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Abstiract

Using the equivalence with a derivative coupling model,
mass perturbation in the Thirring model is investigated. We show
that, for 4mM2 - WFJ<E;<8H a1l ultraviolet divergences cancel.
Finite composite operators are constructed in this range. Ward

identities and equations of motion are discussed.

i.Introduction
The . usual approach to perturbative studies of models
consists in separating the Lagrangian, L, describing the system

in twe pieces, L and L
) 4] Int

L =L +L : . (;.1}
with L a free field Lagrangian and L contéiningrail reievént
) o ) Int :
interactions. This division is dictated solely by our ignorance
and inabil‘tg to produce .soiutiuns for more general field
equations. It is certainly desirable to have at one’s disposal a
perturbative scheme with L already ‘incorporating as many
symmetries as possible. Of cgurse, if a project has a too broad
scope it is probably untenable. Me have therefore limited cur
attention tp mass perturbation around scale invariant theoriges.
Barring the uninteresting and trivial case of perturbation of
free field theories this brings us immediately to the context of
some soluble two dimensicnal models. A prominent member of this
clasg is the Thirring model which has so much contributed to the
development of ideas in Field Theqry(i). In particular the reader
should recall the amazing equivalence of this fermionic model
wifh a bosonic theory, the sine-Gordon modelfz) To fix a nota-—
tion, 1let k be the Thirring model coupling constant in Klaiber 's

[§)]

definition . Then the sine—-Gordon parameter,?, which appears

in the interaction CDS(P?), i related to k by

% oy, _ 33 ' -
-ﬁ-(%) {4 57&5) ¢I.23

: 2
Attract ive and repulsive regions correspond to @ (4T

i 2
tk < 0) and Brall <k 3> 0). P'= 4N corresponds tc = free




fermion theary.

The-Tﬁlrring mode: has ather |nterestiﬁ9 connections. It
is also egquivalent, in.a sense to be made precise. later, to a de-
- rivative coupling model describing two massiess scalar fields,

Wranduq;, |ntéractnﬁg with a massless spinor fieid, ¥, via the

ateract fon Lagrangian

Ly, = 8,153y, + SUF TR, (1.9
The modei (I.3) will be called Derivative Coupling Medel, DC
model, for congiseness. If g = ¢ it becomes a model studied by
: =3
Schroerfs) The massive madelnwith g = 0 was considered by Rothe
(4} i

and Stamatescu.

To be equivalent to the Thirring model, the couplings g
i
and g c¢an not be independent, but are related to Klaiber 's- qon-

stant k by

& v EviNe . o8 ]

32 =&l h"\"ﬁ) ) *‘_%}] : (1.4)

(1‘}‘3:_,) (L o+ 85) =1 : €I.5)
- Z

Mass pertarbation around a massless theory is plagued:

by severe nfrared. divergences. In such situation:. one should
attempt to wmake partial resummations to achigve finiteness.
But, withouo a guiding principle, this is a hopeless task. We
'.shali there#cre adopt an infrared regulator before proceeding. A
‘detailed discusson  of the uliraviolet behaviour is then done
and” the following resalt eptaing

i. For ??(4“ the more divergent contributions are pre-—
ciseld those of  the unperturbed wodel. We found that only for

— 2 :
AWz -~ B ?'tne Thirring Green  functions are welll  defined.

Parentheticaliy, this does not mean that the Thirring model is

pathological for El bellow 4H(2 —ﬁ?); the Wightman Funct{ans_aa
given by Klaiber are, for example, well defined for all values of
k. The value @1= 41(2 ~y&) is the point where the two point Greaﬁ
functicon becomes singular as a distribution. We could still coﬁ"
tinue analitically beypnd this value, decreasing @1; but this
process will lead to more and more divergent. Green functiané. Fir.
nallQ. at @zz AN 4 - (13)”3) all Green functions will become di-
vergent and no continaation to lower values will be passible. Ug
alse menption that in the interval 42 - Ug) (?chﬁ the only
sinéularfties.are-volume divergences which, as usual, cancel be-~
tween nuomerator and denominator in the Gell Mann Low ?o}mula.

