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ABSTRACT

A theoretical framework for the description of the
decay of giant multipole resonances is developed. It is shbwn
that the statistical décay of the GMR is not necessarily
described by the Hauser-Feschbach theory owing to_the existence
of a mixing parameter. The contribution of pre-eqdilibrium

emission to the GMR decay is also discussed.
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2.

The study of the decay properties of giant multipole

‘rgsdnancés_jGMRl is of paramount importance for the unraveling

of their dynamical, microscopic structure. Since giant rescnances

-are located at high excitation energies, they mainiy decay by

particle emission. Treated as isolated rescnances, the GMR are
characterized by a total average width composed of two pieces:
the "escape width", rt , which represents the coupling of the -
GMR to the continuum, and the spreading width, P+, that measures

the degree of fragmentation of the strength due to coupling to
1)

complex intrinsic nuclear configurations (e.g. 2p-2h)
Borrowing from pre-equilibrium reaction theories,
one may envisage the following segquence of configurations through
which the excited nucleus passes on its way to equilibrium (see Fig. 1).
Of course, whereas the first stage of the reaction, namely the
glant resonaﬁcenpopulation,-isaa very coherent process, in which
1-particle 1-hole configurations act in phase, the other, more
complicated stages, are complex encugh to call for a statistical treatment.
It has so far been a camon practice to anélﬁze the particle
spectra origiﬂating from the decay of_GMR with-cne of two extreme models,

1,4)

which ignore caupletely the intermediate, pre-equilibrium stages These

models either assume the dominance of ?:, namely the @R decays predominantly

'fdi;gct;y“,fOr the predominance of ré P which implies necessarily that fhe

fragmentation ‘of the rescnance into the complex background is complete. In

this last case the Hauser-¥eshbach theory is utilized in' the analysis4}. To

give an idea about the result of analyses which assume either one of the two

limiting models mentioned above, w2 present in Table 1 -‘a summary of the -

results, taken fram Ref. 5), concerning the percentage contribution of the

"direct"” decay in several nuclei in different mass regions:. ™
It seems clear to us, though, that a less prejudiced
analysis, should involve, at least, the contribution of both the

"direct™ decay, exemplified by F:. zs well as the statistical




docay, usually described by the Hauser—Feschbach theory. Unitarity, of course,

will indicate the interconnecticn between the two (or more) contributions.

It is the purpose of this paper to supply a con-=
sistent theory of GMR decay into the continuum, which contains
the "direct" component, as well as the eguilibrated compound
nucleus part. We stress that owing to the inevitable unitarity
constraint;, the compound piece is not necessarily of the
Hauser-Feshbach form, particularly if preequilibrium emission
is also taken into account.

We first consider the "direct"+compound case. The
generalization to¢ include preequilibrium emission is then made
next. OQOur starting point is the observation that because of
the clear difference in the time delays associated with the GMR
and the compound nucleus resonances, we take the former to
constitute a "direct" process. This is to be understood in the
sense of the energy variation of the underlying S-matrix: At
the level of the fine structure fluctuations attached to the CN
resonances, the GMR medulation is locally very smooth.

We introduce now the projection operators P and
Q, which are defined such that when operating on the total
nuclear wave function, P projects out both the open decay
channels and the GMR. Q 1is simply 1?P. A simplified model
for ©  would be to consider it as a projector of compound
neclear states. Using the optical background representation of
Kawai et al-s), we may write the energy averaged cross section
as a sum of that containing the P channels plus the cross

section describing the constitution of the {Q-channels, namely

ce’

In the absence of GMR, ccc.(Q!- reduces, when no direct channel

o - (1)
a = q;c,(f) + Q‘CC,(Q) |

coupling is present, to the well known Hauser-Feshbach form.

