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ABSTRACT

We present a numerical solution to the problem of
the quantum coliliisional evolution of a one-dimensignal Fermi
gas.. The equation governing this. dynamics is nonMarkovian
non linear and can be solved exactly in this case. We observe
two distinct time scales associated with the relaxation process,
one connected with the establishment of correlations in the
system.and which is very short as compared to the second one,
related to. the evoglution of the one.body density, once cor-

relations are established.

-generally

I. INTRODUCTION

The exact microscofiic description of the time évolution
of the ane hody density associated with a many fermion systém
can be formally given in terms of ingredients of two distinct

types: the usual time dependent Hartree-Fock contribution'plus

" additional contributions which arise from the dynamical evoiution

of -gquantum correlations in .the entire system, and which are

esseptially related tc changes of the coherence nrnpefties of

the ane budy_density(1). In fact, it can be shown guite

(2)°

that the effective dynamics of any subsystem of 2

~given quantum_system {and the nuclear one body density can be

regarded as-a particular case, i.e., a subsystem ‘of an Albody

quantum system, thetnUcleus)ris non-Hamilfanian and c16§eiy
related in fb;m to sgquations of the transpart type. the"
physical origih of nonQnitarity contributions lies-iﬁ'fhe
complicated dynamical evolution df.duanﬁﬂm correlations‘in tSé'
entire system and‘their consequencé is thé dhange in the .
{2

coherence properties of the given éubaﬁtem‘ . The particular

‘case of the exact evolution of the nuclear one body dersity

displays the 'same feature and in this gase -the nemunitarity

dynamics corresponds directly to the ‘dynamics of occupation
(n -

numbers which as it is well known, controls ‘the Coherence

- of fhe;onEnﬁudy'dehsify. The'equétionsfgqyerding the time

evolution .of the .one body density (single pariicle states ang

geeupation numbers) is very comolicated, It is nonlinear and
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immediately suggestive of irreversible limits or approximatioﬁs.
VEﬁuatiGQs for the time evoliution of occupation numbers, in
particuiar, have peen given in - the literature, which make use
~of gﬁapistical_hypotnesis:and Markovian approximations(B}.
) :_UndeﬁrtneseuaSSump;ions, the time gvolution of the one body

- density is given in terms of Master.type (or Fokker—PlancE)
-éqyations, wirieh lead the system necessarily to a static
'equiiib;ium qistriputinn- We emhhasize that the exact macroscopic
dynamics of the ane body density:does not involve in—pripcip;e
;ény_element of irreversibility so that Iecurrence phenomena
caqhqt_hg excluded:a_priori, Therefore the guestion remalns ..
_ppen-whether.sqme given system.relaxes to an eqUilibrigmndisﬁ
tributionror.not, The.agswer_:o_this question would involve:
éolving:a-neﬁlinear; nunMarkovian gequation. This is obviously
hopeless if gne cqnsiqefs a finite thrég dimensional. many: body
system as.one.ﬁas,.e.g;, in_nuclgar:physics.. In this casé the
equations which_desqribe tnE'time:evolution.of the one body
dedsity, even in the, absgnce of initial correlations, are not
tractable either analytically or numerically. The situation is
somewgat simpler iﬁ'the case of an infinite system with trans-
lational. invariance. For such a system, the eigenfunctions of |
the one poay dgnsity are automatically indepeﬁdent of time an&
given as plane waves, and the full problem of the one body
density is reduceu:tu~the dynamics of occupation probabilities.

An even simpler problem, which can be solved’

numerically in a straigntforward way, is the problem of the..
time gvolution of tne one body density associlated to s one

dimensional rermi gas, the correlation dynamics being treated

up to terms of second order in the two body potential. This is
a weak coupling approximation to correlation effects, which

retains the noalinear, nonMarkdvian character. of the evolution.