2. For EH}??}4H there are some =additional divergences
aﬁsociated.uith-vacuum. bubble diagrams. These are again canceled
by. the deﬁwminatmr of the Gall.Hann Low formula.

3. Ue alsc dicuss the construction of composite opera-
tors, In particular, we verifuyu a conjecture by Swieca .for the
definition of the mass operator N[;‘;fj. It is found that & well
defined operator is obtained Jqst . by doing a subtraction of the
vacuum  expectation value besides the usual Wick ordering Pre-
ﬁcertinn.-

For ??) 81 the theory is unrengrmalizable .énd- sOne
drastic change. in the approach would bhe necessafs, .

The paper is organized as follows .

In section II the DC.model is introduced, firstly at thé
classical  level. We then show that the fermionic Green Functiuns,

of the model are, for certain identification of the ¢oupling con—



stants, equal to those of the magsless Thirring model. The sec—
tion ends with a brief discussion of composite objects as the
fermionic current and the mass operator. Section III begins the

discussion of mass perturbation by giving the rules top construct

. the relevant amplitudes. An infrared cutoff is introduced and the

" degree of superficial divergence of an arbitrary amplitude is

established. The UV behaviour is extensively analysed in section
IV where we alsc discuss the modif}cations, if anuy, in the case
of cnﬁppsite operataors. Equations of motion and Ward identities
a?éJ&diseuséed in section V. Some remarks concerning the elimi-

patfon'uf the infrared cutoff are presented in the conclusions.

II.A Derivative Coupling Model

From é techical point of view the study of mass pertur-

bation in the Thirring model can be g?eatls simplified if one

takes advantagé:oF the equivalence of this theory with the de-

rivative coupling model specified by

L:%iﬁ} ""i@-‘ﬁ’t s Lyl ¢ 3FPNLY LRI, aro

At the classical level the equations of motion derived

“from sich Lagrangian are

3t g, z-8, 3 (¥4 (11.2)
2 TiryS (I1.3)
g =~ 9,1 HY) 3
iFv=- 83 - 3.(39,) el ads (I1.4)

Qo 1
Now, as thgm'f-*vx-a . £'w=( ) we could use (II.2)
-f 0

and (II.3) teo reconstruct the current

’TK"W%-%?‘“\?’ -%3"?2 , 3= EmvY, (I1.5)
Camparing this ;XPPESEiD% with the equation of ﬁotiun of .the
Thirring model

LRI L 7L SR A 7 (11.6)
we  s@ge that with the choice g: = - g:= - 49, the taﬁ nodels haye
ldent ical fermionic sectors.

The content of the model (IL.4) is actually trivial. As
both vector and axial vector currents are conserved, lh and 4,
turn’ out to be free fields. Moreover, from (II.4) one easi]ylget
b= Exp(ig*;pl + ixsslq;)ﬂg with 13.3 free massless Dirac field.

‘The. next step is the quantizatijon. It is clear that the
fquivalence will continue to hold if the same quantization pre-
scription is adopted for both models. At this eoint it may be in-
structive to stress a Qarg Fundﬁmental._diFFerence.between the
ciassical and the quantum descriptions: of a field theory. The
classical equation of m&tion does not specify - a model becéuse
quantum fluctuations make the interaction torms undefined. To
promote these formal expressions to the status of bona fide quapn-—
tum operators requires detailed information about the 5horf dis-
tance behaviour of a product of fields. In- general terms, this
implias .that field equations and their solutions mﬁst be given
simultaneously to, $e1?.cunsistent]y; caracterize thg—theorg. In
OuF case  we suppose  that iﬂ_and waill still be:-free fields.
However, since they are massless an |nFrareq_regulat0r.is neces—

sary to achieve finiteness. The infrared regulated two point

functions are




1 L %
) (Q1r=(T () (0)r=D (x)==(i/74) Mgx(-x"+ ie)
RALE A ANl LP‘ F " (11.7)

where D (x) satisfies Eﬁ D ﬁx)=~i s(fo Because of the infrared
cutoff t:e Hilbert space Zf the ;states constructed from the
fields ¥, and qﬁ does not have a po;itive definite norm. In spife
of this, exponentiated fields :Exp WP (x): are in a good shape,
provided a certain charge conservation law is obeyed. The precise
statement concerning the last remark is that positivity holds in
the subspace reconstructe?ésrom Wightman’s functions satisfying