Considering the contribution of only one partial wave,

G:C, (®) = —T‘C_::)-T;’ CJ‘) (lj'f' ‘)_-‘;—:;_ (2)
2, Tl e
e

In the presence of the GMR, treated as a doorway, Ucc,(Q)
becomes different from (2) even if direct channel coupling is
ignored. To give an example, we consider a phbto-nhclear
reaction populating, e.g. the giant dipcle resonance. Then
TC{J) is just the y-nuclear formation probability, and Tc,may
he taken to represent the neutron transmission coefficient.
Since neutrons may be emitted directly from the doorway {(GMR}
as well as from the compound system, Tc,(J) must be composed

of two pieces7’8)

. - ~C ' D
Tc»“” =T_, (5 + M T, CT) (3)

where Tg.(J) representé the compound nucleus neutron decay
transmission coefficients and TB,(J) , the doorway contribution.
The factor § is a mixing parameter which measured the degree
of fragmentation of the doorway. It is related to the doorway

spreading width q; by

po= RV /0 :

. . )
b =07 +0

In fact, u is incident energy-dependent owing to the doorway

3,10}

resonance modulation However, we are fixing the incident

energy to be on rescnance.



3

Clearly the Tc" that appears in .the denominator of
Eq. (2} must have the same structure as in Eg. (3).

At this point it is important to mention that
although the transmission coefficient T, () of Eg. (3)
contains a term that is explicitly related to the GMR namely
urz,(J} (which is by definition shorter-lived than the compound
states), the overall time-delay content of it is consistent with

that connected with the Q-space. This is so since the mixing

“parameter, u , exemplifies a higher order process which recessarily

takes longer time to occur than the “"direct" process described
by acc,iP), Eg. (1), which we proceed now to discuss.

Because of ﬁhe mixing of the GMR with the compound
nuciéar states, it is clear that the term in the ¢ross section

that describes the faster, “"direct" decay process, (P) ,

Occ!
should céntain a2 depletion factor. In fact, the theory of
Hussein.and MchyB', of muitistep compound processes, clearly
idenﬁifies this deplefion factor, for the two-step case
considered here, to be (1-u), with u given by Eq. (4). Thus,
we have for the direct cross section, in the absence of direct

¢c+¢" transition

c" (5

1L -m) 'r:
0., 2 =@-M Z
10}
) D ’ I‘c'
where t_, 1is given by 4 ——
c ) PD .
We should stress here that Gcc.(P) 1s not treated
statistically as was done in the evaluation of Ucc.(Q). Eg. (2],
although the Hauser-Feshbach-like form, BEg. (5), may apparently

indicate otherwise, The GMR appears in Gcc.(P) , as usual, in

the form of a Lorentzian-shaped isclated resonance. The form

given- in Eg. {5) 1is the resul: obtained when setting the incident

C.M. energy equal to the energy of the GMR, and identifying ﬁg

T D . + _ D
with 4T /Uy. (Notice that I, = JE').

[
c . .
We thus have finally for the energy-averaged cross

section, ¢ the following (again assuming a y-induced reaction)

ce' '

qu/ 3 ‘211/ 'F,Al'riir

1f> _ _
/! = b'g .zb b' ( :D ' . {6)
zcl'a ¢ Z c*r c”)

when the factor {2J+T)j% is absorbed in T$.
) k .
In Eg. {6} the y-absorption is assumed to occur

predominantly through the GMR. The factor uT$ that aﬁpéats
in the second term of Eg. {6} contains the'mixing'péfametef U,
owing to the same time-delay argument used in fhe construction
of T_,(5) (see discussion following Eq. ).

Eg. {6) is the principal result of this investigation.
It clearly exhibits the time-delay difference between the two
competing decay processeé, throﬁgh the presence of the fundamental
mixing parameter u. Two important limits can be eésily identi-
fied. The strong mixing case, u=1, washes out the doorway

nature of the GMR, and accordingly gives

O_,SM _ T:D 1;3,-.-"1:5/ - | Y

cc'! 7 .3 Z( c”

above is clearly identified with the usual Hauser-Feshbach

e o
. - - . - C
result since the decay branching ratio involves Tor + T ¢ @

genuine optical transmission coefficient.
The second limiting case in the weak mixing case,

u=0 , which yields straightforwardly




g = T %
ce! 2’[
falld

WM 2 Ach! (8)
F

2learly no reference is now made to the compound nucleus owing
ke the doorway nature of the formation process exemplified by

the y-transmission coeffioiont Tg'.- In-the more general case,
zgs. (6}, {7% and- (8} coméuqut symmetrical in the forms of the
antrance and exit channel troosmisaionscoefficientsT1).