The special case of a one dimensional Fermi gas nas.the additional

advantage of allowing for the choice of self consistent meén-
field bound and stable determinantal states (Hartree-Fock) as
initial condition, even for simple purely attractive two body
potentials,

The study of this simple problem reveals several
nontrivial properties of the seiution of the nonlinear non-
Markovian dynamical equations: It reveals For.ihstance, the
details of the pchess af how two body correlations are es-
tablished when one starts with a nuncorrelated.(exﬁept for
antisymmetrization) initial state. This process, in the cases
examined here, could be associated to a distinct (shorter) .
characteristic time as compared to the charactéristic relaxation
time of the one body density. The origin of these distinct
time scales can also be traced ﬁown to the time scales associ-
ated a) with the variation in'time af the correlation energy
(which sccurs very rapidly and then stays practically constant)’

and. b) with the'Further evolution of the distribution of

'-ugcupation probabilities after correlations are establisned in:

the system.

It certainly involves a drastic extrapolation to

extend'the qualitative aspects of these reswlts to other

‘situations, e.g., for three dimensicnal infinite systems.

However, 1t is at least amusing to observe that the discussed

features of our results have been introduced as g dynamical
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-hypothesis DQ Sogoliubov in the classical treatmeni of kinetice
problemsiaj. Bogoliubov argued that the dynamical evolution
of an {initially uncorrelated) gas of interacting classical

.-.barticles procéedea inm two distinct stages: the one he called

pfe-kineéic region which corresponded to & very short time

. scale when correlations were established in the system, and a
 éecond stage-dalled'kinetic region and described fhe time
' evolition of the -syustem towards equilibrium, which was then

gerrned“by properties of the one body demsity itself,

Thé paper is organized as follows: in section II
' Qe_give.{he.general equations governing fhe exact dynamics of
”:thE'translatiqnallyfinvariant one body density, discuss a

-Wdfkiﬁg approximation to it and present the model. In sectian

'.fII we dﬂfine two quantities,.the reduced one body entropy and

the.ccrrelatién enerdy, which are calculated and studied in

secfion Iv. -We snow that the total energy (single particle

plus correlation energy) is exactly conserved in our model. In

fact, it ecan be shown guite generally that the total energy
wiii be exactly conserved to all orders in the coupling two
body potential in the framework of the formalism of ref.(!ﬁS).

Section IV centains the results and section V the conclusions.

“II. GENERAL® EQUATIONS AND MODEL

The exact deseription of the time evolution of the

"-,translationally invariant one body density, following zef.(1)

yields for the time evolution of the occupation numbers pk(th

._ . .
- + (0 . NP F (e -
Pk&) = - Tn {cch JDJQ;-\_-_H,G(t.'{:)(.QU?) u, Rtk )}]} (11.1)

whére CZ ancd c, -are fermion operators assgciated with the-
plane wave number k. The mathematical structure of eqg.
(I1.1) can be physically understood as follows: at time t'
the uncorrelated density FD(t') suffers the action of the
Hamiltonian H, which by means of the two body potential will
create a correlated state at time t' .. The operator Q(t')
{see ref.{1)) filters from this state all.the contributions
having the form of a one body density written in Fock space....

The essentially correlated state Q(t')[H,F,(t')] is propagated

from time t' to time t by the'Grgenﬁs function. G{t,t')
B
G £, )= Tup{-(.-jﬁt @ (z) LH,'—.]} (11.2)
'kl

Additional correlations can be generated during the propagation.
At time t, it suffers agdin-the action of 'H and finally, -the
trace with cigk will give fhe correlation contributions to
the time evelution af the gne body density. Although their
evaluation is rather involved, it is possible to introduce a

working "weak coupling*® approximation(I).

This approximation
consists in negledting all additional correlations which-ﬁuuldiz
be generated within G(t,t'). . We assume - G{t,t')  to-propagate
the initially produced correlations from time. t' to time 't

by means of the mean field dyramics .