& charge conservation lawi

<T=ExPi¢‘l?(xiHHExpi-dt\f(er....=Expi=t‘lf(xn)}=

(1I.8)
= Exp[- Eﬂﬁ.‘d- D (x -x )] by
iy PR 1 g7 E%,0
Thus, at least for small ¢ and. g , the fermionic sector
i
could be described by the field _
= 3 i i . N
1’1 Exp cugi\pj + .gatpz IR 3 (11.9)

Indeed, wusing (I1.B), the N point Breen function c¢an be computed

and then campareq_with Kiaiber "s. We hayet * €
T, A=ty Fad= Exe [ E{H' +§ .X,.‘i .Xzi) D1~ x)]
‘. 2 T Y 5
JExpl ES- (3 + 32 3'7; 3;. )DF{.):. % 1.Exp[ .Z.-(- 3?1- 3: B’:. X;.)Dp{x'. -)_:lﬂ
4 U L .

AR A AP AEW! oo .’?.ty": >

(II.i@)
in which we should identify
@ = 1% _ a2
) S‘ / b= 3:

Y
oz el-{1s2*)*+ & . e
L *ﬂ @l L‘&[(i"('ﬁ;’) +R7 (1.
where k is the Thirring wmodel coupling constant as defined by

a £

Klaiber. HNote that giga=-k » implying that one of the g’'s is

imaginary.

We are now in a position to write down all the operators
appearing in the equation of motion in terms of wl' wlr andﬂn -

The current, for example, can be identified with

.54 (83y - 3ay) (II.12)
50 that the field equations become
i F 0 2 - & e ( Soal Vi) + G $ix-0) (IT.1i3a)
2 = Y] )

az?‘ - & 3;-3“ CII.i8b)

3

(3
Py, =BG (I1.13c)

2
Composite operators can also be constructed as local
limits of products of the basic fields. In particular, Johknson s
(1
limiting procedure furnishes the current

M A v o 7 1 .
Jix = :!', (4shy)® g:',,; %,:i-' Z1e)(Foee)¥ 40 -3 F1x-0) (13, 149

Zie)= Expl-187+ 87)D,1e)]
which, as discussed elsewhere, differs from ([1.i2) by a factor
containing a spurion field, i.e., a field which has no effect- on
the fermionic sector. For later reference, we alsg write the mass
operator as a limiting process .
N[}r.ﬂ{,q: E::; Ex pl-g - E:EDF“)FTI:*'&]'{»‘_{#.)::E%Pligzxglf LA RCTS PR
with the understanding that the 35 matrii acte immediately on the
left of the Y field.
TI¥l.Mass Perturbation
in Kiziber 's operator approach the field solution of the
Thirring modgel 1% written as
‘\Prs'.ExPu.La'«uingf)‘f'.,! (ITI.1)

~
where 5 andg 5 are  the potentiale of the Ffree vector and free



q

axial vector currents, respectively. As 5 . ; and 40 are not  in-
dependent, the study of mass perturbation may become rather cum-
bersome. In this respect the representation (II.9), employing
.independent fields is clearly superior and will be adopted from
now on.

The formal study of the perturbative series can be done

by defining Green functions via the Gell Mann Low formula

T, e Fy . 0> = LTHE) At T Expli  bee #2) >
LT E"P{FJL:M' J".x] >
_ (III.2)
where LI N = NPE*J is the mass operator and 'h denotes the
salutionn (ITI.1) of the Thirring model. The Feunman amplitudes
are obtained by empanding the exponential and appluing Wick's
theorem, alwaus keeping in mind the selection rules (II.8). For
that it is useful the identity
(Exp 1;323‘@: 44 =: Exp- 2:'32'?:'7':1; +ZE-.~=|:J".|‘9.;;':'?';'\l»I (111.3)
We shall now study the wultraviolet behaviour of the
integrals so constructed. To simplify the discussion this will be
done explicitly in the Euclidian region. A generic amplitude I
consists of a product of propagators of various tupes which, in g
graphical representation, are associated with the lines of =a
graph G. The wvertices of G are associated . either with the
interaction Lagrangsan or with external fields. In momentum space
the possible propagators are