So far, analyses-o§~&§ha,.haye been performed
assuming either Eg. (7} or {8),;depend;ng on the part of the
spectrum cons;dered. A,morewconsioton;-approach, however,
should start with our mqrtﬁi-withﬁohgoﬁimvof extracting the
value of u. This procedure h&#rbeén followed previocusly in
connection with iéospin mixing in nuclear compound reactions,
namely the case: of analog: resonances. coupled to the lower-isospin
baokground12}- The parameter - extracted in this case measures
the degree of-nonooﬂservaoion of isospin due to Coulomb mixing
of the upper and lower isospin states. )

In the case studied here, w should:méasure the

iegree of GMR fragmentation into tne,moxexoomplex compound

aucleus configurations.. The unamb;guous extraction of u .,

rowever is -directly tied  to the a~prxor1jknowiﬂdgg_of, 72 and
rg . The: former can be calculated using a suitable RPA descrip-

tion of the: coherent 1p-1h excitation in—the—fégion of high
sxcitation energies1’ (temperature-dependent RPA)}. The compound
Eransmission coefficient can be evaluated ﬁsing the optical
nodel. We should stress that the H&user-FéShbach evaluation of
the second term in Eg. (2) is not valid oﬁing to the presence
>f the unknown parameter u. If such a calculation were to be

gerformed, one enﬁs_up evaluating _zD furc , whose interpretations

~12p-2h) and the compound stage are called 17, 1 and T

in terms of optical potentials. is to say the least, ambiguous.
Before ending, we dwell a little on a possible
generalization of Eq. (6) to incorporate the contribution arising
from pre-equilibrium emission (e.g. from the 2p~2h Stage). This
is easily accomplished using the nested doorway approach of Ref.
B)}. The important new features are that the cross section is
now composed of three distinct pieces, and the mixing parameter

4 is divided into three terms. Namely11}

‘ D
D ‘tzi *ﬁ/ﬂ Tc’

”Z( AT )

0L = G (B0 + (=4) v

P b
Ccr ‘!'/'Li'rcl ""‘o"i ﬁé-ﬁ'ﬂ’)f‘!

F |
e Z( SATAAOT)

(L4
with
/ D "r:'br
={(4-M— <
o (2 = (@-p-pu)T, S,

In the above U, measures the mixing of GMR with the 2p-2h

.states, which can be evaluated using the extended RPA approach

of Ref. 13), U, refers to the mixing of the 2p-2h with the
compound nuclear states and u refers to the mixing of the

GMR directly with the compound states, which may be set equal

14)

to zero for all practical purposes The transmission coef-

~ ficient related to the GMR (1p-1h), the preequilibrium stage

D P ' c



respectively.. - It is important to note here that unitarity is
preserved both in Egs. (6) and (%) in the sense that by summing
over the final channels c¢', we obtain
Efic, = 't:? (10)
¢!
irrespective of the detailed nature of the gecay.

In conclusion, we have developed in this paper, a
théoretical framework through which the analysis of GMR decay
can be performed in a consistently unitary way. The result of
such an'analysis, done in conjunction with an RPA {and/cr
extended RPA} calculation should furnish a measure of the mixing
parameter, which is of paramount importance for the understanding
of the GMR. Application of the above formalism to data analysis,
as well as a more detailed account of the discussion above is

under way10'.

REFERENCES

1) See e.g., Specht and Van der Woude, Rep. Prog. Phys. 44, 719
(1981); G.R. Bertsch, P.F..Bortignon,and R.A. Broglia, Rev.
Mod. Phys. 55, 287 (1983); F. Zwarts et al., Nucl. Phys.
A349, 117 (1985).

2) L.8. Cardman, Nucl. Phys. A354, 173c (1981).

