{\rm D}{}_2$.

The proof of the theorem is completed by the following generalization of Proposition 5 in [1]:

Lemma 4. Let $\psi_{D_{\dot{1}}}$ be a bound state of $H_{D_{\dot{1}}}$, a $k_{\dot{1}}$ -body system with Kato potentials that are C^{∞} functions on an open set of \mathcal{R}^{ν} whose complement has zero measure. Let $V_{\dot{1}\dot{j}}$ be Kato potentials such that for some $\gamma \leq 2$ and $\ell \geq 1$

v, given by (2.3). Let

where $\vec{r}_{ij}(\vec{P}_i,\vec{r}_j,\vec{r}_j)$ is the distance between particles $\vec{r}_i(\vec{r}_j)$ and $j \in J_2$, in terms of the internal coordinates $\vec{r}_i(\vec{r}_i)$ of $\vec{J}_i(\vec{J}_i)$ and the distance \vec{r}_i between the centers of mass of D_1 and D_2 . Then

<u>Proof.</u> The proof follows by repetition of the steps in [1, Proposition 5] having in mind that the extra smoothness assumption on the potentials ensures that the function

(with integration over all coordinates but $\vec{c}_o : \vec{c}_i(\vec{k}, \vec{r}_i, \vec{r}_i) = \vec{k} - \vec{c}$) decays faster than any power:

for all n. This is a result by Hunziker [5].

q.e.d.

REFERENCES

- [1] B. Simon, On the Infinitude or Finiteness of the Number of Bound States of an N-Body Quantum System, Helv. Phys. Acta 43 (1970) 607-630.
- [2] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols. II, IV, Academic Press, New York (1975, 1978 respectively).
- [3] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York (1953).
- [4] M. Schechter, Operator Methods in Quantum Mechanics, North Holland, New York (1981).
- [5] W. Hunziker, Helv. Phys. Acta 39, 451 (1966).
- [6] F.A.B. Coutinho, C.P. Malta, and J. Fernando Perez, Phys. Lett. A97, 242 (1983).
- [7] J. Fernando Perez, C.P. Malta, and F.A.B. Coutinho, J. Math. Phys., to appear.
- [8] H. Kolf and J. Walter, Strongly Singular Potentials and Essential Self-Adjointness of Singular Elliptic Operators, J. Func. Annal. 10, 114-130 (1972).
- [9] J. Uchiyama, Publ. Res. Inst. Math. Sci. Kyoto [A]2, 117 (1966).
- [10] A. Klein, L.J. Landau, and D. Schucker, J. Stat. Phys. 26, 505 (1981).
- [11] L. Landau et B.M. Lifchitz, Mecanique Quantique, Ed. Mir, Moscou (1966).
- [12] H. Kalf, U.W. Schminke, J. Walter, and R. Wüst, in Spectral Theory and Differential Equations, ed. W.N. Everitt, Lecture Notes in Mathematics, Nº 448, Springer, Berlim (1975).
- [13] J.Fernando Perez, F.A.B. Coutinho, and C.P. Malta, paper in preparation.