&

i. Fermion propagator 2
Pz
2. Exponentiated fields. These are of various types, depending on

E3 2 =
@ ) .
the contracted fields (0 = -—3; = ;((_9;;-- {) i P "‘{_‘;, = - G'/(ﬂ-yo‘) b1

i0

Propagator : Contraction

-.‘fr.j
a. U v « « » = » s« . Exp2ig P with :Exp2ig : or
9 . % 2%
iExp-2ig P with 2Exp=-2i H
L83 | 2'{1 92 W-,,
T O =Exp—2igaqa= with =Ex92i92qk=
2} ., =
€ lfﬁ) e s w s o= os o« . SEmpRig ¢, with $Exp ig g or
2 2

sExp-2ig f with Exp-ig H

‘zr- Eer 2|P=

d. « r x x = = = = » IEwpRig : with Exp-ig H ar
{pY) . % 2%

IExp-2ig T with ZExp ig H
LY zlﬁ ﬁqi

e. 3 " s s s = w o« u « IEwp ig : uwith Exp ig H or
L p) . o
IExp-ig g7 with tExp-ig |&=
2 2
-y
f.o |t » = + = « = » » » SEwp ig : with fExp-ig :
Y o % A

8. “,1)"1 = s s v s« 2 = & = =Eup !91 Lpl- with =Exp |91Q‘- or

tExp-ig I with sExp-ig H

h. |?gf4 C v e e s s .. . EExp ig1 qﬁ: with =Exp—191:}=

1 ¥ g1

At this point we could introduce a graphical notation to
represent the above - propagators, but this Is not essential. In
any case it is rapidly seen that a regularization is necessary to
avoid infrared divergences. To keep changes at a minimum only
progators associated with the Q& field will be modified (recall
that L ‘ does not depend on W;" Because of charge conjugation
the vegzices of a graph G can be separeted into the following two
sets. To the first set, Ul, belong the vertices which are con-
nected to the external vertices of G by fermionic 1lines. The
other set, U; r contains the remaining wvertices of G. The
fermionic lines connecting the wvertices in V, form, therefore

closed loops. The regularization that we will employ can be now

describedt
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1. If a exponentiated proéagator links a vertex of w
with a vertex of U&, we make the replacement
Expla D {(x-yg)) -y Extplx A (x—y,m) (I11.4)
where A (x,m") i:. the free propagator of m::ssm.. The modification
does not change the ultraviolet behaviour whereas at large dis-
tance we have
“Exp®A (X)) | mmm-—— > 4 (IFI.5)

F

2. Otherwise, if both ends of a line are vertices in v,

{gr in V ) then the momentum space propagatar is changed as
2

of ol
. (Pa) > {pre m?) (IX1.4)
This regularization is not equivalent to (1.4). Indeed, the

Fourier transform of the r.h.a. of {(IIl1.&6) is not an exponential

of a massive propagator but the function

o2 -+l .
2 0 (mY Keyo tmed (II1.7)
[lea) Tl

where K (mr) is a modified Bessel function. We observe that the
LT

substitution (III.6) gives a bhetter large distance behaviour than
(I11.4), namely, if r —> 9 then (III.7) tends to zero. The forth-
coming dicussion will clarify the reasons for adopting two kinds
of regulators instead of only cne.

Returning to the study .of the ultraviolet behaviour of
the regulated Feynman integrands, we recall the definition of a
generalized vertex. This is any subgraph obtained by deleting
some of the vertices (and all lines meeting at these vertices) of
the original graph. On}Q proper (iPI) generalized vertices can

(7

generate counterterms . Consider therefore a proper general lzed

vertex J. We want to calculate the degree of superficial diver-—

12
gence of § .

Let then % ,

assaciated with the fields =E”P“2i93?1=ta4h r EExp Eigtq:=t,t‘.

