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ABSTRACT

Starting from the exact microscopic time evolution
of the quantum one body density associgted with a many fefﬁicn
system we derive semiclassical approximations to it. In the
limit where small momentum trénsfer two body collisions are
dominant we get a Fokker-Planck equation and work out friction
‘and diffusion tensors explicitly for nuclear matter. If
arbitrary momentum transfers are considered a Boltzmann eguation
is derived and wsed to calculate the viscosity coefficient of
nuclear matter. We also give & derivation of the collision
term used by Landau to desc¥ihe the damping of zero sound waves
- at low temperatures in Plasmas. Memory effects are essential
for this. The damping of zero sound waves ‘in nuclear matter is
"also calculated and the value so obtained associated with the
bulk value of the damping of giant resonances in finite nuclei,
The bulk value is estimated te be guite small indicating the

importance of the nuclear surface for the damping.

I. INTRODUCTION

" The purpose of this paper is the derivation and

'interpretation of semiclassical approximations to the colliszional -

dynamics of many fermion systems, starting from a quantum

micrpscapic theory for the time evolution of the one body

density. 1In the quantum limit, the exact dynmamics of the one

body density contains contributions of two distinc{ types: the

. usval medn field contribution and correlation corrections to

(1)_

it which entail ‘nonunitary effects If -correlation &ffects
are treated perturbatively their contribution to the dynamics

(2)-which is nonlinear and non-

acquires a very simple form
markovian.- Relaxation properties of the one body density are
essentially connected to these correlstion corrections and have
been investigated in a one dimensional uniform system, which
allows for a numerical solution including nonlineér and non-

(3)

markovian effects The small amplitude limit of the one

-body dynamics has also been studied and shown to provide fora

self consistent treatment of occupation probabilities, és-uell

as for a systematic procedure to introduce corrections “to the

{(2)

RPA amplitude . In this paper we study semiclaSsiéelihpproxi—'

mations to this collisional dynamics, both in the long and

‘small amplituvde limits, Memory effects are, of course, also

present in the semiclassical limit of the theory and are shown
to be essentfal for the derivatiom of the céllisimn-iﬁtegral
Landau used to describe the damping of zero sound waves in
infinite systems. We study along the same Iines the collisional

damping of zero sound waves in nuclear matter and interpret the




intermediate energy . heavy ion collisions

3.

result obtained as representative of the bulk value of the
damping of collective modes in finite nuclei. The damping
turns out to be too small if compared with experimental values,

indicating the importance of the nuclear surface for the

‘description of the damping mechanism.

If memotry effects are neglected, we arrive at
Boltzmann's collision integral with Fermi statistics. This type
of semiclassical equation has been wildely used to descrihg'
(a)’(S). ¥e investigate
the viscosity coefficient of nuclear matter and compare our
estimate with empiricel values obtained by adjuSting spreading
widths .of giant resonances and the kinetic energy of fission

(6)

fragments y means-of a Navier-Stokes equation. We conclude

thaf such dissipation mechanism, which is based on hydrodynami-

* cal hypothesis of local equilibrium gives a poor description of

-dissipative phencmena 1n'ﬁuc1ei,-emphasizing 6nce more the

impuitant role played by the nuclear surface.

The Boltzmann collision integral as derived is valid
for arbitrary momentum transfers. In the limit where small
momentum transfer twe body collisions are dominant, & Fokker-
ﬁlanck equation can be obtsined. Friction and diffusion coef-
ficlents for nuclear matter are derived. An interesting
application of this friction coeffiecient is to the'inelastic
scattering of 800 MeV protons.-in nuclei at very forward angles.
In this case the momentum transfer is small, of the order of
half the Fermi momentun(?) ang this limit of the theory should
be applicable.