' (e 4 L
GU)—> g ) e oty




gr, expiicitly,

%MF&""" e < e, el = 1RED (w4 (1I.4)
where: the. states. ik,,T> are gefined in such a way as to
incluge-the time: dependence associated with the mean fleld
dynamics (see eq. (III.5) below). This is a weak coupling
approximation, since- it considers correlation contributions
which are at most. quadratic-in the coupling potential. The
spirit éf the approximation is then to retain “just the simplest
correlation contributions. while preserving the mean field

dynamics, i.e.,

L Vet = ki k) (11.5)
' ot
Under,these;approximations one can- cast eq. (II.1)
ihto;the-form : '

+

(ﬁ‘.‘ﬁ;. Yo Ty ™ ki é"‘:})ﬁ‘]

. where. g; = 1 - p; -and ‘<k1k2|v|k3ka>t are antisymmetrized.
matrix elements of tne two body potential at time t. The
-étates_in eq.:(II.s) contain the full mzan field dynamiﬁs. A
furthner simpiification can be- achieved if one restricts the
mean. fielo aynamics to its "one body part® -i.e., involving

differenqes of singlelparticl&_eﬂergies

(II.6)

f 2 Ve 1<kt = D - R W) e DG gl
ot ! ' (II.7)
= [ep - €@ iy 4D b )

with
CER hZ Skl Fley kY UL

This simplification amounts to identifying the mean field modes
with the single particle states. It igmores, in particular,
any collecfive effect, as might emerge from a random phase
approximation.. Such effects can actually be included at some
computational cost, but we do nmot consider them here. The
interaction we use is a central; spin independent, Gaussian:twe

body potential, given by the matrix elements

kel ) kA = o

< aep - 48 (o)}

8/\1-)5 S.Az,--)q gh-ﬂzzg“ﬁhﬁ' -

(II.9)

Translational invariance guarantees, as usual, that -
the self consistent one body potential depends only on momentuh, 
It is tempting to simp;ify the numerical calculation by intro-
ducing an effective mass approximation. In our case it has

been verified numerically to be a good approximaticn to the

. full self consistent sgluticn. Substituting the . matirix
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eiements {II.9; into eq. {II.6) we get a non iinear integro-
differential equation witn memory. This eguaticn can be reduced
by an-analytic quadrature to an integral non linear equation
with memory for the occupation probabilities which we solve by

the-uSual.integration methods.

III. THE REDUCED. ONE BOQDY ENTRGPY; THE CORRELATION ENERGY AND
"ENERGY CONSERVATION

The reduced one body entropy

1 P} . .
S = Z:* ks Q""h * ‘; % bu q. (II1.1)
~is a direct measure af ‘the coherence of the one body density.
If oﬁe-has a- pure state, S5 will bg zero and it increases as
the incuhefence in the density increases.

Iﬁ order to define the correlation energy, we have

to-go back to ref.(1). 1In the derivation of the exact dynamics
of the one'body densiﬁy, we start by wrifting the full many

‘body density as |
(I11.2)

where F, is an uncorrelated many ‘body density (see. eq..(3.10},

ref.(1) and F" can be expressed, by means of projection

- technigues, aé-a-fun;tion of F, (see eq. (3.16) of ref.(1)).

The total energy

£ = Ta(ur)

(111.3)

.10,

is obviously a conserved quanfity if we make no approximations.

We can use eqg. (III.2) in order to write it as & sum of single

particle energies plus the correlation epergy as

E=Ta (HR®W) + Ta (0 F) (II1.4a)
Es-e = Th (W E,(f)) {IIL.4b)
{IIL.ac)