P, I’and 1=be the nunber of vertices of ¥

¢ Esn ¢ i . . fEam (i . : ) .
Ehp(lg" ¥, is, ¥y, ) ‘\lrﬂ and. Exp(-ig, is, ¥, '\}u respect ive

1. Similarly let E and ! indicate the number of vertices asso—

2
ciated with =E><P('"Igl‘f‘ - igz\P‘H"l'uand =£:»:::(—|gs\§iI + igal.?!)l't:.
With this notation, the degree of superficial diversence of &

will be

Sy= 2 -p -

njw
S~y

Moo, 0. y -
% *ﬁ"” U+‘Ti’sﬁ_(f+‘fp h) (111.8)

wherel=91+gl+-p:l+iz , p=h+h

N = # of external fermionic lines

F - . 2
feif+ -0 -1) (II1.9)
h = “ﬂ*’-?,*’,*ﬁ.-hj,)z (IT1.40)

IV. Ultraviolet Analysis

We first consider the diagrams of the unperturbed theory

for which N=p = f = h = 0. We then have
F

Ho ? .
813):2-(%-(g¢9,}?=2—(%-“%” €(IV.1)

From this formula we see that the n point Green func—

tions are well defined for

VT + 4 ¢ S0 < VF el (1v.2)
]

Outside this interval the dimension of ¥, becomes greater
than one. In the repulsive region, the point g: =K(¥E + 13 s
above the point 93 = 80 where, as we will see, the model becomes

unrenormal izable.

The a priori inexistence of the Breen functions of the



-
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unperturbed model s without physical consequences. The cause
is that the divergent parts are proportional to product of delta
fupctions. The arguments of these delta functions are the coor-
dinates differences of the extﬁrnal fields. Therefore, the
divergent parts coan be absorbed into a redefinition Df.the time
order ing. By the same reason, the diveréences of the Fuil
interacting theory associated with graphs' with at least two
external vertices {(i.e.j 22y can be eliminated by a  mere
redefinition of the time ordering. However these procedures can
not be implemented by the addition of counterterms to the
Lagrangian.

From the above ubseﬁvatinns, it is clear that we need to
consider only the cases with 2 {2. Within this constraint we
examine each possibilitys

1. NF=O,Y=O. Some illustrative graphs are depicted in

fig. 1. Fower counting, eq. (II1I.8B), gives

$(4)=2 - (4-4) b

Thus, for #£0, § is negative. For 0 (< i/4, which corresponds
. 2 .

the interval 4 < ? ¢ 80, § is less than twa. As Ne= 0 and also

because of chiral symmetry plmpz. Therefore the reduced vertex

U(xi, obtained 59 contracting the graph ¥ to a point has no

lines. Actually, for this to happen it 'is important to have a re-

gularization like {(11I1.4). Differently, had we uniformly emploved

the regularization (IIT.6), no cancelliation of the external lines

would oceur. The divergence s partially removed by combining

these graphs with the corresponding ( disconnected) diagrams

14

coming from the denominator of the Gell-Mann Low formula. In fig.

2 we show a graph which becomes disconnected when the upper

. bubble is reduced to a point. For & { 1/8B the divergence is - only

logarithmic and - is. entirely removed in this  combination of
graphs. For 1/8 ( ¢ .( 4/4 the divergence becomes linear but,
because of Lorentz covariance., no countertern is necessary. For
Mirs4 ( 9‘>sn), % increases with p and the model becomes unrenor-

malizable. So, from now on we will restrict the analysis to r<4§

2. NF = 1, 2= i. Because of chiral summetry and charge

h = i1 and therefore

conservation

Slp)= 2 (4-4e)p- (3 -174P))-§ - & -Pa--4r)p LD

3. Ny = 2. 8ince in this case ! must be even, we have to
consider only the possibility ﬂ = 0. There are two subcases:

3.4. p is even. We have then f = h = 0. Thus

Sy =4 - (3-490)p

For ¢ { O there is no divergence. For ¢ 0 ,5 is less
than one. However, as p is even the number of internal fermion

lines of ¥ is odd. Therefore the divergence is absent {f

‘symmetric integration is employed.