In section II we review briefly the microscopic

quantum equations which will be our starting point. In section
I11 the semiclassical limit of the mean field part is derived
and a guantitative basis to the usual "A- 0" limit is given.
Section IV contains the derivation of the three semiclassical
approximations te the collision integral discussed above Section
V the three applications to nuclear matter. Our conclusions

are given in section VI,

II. QUANTUM COLLISIONAL DYNAMICS OF THE ONE BODY DENSITY: A
- BRIEF REVIEW

The equation governing the time evolution of the

one_body density operator is given by(1)

ip= (Qur Lw)pe +hw (111
wﬁeré
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and

ﬁ;.),(ﬂ= -&Cc}c}[HJGLt‘o‘)F;(oﬂ') (I1.4)

The uncorrelated Fock space density Fc(t) is best

written in terms of fermipns operators cy s cg‘ associated with

the time dependent natural orbitals . |A(t)>, which make g(t)



' -diagonal,
(:‘m:? [ po (@ ans)

In this case

E, (1) = [ (!_‘ J\DA)C>‘C§ + )f,\ C_;C)-] .(11.6)

A
In this representation it is very simplé to
disentangle unitary (A #u in eq. (I1.3)) and nonunitarity
{A=y in eg. (I1.3)) correlation contribuytions to the dynamics.

The propagater G(t,t') is formally written as

Gtt)= T[4 § ot @terl ) (.7
¢ '

where L is the lipuvillian generater asscciated with the
‘hamiltonian H, and the supefoberator @(t) essentially
eliminates uncorrelated parts of the objects on which it acts.
It is _discussed in detail in ref. {i).

F! is the correlation part of the initial fulil

I
density matrix F(t), i.e.

F; ) = Flol — ¥, (o) (11.8)
-and we assume it to be zero throughout this paper. The first

term on the r.h.s. of eq. (II.1} represents-the usual time

dependent (mean field) Hartree-Fock contribution to the dynamics

(ﬁo f><+)\ = L ’Q"E{’I‘, f] (11.9)

where hio] {is the Hartree-Fock hamiltenian for the given two

‘body potential, The sscond term on the T.h.s. of eq. {II.7%)
‘carries the correlation comtributiens to the dynamics. They

‘are responsible for cellisional effects. In order to :implement

the collisional contributions, we consider correlation éoxrec—
tions up to second order in the two bodv coupling notentiél,
which amounts to replace G(t,t') by gMF(t,t' the ‘unitary
time displacement operator associated with the correlation free
mean field propagation. In this case, the collisional correc-

tions can be cast into a very simple form

My = L erml,\u =
t
= _%__ @ZS‘IS XJ{*)—Vf?S161}’(52;(}\{'3\5\8‘3){‘ (KQAVP%;E';_ (’Gci\"l.'
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III. SEMICLASSICAL LIMIT OF THE COLLISIONLESS DYNAMICS: THE
VLASOV EQUATION

Neglecting collisional contributions, thé .eguation

governing the dynramics of the one body density is given by

iR fap: [ »‘[fa}P:\u{(‘; . R (111.1)

The traditional way to study its semicldssical 2imit is tfo

write the above equation in Wigner representziion as foillows




| le el UJ i) T
.Bgn(—’-,‘*): 2 i ( _é _2 9 ] )w[.-”i (I11.2)
ety [ X P %N hee AT

where

) | (111..3)

o=y,
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The usual way to obtain the semiclassical limit of
eq. (III.2) is by considering an expansion in powers of %, and
retaining the zr;*rcu-!i—:E order contributien. We can give more

gquantitative meaning to this expansion. If we write

Ay BT
A, R = Jﬁ“;c?'hL) & JE, (1I1.42)
ang
22 Ly B e I11.4b)
LED= fpwh & T IR o

we can cast eq. (III.2) into the form
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Now we see clearly what is required for the lowest

contribution in an "h expansion® %fc be a goog approximation: hw

must be smooth in 3 on the scale of the inverse spatial size

of Py and vice-versa, If this condition is fullfilled we

_obtain the Vliasov equation as a lowest order contributien

{p) 7 o » _

%2 (%ﬁ" oF ?_r’ 59_?{ )D\N(E"C’)f‘”(?'ﬁ) (I11.6)
We notice in this case that the xev elements which

control the quality of the approximation are ine spatial

properties of the density, since in nm the tws body potential

is folded with fhe density.