3). 8.8. Hanna, Proceedings of the Conference of Giant Multipole

Resonances, Bertrand (ed.}),.Vvol. 1, 1979,

- 4) H. Dias and E. Wolynec, Phys: Rev. 30C,. 1164 (1984).

5) a) W. Eyrich, K. Fuchs, A, Hofmann, U. Scheib, H., Steur, and
H. Rebel, Phys. Rev. C29, 418.{1984}.
b} K. Fuchs, W. Eyrich, A. Hofmann, B. Mihldorfer, U. Scheib,
H. Schldsser, and H. Rebel, Phys. Rev. C32, 418 (1985).
c) Reference 3}.
d)-F{T. Kuchnir, P. Axel, L. Criegee, D.M. Drake, A.0. Hansen,
and D.C. Sutton, Phys. Rev. 161, 1236 (1967).
'e) L.M. Young, Ph.D. Theésis, University of Illinois, 1972.
£) J.R. Calarco, Ph.D. Thesis, University of Illinois, 1969.
q) M.ﬁ._Toms and W.E. Stephens, Phys. Rev. 108, 77 (1957).
h) Reference 1).
i) K. Okada, H., Ejiri, T. Shibata, Y. Nagai, T. Motobayashi,
H. Ohsumi, M. Noumachi, A. Shimizu, and K. Maeda, Phys.
" Rev. Lett. 48, 1382 (1982).
3) H. Steuer, W. Eyrich, A, Hofmann, H. Ortner, U. Scheib,
. R. Stamminger, D. Steuer, and H. Rebel, Phys. Rev. Lett.
47, 1702 (1981).
k) H. Ejiri, Journal de Physique 45, C4-145 (1984).
6) M. Kawai, A. Kerman, and K. McVoy, Ann. Phys. (NY) 75, 156
(1973).

7) 8.M. Grimes et al., Phys. Rev. C5, 85 (1972).




8)

9)

10)

1)
12)

13)
14}

M.S. Hussein and K.W. McVoy, Pnys. Rev. Lett. 43, 1645 {19791}).
See alsc H. Feshbach et al., Ann. Phys. (NY} 125, 429 {1980):
D. Agassi et al., Phys. Rep. 22C, 145 (1975). For a ;gcent
discussion of the interceonnectiocn between the above appngmﬁéé
to multistep éompound reactions see, S5.K. Adhikari, Phys.
Rev. C31, 1220 (1983); Phys. Lett. B, in press.

M.S5. Hussein, Phys. Rev. 13C, 1420 {1976}.

5.¥. Adhikari, H. Dias, and M.S. Hussein, in preparation.
Notice that the difference between our Tg {4 g?FD) and
the usual strength-function form 2vT/D . This comes about
because the GMR is an isclated rescnance.

W.A. Friedman, M.S. Hussein, K.W. McVoy, and P.A. Mello,
Phys. Rep. 77, 47 (1981},

H. Rarney, H.A. Weidenmiiller, and A. Richter, Phys. Rev.

clé, 1774 (1877).

§. Ayik and M. Dworzecka, Phys. Rev. Lett. 54, 5334 (1985).
Clearly, the coefficient ' could still be present even

if the interaction responsible for the mixing is, as usually
taken, of a two-body nature. This arises from what is called
the external mixing process which induces coupling via the

opan channels.

?
(ry/

r
H.F.

+
GMR NUCLEUS r1/rH_F_(%)
a) b}
EO 2085, %, 905y 10 - 20
E Light Nuclei (A & 40) < ~ 100
d,e) £,9,e}
209, ¢ 208, 9
E1 10 - 20
e} ej
141Pr '.BBY
. . h)
E2 Light Nuclei {A 5 40) ~ 100
i) 1)
119Sn , ZOSPb
E2 k) ~ 10 - 20
9ZZr
'Table 1 Tabulation of percentage contribution of "direct"

} of the EO, E1 and E2 giant

resonances for wvarious nuclei, collected from Ref. 5}.
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FIGURE CAPTIONS

Figure 1 - A schematic diagram showing the_sequence of events
that may occur in the formation of the compound

nucleus via the giant resonance.