3.2. p is odd. Here £ = 0 but h = 2. Thus 8 = 1 + 4¢ and

$13)=- 3-9)lp-3)c¢o

4. NF =3, E= i. We have
4.i. p is even, Thus £ = h = 1 so that A= 3/2 + ¢ + P
a

nd
S0 = 2-THs-40dp 42 L (eap] + 8 =-d - (4-40)p L0




is

4,2. - p. is odd. Here, again, there are  two subcases to
considers=

4.2.1. f=h=1. We get D =/3/2 + ¢ +p and 5¢o0,

4.2.2. f=1 but h=9 (i.e. # of (¥, +§) ~ # of Gk =

From this results 4= 3/2 + 9r + f and

8= -4 - T -4e)b + 4] 6 -3
3. Now consider the case.with NF Y 4 arbitrary and £='0.
We then have f=0 and, depending on f, 'ﬁ - *; can be equal to O,
1,2rana,N /2. If Pl=% then the N, external fielqs wjl] consist
of equal numbers of 4, . %, . A, and 4,, . In the other extreme
case, i.e. when A Ng 72, all the enternal fields will
have the same index. Remember now that, because of eharse canser-

vation, the ferwion lines can e#nd or begin only at the vertices

associated to the external fields. Let us treat a generic case in

which the fermion lines link the external ?ields'in the follow-

—

ing wagix, paths connect My ﬂh‘ external fields to ®, ﬂ“ ex—

ternal fields; H, connect Ha ’&" to Hy 1'".; a, connect a, 1'01

to a, 1;‘ and a, connect &, 4, tO a, q;s. C]earlg,.xé R, toay

oA, =N:/2. I+ this 4graph is divergent, & tuypical counterferm

will be formed of a certain number of derivatives acting on a.

field monomial composed of the same 4:5 as the external fields.

The counterterm can be simplified using 3,+1= 3‘+1 (and 3,1!A=

*%"ﬁ). Indeed,';'f =0 Since?cuts a fermion 1line -leaving . =a
result which contains ExphtAéO)) as a factor. This is zero if  a

canvenient ultraviolet regularization (dimensional, for example).

16

is emploded. B=zcause of this and Fermi statist:ics , there 15 =&
minimum number of derivatives which should be applied in order

to get a3 non zero result. For example

2 - - 2 ERC

°*os 31‘\}‘“'30-}01 aa;Fu N (_aﬁ"'o:) (30"{'“) =0

It is not difficult to see that the minimgm number of
derivatives allowed is .
D:-g-[(xﬂ- e) (% +a -i) X (m+0-d) ¥ (x, e)(x+a,-1) *
2 2 3

+ )00 =] £ % 2% - Moy

On the other hand, the degree of superficial divergence

Slyy= 2 - (1-40-)49- N’% _4f¢,|-(::::‘--:¢,)2

For ¢)0, §is negative. Also if —(y3 - 1>$<r<o then D> §
and the divergence will be cancelled.

The case with N;arbitrary and F=1 tan be analysed analp-
logously giving the same result,

This concludes our discussion of the ultraviolet be-
haviour of the Green functions. Summing 4P, we have shown that
for 4mMs - fﬁ)(?a(Bﬁ the only possible divergences are volume di-
vergences which, nonetheless, cancel in the Gell-Mann Low formula

Now it is time to justify the use of the two regulators
(III.4) and (IIT.4). The form of the regulator (ITI.4) enforees
the cancellation of “vacuum bubble” diagrams, as explained (case
1. Since we want to keep 4, massless then, due to (III.5), we
need also the regulator (ITI.&Y to hold infrared divergences
AwWay .