-y }
t(o‘_r: Tn_'(H F('t])
The correlation energy (III.4c) can be evaluated
with the same approximation deseribed in section II. We get,

for the specific mcdel we .study

t
Er.orr = *khzh'.u- S 9 Lo i<h7’h3 13 ‘Eb‘ot (el Flhabs 0 .
\Rilky o

( - o3 )‘
2 pkph\c‘hq% P =% (111.5)
In this simple case it is easy to see that eﬁergy
will be conserved. The time derivative of the single particle

energy is given by

(111.6)

jtTL(HFO)j ) % b g'th"

where  h is defined in eq. (I1.7). Using eg. (3.16} of ref,

k

{1}, neglecting initial correlations and working within the

approximation described in section II we can write

(IIE.7)

t
F'ity = -4 Scl{:‘ ALt R TH, & 1]
> :
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Tne time derivative of tne correlation energy can then be

wricTen as

d TaleiE) = - Tl Ha 66 Q&) Tw,m))
dt

*
0 Ta ‘"D W) T, B
CTa (fodna g anitusl)

The first term on.the r.h.s. can easily be shown

to be zero. It can be written as

T (RA@ DY, @) ) = 5T (8 T, R1)=0 GILo) -

The second term.on the.r.h.s. can be written.as

. . | .
~In (_i v, fﬂ) gLt AWTH R “‘?l]) - (111.10)

given that

{ _E(_;_.% 4 &) = L 9‘:«; W cahF(hk‘)]- ' (I11,11)

F

- Therefore

(

- Tn_.( ) 4 H Chie ca_n¢(¥.t') AW, (t')]_])

€ ) '
= Ta (jl\% (t) j dt' Lk CﬁnE‘.‘E-’\'@w L, E,wﬂ'j)

s =Tk w0 @
L -

(I11.8).

12,

which completes the proof that energy is conserved in the model

presented here. It is possible to show that energy conservation

holds in a more general context within tne formalism of refi1)(5h

as - already pointed out in the introduction.

IV, RESULTS AND DISCUSSION

In this section we exhibit the most instructive.
results which illustrate clearly the presence of two-distincf
time séales in-the e#clution of the occupation probagbilities.
In fig, 1. we plot the time evolution of occupation prob&ﬁiities

having as initial condition the self consistent excited

- determinantal state (full line) as well as a determinantal

'_-state (dashed lines). For the excited determinantal state.as

initial eondition we observe that for times of order Teorr
(marked in the figure) there is a rapid change in the ocmmmtidn
probabilities for states lying below and above the Fermi sea,
which stay practically constant afterwards, :This chafacteristic

time is associated with the establishment of correlations in the

- system as can be seén from flg. 2 where the'correlation energy

is plotted against time. = Here we see very clearly that the

cur;élation.ene:gy in both cases (the excited determinantal

* state and thé'determinantal state) exhibit the same short time

scale, associated with the establishment of correlations in the.
system. As for the determinantal initial state we observe from

fig. 1 that at time 0.1 Me\_/’"1 it has practically attained:its
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eduilibrium distributinn, wnereas the excited state has nat yet
filied im the nole aue fto the excitation. The equilibration

process for this case proceeds after in a slower time

Teorr
scale which can pe most clearly seen in fig. 3 whe;e-the one
body entropy is piotted against time, again for both cases, We
see immediately that.the fast process of establishment of cor-
relations manifest; itself cleérly in the entropy. ¥For the
case of the determinantal state the entropy attains equilibrium

after =

copp > DUt the excited state has not yet relaxed after

T Therefore the entropy continues to change in a slower

corr ©
time scale uniil“it saturates. The behavior of all quantities

exhibited depend very much on initial conditions and also on
the coupiing potential.

It is-very simﬁle to estimate .rccrr . It can be
assuciated to*the.off—the—energy shell character of correlation
process, wnich 1s in turn linked to the rénge of the two body

patenfialr In fact, the energy mismatch involved in £he
correlated state-can be estimated as

Zlff ”’%gi kr bl

1
D

potential; so that

with Ak =~ (b being the typical range of the iwo bady

T R o= o -
C(."rt- AE. ﬁ&; (Iv.n)