One of the essential differences between classical

and quantum mechanics is that in the latter the states involve

an essential nonlocal character when expressed in terms of

classical phase space variables on the account af the uncertainty
prineiple, which reguires special correlations between position
and momentum variables., When one expresses the dynamics in the
Wigner representation this nonlocality manifests itself through
the appearance of derivatives of arbitrarily high order inside
the sine function. The truncation of thé sine series by
retaining only first derivatives {the ze»rc»-t—E order term in A )
amounts in fact to discarding guantum =ffects oy rendering the
dynamics blind to an essential ingredient of guantum kinemazics.
This is of course permissible only to the extent that_this

limitation can be sustained without completely obliterating the

physics. 1In the case of the nuclear cne bhody density one myst



"in particular give up the description of such essentiallyAquantum
features as sharp single nucleon occupation numbers and.shell
effects in favor of a suitably smoothed density which, on the
ather hand allows‘for‘a meaningful local interpretation (in
phase space)}. As is well known, this can be achieved either
through the use of a Strutinsky-type averaging process of fully

(8)

Quantal densities or by working with phase space representations

associated with wave-packets rather than with sharp’ position

(9) We shall adhere to the wlgner Tepre-

and momentum states
sentation and assume that the proper Stfutinsky averagimg

{whenever necessary) process has been carried out in what foliows.

IV. SEMICLASSICAL APPROXIMATIONS TO THE COLLISIONAL INTEGRAL

B The conditions for validity of sémiclassical
approximations are more restrictive in the case of collisional
contributions (eq. (II.9}) due to the new element which comes

“into play there, namely the two body potential. Now we have
_two possibly distinct length scales: the one given by spatial
properties of the density, as discussed before, the other given
by the range of the two body potential. We shall consider

three different cases: a) the momentum transfers involved in
the process are small with respect to the smallest inverse
length and memory effects negligible, b) the momentum transfers

are arbitrary and memory effects are negligible, c¢) the momentum

transfers are arbitrary and memory effects important.

.10,
IV.A. LOW MOMENTUM TRANSFERS: THE FOKKER-PLANCK EQUATION |

In the case where mainly low momentum trangfefs aré'
involved, we can argue as in the previocus sectibnf,writé'tﬁe
collision integral in Wigner representation and ex#aﬁd‘ittfo
first order in fi. This leads to the following sémiclasgicél

equation for the one body density in Wigner .representation .

&P

ifu(?’ﬁ',f) {_}‘Mr‘*’g = T wpd) E .(IV.:A'.?)

where
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The coefficients A and 8 are the friction and
diffusion coefficients respectively. The othef two éoefﬁcimﬁs
arise when one considers spatial changes in the system. c
represents a modificgtion in the mean field potential caused
by the two body Interaction and D modifies the relations

between variances(10)<

IV.B. THE BOLTZMANN COLEISION INTEGRAL

If we are dealing with processes involving large’
momentum transfers, the two body potential in eq. (II.9) is to
be treated as a Born amplitude. If furthermore one writes the
collision integral in momentum representation and makes a local

density approximation,
PCRFN = PGH.R)SGE-T) (Iv.B.1)

where p(B,4) depends only parametrically on §, one gets for

-the_collisipn integra;

12,
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where Ep represents the mean field energy of the state ]E>.
The usual form of the Boltzmann cellision term can be obtazined
if we assume that the densities vary slowly in time as compared
to the oscillating phase, and make the limit t-w . I[n this
case we pbtain the usual Markovian form of the collision

integral used in the theory of Fermi liquids, namely

T ®@q0 ="\ng§;_j<§§;saa REIAIE AN

x 5(6?1' E’f‘—"— épé— qu) -

(IV.B.3)
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IV.C. MEMORY EFFECTS: THE MODIFIED BOLTZMANN EQUATION

In this section we derive the collision integral

used by Landau tg study the damping of collective modes in

infinite systems at zero temperature. Apart from linearization,
his collision term differs from the usual Boltzmann COlllSlGn

term derlved in the previous section by the presence of the



L _ 1a;

phonon energy (fiw) in the energy conservirng G-function(”). V. NUCLEAR MATTER APPLICATIONS