A simitar discussion can be done for the construction of

- 5
normal products of the bilinears,'?? and ?X'f, which are very im-
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pb?ta5f far thé.hoson formuiation of the modﬁi(Z); Thé.grﬁphs
(:cmt:ri.ht..ltiné tor('FO’ (v)"f(‘-' )...‘l}(x );i-(y )...'F(_g”)) with & squail
either to ?* or to 1Jm+) have a special vertex %7. associated to
CF Huuever, singe this vertex has fhe same structure as those
coming from the interaction Lagranglan, the pmwer counting will
" still be the same ns before. Therefore, for 48(2 - fi)(@ (BF the
oniy néw divergences correspond to subgraphs which contain wf'
.have.ﬁ*=Pz and have no external fermion lines. They are af the
tyre i; discussed p?evim@siu- From the remérks_there, it is clear
+hat the divergent parts, which appear only for 4W<Et(Bﬁ, can be
ident i fied with contributions to the vacuum expéctétion value of
ft'an, because of charge conjugation (or parity) this vacuum
expectation wvalue ié.z&rc if 0}“$xﬁ* So we get the P@sultg that
NI{F¥I =144 - <. FH>
L (IV.3)
NL F¥%4) = ¥

(IV.4)
are weli def ined pperators for Qz(Sﬁ (we stress that the <=$W=}
in (IV.3) is necessary only for 4W(§1<8[ where it is divergent).
This agree wilh Suwieca’'s conJecthe on  composite operators of

the sine—Goardon modelfS)

Q. Current Conserwvation And Equations 6% Mot ien

For the massive wedel we can still define a current

analmgduﬁ.to (II 12)

Snz ;(33“'[{’ +ﬂ 3”‘?2)

(Vi)
Indeed, thls current_‘pﬁ UDV|ouslg conserved and satisfies (Zr =

W(x')...1( )?(y J...*(u
r ? Sr

N

i8
o : - »
LE A ESR TS Z,L:“Izgl .l,_+!a-‘)>={.; Pl ixt-x) + ,:_é_z D, (x!-%;)

[ 2 . 5 ¥ . R
-,Z DF‘x' - 7‘_)] I % a“[ B’,,_ Apl:(.'-x) + ‘iuh':‘ blel,.x;) +?,:Lt;é'=(_ﬂ'-')’i}.j

1

4 .
+ _lf_: 3«%‘ g; AW ER ¥. ) 41’"} .x:Zr Lo duy. . L:.;‘}g) > .2
whi;h shows explicitliy the absence of further divergences. How-
ever, if we want to défina the product SN(x)¢(x)'ue shauid let
v o= ox. In_this situation additional divergences can appear. To
wee that in détail‘we have to coﬁsider two posgibilitiés; i. If %
and ' are_linked by Jjust one line (propagatar)'we‘get graphs of
the type shown  in fig.3a. These dnvergences ‘are not dangerous
since Eheu can be eliminated by Wick orderlng. 2. If any path
linking x to x' . consists of more thaﬁ one propagator we obtain
graphs ‘as that in fig.3b. Due to (V.2), the graph will contain a
line associated to 3"D‘(x—w) or to ahl_iptx-w). This factor can be
imagined as-coming from the dif?erentiation of axexponentiated

propagator. In any case, the graph will be more singular, because

of the additional momenta factor. Instead of giving an unmot i-

vated definition for its finite part, we first examine the field

equat ions where such product occurs. We have

iB4THOZ > 2 RT3 41> + MIExp29;8,00)), <THDZ > +

. L4 Y ) l1 2
» ::Z=i (-1} Slo-y, ) [ Expt 8 l0) ¢, AFm)]R <12, > 0.5

where Z is equal to Z_ with 1} replaced by 4 and Z’,is the same
1

as Z with +(yi) omitted. " The indice R is to indicate that the

quantity - in parenthesis is infrared regulated as in (III.S5)
2
(or (I1I.43). Note that, because of the factor Exp(ﬁgzﬁﬁ<0)), the

second term on the r.h.s. of (V.3) is absent if ¢{0. Moreover,
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for 30 this term 15 divergent and should be used to compensate a
cofresponding divergence in the first term. At §=0 .(U.S) becomes
the Dirac equation for a free massive spinor field 4.

The der:vation of (V.3 is standard: In momentum space
the graphs contributing to the left hand side of (V.3 have
the structure shown in fig.4. Writing %= f -i-x *,‘f we get  two
terms. In the first of these two terms the § + X factor is used
to cancel a fermion propagator. This prcddces'the second (if the
cancelled propagator linked x to an interaction vertex) and the
third (if the cancelled propagator linked x to an external vertex
terms in the right hand side of (V.3). The remaining term, on the
other hand, is easily recognized as a contribution to (T!Lﬁﬁﬁ: {x)

.

