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ABSTRACT

We construct a hierarchical model for 2-& Coulomb
gases displaying a line stable of fixed points describing the
Kosterlitz-Thouless phase transition. For Coulomb gases cor-

responding to 2 .- models these fixed points are stable for an

N
intermediate temperature interval.
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The kosterlitz;Thouless phase transition [1,2] occurs
ih_a class of 2-dimensionai systems like the plane rotator,
Couleomb gases and ZN models, N>>1 [3,4,12]. For the plane
rotator it is characterized by a change of exponential to power
law decay of—correlation function as the temperature is lowered.
The physics of this transition is explained by the competition
of the self-energy and entropy of thé defects (vortices) cocuring
in the system [1,2,3].

Renormalization group (R.G.)} methods have been
employed to discuss the phenomenon. Usually, calculations with
R.G. make an approximation of disregarding non-local contribu-
tions to the transformed Hamiltonian. In the so called hierarchical
models no non-local terms appear and therefore the above apéroxi-
mation scheme is exact.

For the Kosterlitz-Thouless phase transition however,
the only existing hierarchical model is the one for which the
so-called Migdal-Xadanoff R.G. formula is exact. The trouble
with this approach is that the Migdal-Kadanoff recursion formulae,
as seen numerically by José et al. [3] and rigorously proved by
Ito [7], have no stable fixed point other than the T = one.

In this letter we describe a 2-4 hierarchical model
such that the line ¢f fixed points corresponding to massless
gaussian theories is, for 0 <135Tc <o, ([glcbally)} stable
against a class of perturbations that include Coulomb gas-type
of interactions. Therefore those Coulomb gases have, for T <EE,
an asymptotic behavior of massless gaussian field. This is
the Kosterlitz-Thouless phase transition.

Our model incorporates the ideas of Wilson [8], as
formulated by Gawedzki and Kupiainen [9,10] of decomposing the

figld operator ¢ into a sum of two fields ¢ and £ describing




the block-spin and fluctuation variables respectively. It is
described as follows.

The starting point is the hierarchical 2-dimensicnal
massless gaussian field ¢(x} in a cubic lattice ZZ, defined

by the two-point function:

<e€ ¢' ® e“.' ¢{3)> - df-‘% e;(¢{x)- ¢{y)) - [%[NL(J‘. V)‘ Ndolo)] (1

The: measure (l (c’p) is formally given by

_Ieg,
EKP{'Vzg. > 0 Gy rp(x)] [1d30)  where 60091 = & 8 byidar
plays th;z:ole of a Green's function for the "hierarchical laplacean".
Here L>1 is an integer representing a scale

parameter in the model and NL{x,y) + the "hierarchical distance"
between X and y. is the smallest positive integer N such
that [L_le = {L—Ny] + ([2] denotes the vector formed with the
integer part of the components of 2 ERZ) , and so NL(D,O} =1,
Our choice of the free hierarchical covariance is made as to
guarantee that the asymptotic behavior of correlation function
of exponentials of the field ¢(x} , are given by:

{ oHOw-4en) 5

e
¢ fx-9| ™ (2)

je-y} —r o

Notice that this differs from the usual formulation [10,11]
of the hierarchical modeis (for d> 2) where the correlation
function of the fieids themselves are asymptotically egual to
that of a usual free massless theory.

Following Gawedzki and Kupiainen [11] we introduce

the orthogonal decomposition:

o = b ¢ R w
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where | 1is a gaussian field with two-point function:

{ ¢ Yoo-Ym)y (il d®- bl
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and £ is the‘gaussian "filuctuation field" determined by

i *) - { i x} - i H x=
<e;(§() E(s>)> . o (£(x)- §() 4ol y
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Notice that &(x} is independent of Z{y) 1if x#vy
and that the contribution of the E(L{%]) is constant when =x
varies in a given block of gside L.
The class of models we are geing to consider is

obtained by a local perturbation A of the gaussian-measure

duBGH:

(), = 7| RO A0) dn 0 = 7] KUY TLM0w) dye ()

{6)

The renormalization group transformation A =+ RLA

is defined by integration over the "fluctuation variables" £ :

RAVW) = | dv® AW

and it corresponds to the usual block spin transformation. This

transformation is in fact of a local nature. It follaws from (3)



and (5) that
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where

) = [ bl ppeo)] "

By construction the free theory, A=1, is a fixed

point of the transformation ¢ We are interested in analysing

=
the stability of this fixed point with respect to a special
class 1 of local perturbation R; The choice of this class
has to meet two requirements: 1) it must contain A(¢) = expl{Zcos$}
as this represents the "standard™ Coulomb gas and 2} it must be
closed under the renormalization group transformation (%), i.e.,

rLf\E'r if AE€T.

A minimal choice of 1 fulfilling 1) and 2} is:

Ay = Z Zq 8Lq¢ , (10)
qeZ

' : T
where EZ64 i.e. ) |2 | <w, and z_=32__ .

If we write:

('ﬂ_?&} (43} _ Z Zci etq¢ {11}
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An explicit computation shows:
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7 = L« 4 (12)
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in particular . 2! g2l .

The stability of the fixed point Ag(8) =1 cor=

responding Zéu) = 6q can be analyzed by linearizing the R.G.

0
transformation {12) around Zéo). The linearized transformation

%2'=AZ 1is given by the diagonal matrix:

2e %9
A g L id g#o
49 . {13)
0 if g=0

Therefore if g >Sc = 8r the eigenvalues Th of

A satisfy iTnI <1 and the fixed points is stable.

In fact it is not difficult to show that the fixed
point is globally attractive, i.e., for any A &1 ,Lim(;?l) =AD
if B> Bc. Full mathematical detail will be presenﬁgz else-
where [14].

For the ZN—models, N >> 1, the Kosterlitz-Thouless
phenomenon is characterized [3,12] by the existence of an

intermediate temperature interval I = [By ,EEI such that for

N
By <B <§§ the correlation function decay polynomially. These

models can be show [12] to be equivalent to two interacting Coulomb
gases with integer charges m and n at temperatures £ and

2.2
BY = EEEH— respectively. A simpilified hierarchical version of

this system is given by probability distribution:

Clpm“ ch\) ﬂz ?lts((lp{x)] (14)
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Now if 9n = 9 , d“sa A} is invariant under
H

nm

2.2
g (2ﬂé N

, and this expresses the sel-duality typical of
ZN—symmetric models [12].
A renormalization group transformations (9) acts on

a medel given by g = {gmn ,m,né&2} through (15) transforming

it on another model of the same class given by a different set

g' = {gl;m;m,nEz} = rLg:
lid + ZnN )1 ¢
L R s ST T L e
gmh !::‘" e h\:"'Jnﬂ- 1=t mng
e
2 M=m 5™ ag=n
Lk i=1

The linearized transformation is given by the matrix:

2
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0 - mz0 ard w0
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(173

Therefere we have stability if and only if B>BHEBN

2 —_
and B8 <ﬂg S EE . The two conditions are incompatible if N< 4
and for N>4 E; >B, and there will be a soft intermediate
phase for 8 E(fE ,BN).

Finally we should remark that our results and
techniques admit ¥ natural extension in order to cover U(1}
and ZN—lattice gauge theories in 4-dimensions [14] as the
deconfining phase transition of these models are of the same
nature as the EKosterlitz-Thouless phenomenon in  2-dimen—

sions [12,13,15%,186].
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