This linear dependence with the potential range has

been verified in the calculations. It is also easy to show

4.
thaf for short times(Z)
. kR .
~ + .
. ™ Pt 3 (1v.2)
=1
‘where
~ . T '
A =2 2 | CenrGieyy | (Iv.3)
Qe A,G‘L (J'éa
k izn

which yields the same result as (Iv.1), when estimated in a
simplified way. This short time behavior should be valid for
all occupation probabilities. This can be easily checked in
Figs. &, 5,.6 and 7. In these figures we plot a logarithmic
scale the time evolution of the occupdtion probabilities for
the twO'cases studied. 1In figs. 4 and 5 we display the variation
with time of the various occupied and unoccupied states for the
determinantal state as initial condition. We observe immediate-
ly.that all oeccupations exhibit the same behavior for shﬁrt
times. After that each occupation probability evolves dif-
ferently. This is an effect ¢f the nonlinearity in the problem,
and, in fact the system exhibits'many different time scales. -
We observe that states which are . symmetric around the Fermi_sea
tend tof0scillate out-of phase.. This.might be the reasaon why
there is no contribution to the éntrupy for times later than

T . The same thing happens in the -case of the excited

corr
determinantal state as we see -in figs. . 6 and 7 except that the
states near the Fermi sea (as states 5 and 7 in fig. 6 and 4

and 6 in fig. 7) do not seem to exhibit an oscilatery opehavier.

This conspiracy of nonlinear effects, we believe, might be
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responsible for the second time scale in the entropy as seen

in fig. 3.

V. CONCLUSION

The numerical sélution'to the gquantum collisional
dynamics of a one dimensionél interacting Fermi Gas presented
in this work ;eveaIS'several nontrivial properties of a non
linear nonMarkovian process.  We studied, im particular, the
details of tﬁe.prncess of establishmenf of :correlations in aﬁ -
initially uncorrelated system. There_ig'ajshcrf-time scale
asaniated.mith this.process.which#dépéndsuessentiélly on the
.f;;ngé-cﬁ,the-two body potential. ‘We.léarn-alse that the short

~ times behavior of the system is.mainly governed by the_single_i

~particle energies. These contribute to .the dynamics. as phaséé'ﬂ

{seeeg. (I1.6)) and vary very rapidly-in time . while the
secupation probabilities have a - définite -sign. . A Mérkbvian
approximation to .the occupation probabilities turns out tb-be

a good approximation in this case. Nonlinear effects become. important after
S Toorr Up:to the times for which we integrated,the-differential eguations,
relaxation occurs for the two.cases examined. We believe that there will
be no physical recurrence in the calculated quantities due:tb
the continuum of phases. It is tempting but dangerous to
extrapolate this conclusion to finite nuclei. The lesson ta

be learned is that it is very important to treat the-single f
partigle energies correctly. We should alsc like to remark

that eq. (II.6) was solved self consistently with the. single

L6

‘particle energies. However, it was checked numerically that

the-effective mass approximation is very good.

" ‘We do not believe the results would change guali-

'tat'ively i7-we extend the calculation to two or three dimensions.

It is interesting to speculate wﬁethgr the cerre-
lation energy liberated in a nucleus-nucleus collision could
have any measurable effect. -Depending oﬁ the initial conditions
of the:problsmlit-could‘for iﬁstance lead to the fermation of
a hot spot or--thermaiize. While this work.was being written, a

recent work along'thése lines  came to our attentionCSJ.
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FIGURE CAPTIONS

Fig. 1 - Time -evolution of occupatior probabilities for two
Jdnitial conditions: the self consistent Hartree-Fack
ground'stétE-(dashed line) and a particle-hole excitation

~ based on it (full lirne).

Fig. 2 - Correlation enefgy as a funbtibn of time for the same
two cases as in fig. 1.

Fig. 3 - Entrbpyuas'a;fudction-qf-time for'the same two cases
as in-fig. 1.

Fig. 4 - Variation with time. 6f the’occupied states indicated
in"the figure.

Fig. 5 - variation with time of the ungccupied statés indicated
in the figure.

Fig. 6 - Variation with time of the ‘occupied states indicated
in the figure.

Fig. 7 - variation with time of thHe Ufoceupied states. indicated

- in the figure.
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