The energy fw is cruclal to allow for excitations above the

Fermi level at zere temperature. We show next that we can get In this section we discuss aDDllcatlons of the e
the modified Boltzmann collision integral by including memory three semiclassical collisional dynamlcs denved in. the .
effects of the density, before taking the limit t-+w. Let us i previous section.

begin with eq. (IV.B.2), where no Markovian approximation has
been made. If 'we linarize the eguation i.e., write
F o —awb W vwt
— —+ B &, 4 e. t) (Iv.C. 1) V.A. FRICTION AND DIFFUSION COEFFICIENYS FOR NUCLEAR MATTER
0=~ i ; - w
FOR LOW MOMENTUM TRANSFERS
and consider terms only up to first order in Pl we get
{(notice that p is still a function of t') ' The 1nelastic scattering of high snergy phlctons'
(~ 800 MeV) to forward angles is an ‘example of & low momentum

l_‘ - - ——SA j‘:‘ ?3SA€1 ‘(‘P ﬁ.“f‘ > m}\ transfer process in nuclei. The incoming proton in this

situration transfers momenta of the order of half the 'Férmi_
S — r— = =3 J
leo (ﬁfp[’ {?zj)(L-Co (ﬁ-‘\})(l‘ Yo(?q:ﬂ))X[{’+( 1+&_( g)- r*(%,q,) f_*(pq,n()} momentum of the target nucleons. The friction and diffusion

coefficients associated with its path-through the target

x* 53{.‘—‘23".:';}_6'?'\“ GPL—E‘{, -é“ .{b\t.ol(f -t‘) {(Iv.c.2)
S 3 A nucleus can therefore be evaluated as follows. If we egssume -
the finite temperature Thomas-Fermi density for targe:
where g ‘has been taken as a Fermi function at temperature 7. nucleons
If we now take the limit t-+«, we recover the
collision integral in the form used by Landau
P, N
r\t‘\& i - ?d L4 i [D’\ ‘_.\,E-_(.;‘__;\.\ {(V.A.1)
- 4 - [ - 3 ¥ o Y —_ \ i P = — |
-‘—Sdf‘i S‘-“HS Fy \(? gz\\b‘\ EeN¢ (_> S(e‘,»fc E+'Em) Yo
("’F"} =z = - > = Pt & " :
’ (’C e Q‘(?'“c‘)(‘ P_“’( \'5’0‘0(ll q ("'" ’c()) we can immediately evaluate egs. [IV.A.3a) and (IV.A.3b) to get

L {. GRS SR GAE A AL PR R -
{(1v_Cc.3)
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for the friction and diffusion tensors respectively

Ao-dT™c,
?;7 GZh'ﬁ}

[l-+ ;,;m] Lp> e (VAR

and

-

By == AT kTG Egg(f;ig ~

s ) G~}

{V.A.3)

where ﬁi indigates the angles of the vector p , and 'pF the
lbéai“?erﬁi momentum. It is interesting to note that the
damping of the surface collective mode generated by the incoming
nucleon cannot be described within a low momentum transfer
approximation. The two body damping of this collective mode
will involve arbitrary momentum transfers and one would need

collision terms as the ones derived in the next two sections.

V.B. THE NUCLEAR HYDRODYNAMICAL VISCOSITY COEFFICIENT

Many nuclear phenomena, whose interpretation is
given in terms of dissipative processes (widths of giant
resonances, fission dynamics) can be adjusted within the frame-
work of fluidynamical descriptions with viscous terms like
viscosity coefficient in the Navier-Stokes equation. This
viscosity coefficient, in the particular case of. the damping
of nuclear vibrations- has been adjusted to the data and is

glven by

Tl-u L.o. 10_'?'3 Med s {_m‘z-‘ (V.B.1)