It is now clear that an useful definition of the +inite

part of the product of the current with the field is
CINEP S 4T 7> =T, Y mZ > + -3 EzP(JS:A,ln)) -Qg<1+w2>

R T+N T 2 .
.i.izﬂ{_.l) [ Exp(3,eto)+ 93, AF(o))-JJR 41'2),; > W.4)
With this definition, the field equation takes the ususl

form

¥ ;Q
(B -M<THOI > = R<TN] a’,S“ﬂPJlx)Z) P2 E(z-yf-)dzy)
iz} '

v.5)
VI. Concluding Remarks

In this study of mass perturbation in the Thirring model

we have verified that the Green functions are weil defined far

.
a2 - f§)(§ (BN. In this interval the only divergences are those

associated with vacuum bubbles which cancel in thie Gell-Mann

20

Low formula. For E)BH the theory is not renormalizables The
degree of superficial divergence increaéea without bound with the
order of pe}turbation and our methods are no longer applicable.
Besides that, at ?‘=8ﬂ the propagator associated with a line
linking two interaction vertices develops & non integrable singu-
Tarity.

We have also shown that the mass operator can be made
finite in the interval 40(2- ﬁ§)<§!<aﬁ by subtracting its vacuum
expectaction value besides the usual wiﬁk ordering.

To avoid infrared divergencés. it was necessary to in-
troduce auxiliary mass regulators. The elimination of these regu-
lators requires in principle an infinite resummation of the per-
turbative series. A possible way to. accomplish that could be by
writing the interaction as

NITH) = L Exflﬁiﬂaﬂstfz} NIETR DAL A A

(V.&)
and then transferring the last term to the unperturbed La-~
grangian. This would provide =& mass to the free fermion propa-
gator and possibly would eliminate the infrared divergences. But
more graphs will have to be examined and they could generate ad-
ditional ultraviclet divergences. The outcome of this analysis
depend on the particular value of Pz. For 4ﬂ(gz<8ﬂ the result is
satisfactory since there is only one divergent graph, shown in
fig.d. Such divergence can be compensated by adding a counterterm
cte cos(aleZ) te the Lagrangsian. The arbitraringss in the finite
part can be fixed by imposing a definite wvalue for the mass of

the quield.
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Amarzingly, the same procedure does not work for ?2(4H.
It happens that, 1n this region ¢ 16 negative, which favors the
appearance of new divergent graphs. This is illustrated by the
yraph of fig.é which contains a subgraph divergent for [ i}
(the associated counterterm will be a cosine of a higher harmonic
of 2 Stqa}. We could say that, 1n this region, the net effect of
the resummation 15 to replace infrared by ultraviolet diver-

gencet. A different resummation procedure, evading this situation

would be highly desirable.
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2.

Figure Captions

Fig 1 - Divergent graphs without sxernal Fermion lines. Solid and
wiavy  lines reprasent fermion  and  expovent tated  propagators,
respectively. The + {or -} sign at the wvertices indicates the

corresponding sign of the exponent iatgd field.

- Fig 2 - The lines connecting the vertices 3 to 1 and 2 <and 4 to

L and 2% cancel, when the Lubble is countracted to a point.

M
Fig 3 - Graphs contyibuting to 1Tim b (m)*(x'). (a) corresponds to
-t
the situation where x and x' were linked just by the indicated

wavy ling. aAny other possibility produces graphs like (B).
Fig 4 - Graphical structure of the 1.h.a., of (U

Fig 5 ~ The only divergent graph in the region 4ﬂ<?z{8ﬂ, after
the resummation (V.é). The vertex with the cross corresponds to

the additional interactiun:*{h; coming from the resummation (V.6

Fig & — all vertices of the above grarh have exponentiated fields
(for simplicity, exponentiated eropagators are not explicitly
shown). The generalized subgraph made with the vertices on the

fermionic loop has a degree of divergeace nereasing with o, §F

rLo,
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