16,

Te our knowledge there has been no theoretical
effort te connect this number to a microscopic description of
the nuclear fluid, although this connection can easily be made

with the help of results for Fermi liquids available in the

(11),(13)_

literature As it is well known, for low témpsTatures;
1

2 (14)

11 grows like T~ in Fermi systems An estimate,taking

into aceount only the Landau. parameter FO gives

. -22 - 2 z . B
N~ o310 ( Eo + L) (C_f_) (v.B.2)

o T

where €

g 1is the Fermi enmergy and 7 the temperature ({in

units of energy). It is 2 well known fact that in the case of

the nucleus the set of Landau parameters is not. wnique. \Wem

take the péint of view that the Landau pqrémeter to be used
should reproduce the ground-state energy and éolleétive

excitations of large nuclei. We take the value for %b in the
interior of the nucleus given in ref. {15), which should repre-

sent the bulk nuclear matter value. In this case FU= 2. For

reasonable values of the temperature the viscosity coefficient

turns out te be too large by orders of magnitude.” The value

for F0 which would give the correct order of magnitude is.

grossly overattractive,-.94 . Knowing that thes underlying

- (13}
theory is perfectly adeguate for liguid 3He' » -our estimate -
for the nucleus stresses the inaseguacy of the Navier- Stokes'

v15°051ty as a mechanism for the dampirg of nucleon v1brat10ns.
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V.C. DAMPING OF ZERd SOUND IN NUCLEAR MATTER

At very low temperatures, the cqllision processes
between (quasi-)fermions is strongly inhibited due to the
exclusion principle and to the conservatien laws. This is the
fact ultimately fespunsible for the T'z divergence in the
fisdosity coefficient. 1In this regime, collective excifations
("zero sound") can be proﬁagated through the medifications they
indﬁce in the meanAfield. For very slow modes fiw << kT of
this nathre, the collisional damping decreases with temperature

(14) :
2 . However, when Tfw. >> KT the energy associated

like T
with the mode allows for the possibility of dissipapive
mechanisms involving the promatioﬁ of (quasi-)particles aone
the Fermi level. fhis is the mechanism of the damping at zero
- temperature. Such dissipation is contained in the modified
‘Boltzmann collision integral eq., (IV.C.3). The effect of the
modification introduced by the phonon energy in the energy-
conserving é-function for the damping can be estimated through

the correction derived by tandau’'"? and others(1®), unhich

consists in multiplying the value obtained with the usual

Boltzmann collision integral (proportional to T2 ) by the
correction factor
. =
\ v R
Tikey (v.c.1)

An application to Tinite nuelear systems is difficult
due to the boundary conditions tao be imposed on the dispersion
relation and also due to the spatial dependence of the equilibrium

density. In the simpler case of infinite nuclear matter, the

T3

.18,

width of a mode with frequency w and wave nUﬁﬁef.k';

* N

satisfy usual dispersion eguation in'the~Landau"limit e

S &asxl - 4 4
2 s-t T g g2y
with’
.5 - L) . - R R -
[ . I (v.C.3)
= . ) .

where Ve is the Fermi velocify, can be easily estihéted'as{is)

2, * oy
— - - 2 PO EV.Co4.
7w o6z S-(_Sl-—.n(rg-fl‘t-bs")(__i.u)(‘.{i&'_) LAY E
Fn..CS-"‘-—L-) - F;Z. FD*.L e‘l_’ )
Substituting in this expression fiw by the-experi-
mentally observed values and with €_.= 45 MeV, we obtain for .
o= -
two orders of magnitude smaller than the observed ghes. The -

-2 as in the previous subsection, widths- which ‘are about

calculated value for T represents the bulk valie For the
damping. It suggests then, that the finiteness of nuclei
should play an essential role in the damping of cb;ledtive'
modes. Moreover, accarding to the results of the.previqus_
section, this should not be determined by parameters.of transsért
coefficients of the nueclear fluid. Expressions for this damping
involving other Landau parameters have -been -derived for'liﬁuid

(N
e .

H However we do noi expect gualitative changes in the

result.
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