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ABSTRACT

An expression for the scattering T-matrix which
is symmetrical with respect to the outgeing and ingoing wave
fungtions is derived. The elastic matrix element then takes

the form

. 1 -3 o+
<CEIT1R> = [d <y A0V Y an>

with ¢i(1v} obtained from the scaled. potential AV. Several
examples are worked out, and application to neutron-nucleus

scattering is made.

T. INTRODUCTION

The basic guantity in the guantum theory of scat- @

tering is the T-matrix, whose on-shell matrix elements,
taken with respect to plane waves, supplies the scattering
amplitude through which all scattering observables, such as
the elastic scattering differential cross secfion, spin po-
larization and spin rotation, are calculated. The well

known expression for the physical matrix element of T is

<ﬁ'lT(€kaﬁ> = <RV | gy:c\/)> (1)

where V is the interaction potential {generally complex and

(e}

N is the exact solution of the

energy dependent) and ¢
Schrbdinger equation with the appropriate ocutgoing wave

boundary conditions.

An important gualitative property of the matrix
element of Eq. (1} is that it is not symmetrical with respect
te the bra and ket. Though in most caées, such as in the
numerical evaluation of <§'|T]E> by directiy solving the
Schrddinger equation, this property does not pose any major
préblem, in several applications, such as in the development
of algebraic algorithm, Padé approximant, or the doorway
expansion method, a symmetrical representation for the Tema-

trix is more appropriate.



Schwinqer1) has suggested one possiblie symmtri -

zation of T, Ehrough the use of the square root of the poten-
tial operator, namely vV. It is then easy to show that the

T-matrix, Eq. (1), which, in operator form -satisfies

- +)
Tte) = V + VG te)T(E) (2)
where Gi+)(E] is the free propagator given by

. _— -4
'G:+)(E-‘_ - .(E _ (H-V) + Lg) (3)

wifh H being the total, generally complex, Hamiltonian of the

scattering system, can be written astr2)

: v L 2 /2 (4)
Te) =V =3

L - Wte
wheré.w(+)(E) is the scattering operator given by

) ) (3
W u_--)_.V/1 ’a)\/ (5)

Equ&tion {4) is extremely useful for developing
non-perturbative approximatiéns for T, required for the
treattvient of strongly interactiﬁg systems, such as nucleon-
nuéleon and nucleon-nucleus scattering. Recently, extensive

use f Eg. (4) has been made in connection with picn-nucleus

scattering, in the energy region dominated by the pion-nucieon
A—resonance3)_In all of these applicaticns, a fundamental re-
quirement for the consistency of the method is the  well—

behnvedness of the operator v/2

In this paper; we suggeﬁt another form of the_
T-matrix, which, though symmetrlc in Vv, does not requlre the
use of the possibly 111 deflned operator v / . The_yeh;cle -
through which this is accompllshed,,ls.a parameter,-x .that
multiplies the interaction potent1a1 and whose values are
contained in the lnterval [0,1]1. ThlS new symmetr1cal
form of T, Wthh w111 be derlved and exten91vely dlscussed in

saction II, is

H[TH> = [A<GEmIVIow> @
where

I v, (?\v)> N ‘P

(?l

'Av )>

_and. these exact wave ﬁuhctionsiéféﬁéaléuiaiea'with_the“scaiéa

potential AV. The symmetrized. expression above could be of

great use to extend.the.angula:'fahge.of the validity 'of the
Glauber approximation, as well ‘as’ to obtain a more rapidly

convergent doorway expansion methodsl'fqrtie evaluation of

<R IT]E>.




The plan of this first paper of a series under
preparation is as follows. 1In section IX, we develop the
theory of the symmetrized T-matrix, which leads to Eg. (6).
We then solve, in seetion III, within this theory several
one-dimentional scattering problems. In section IV, we pre-—
sent a-detailed account of the calculation of the integrand
of Eg. (6F in a realistic scettering-situation of n + f0 at
se§erei'heﬁtron energies. .The pd£ential.v empioyed for the
purpose is a cohplex deds—se#oh.iﬁteraction whose radial
distance dependence follows roughly that of the dens;ty dls—
trlbutlon of the.target 16O nucleus. An 1mportant quest;on
which is discussed in thls section is the ﬂOSSlblllty of
having a particular value of i which would give the dominant
contribution to the integral in Eg. (6), namely the existence
of a statioharf 'or;more'geheralLy, a saddle point in the

i-integral.

Finally in sectionklv_concluding remarks, as well
as a general discussion of the applicability of Eq.-(G) to
high energy @ﬂawxm)4) scattering, to be -fully developed in

the second.pepe: of phis-series,,are presented.

IT. A GENERAL SYMMETRICAL REPRESENTATION OF THE SCATTERING °

T-MATRIX

In this section, we present the theorv of the
symmetrical T-matrix, exemplified by Eg. (6}, Let us first
write the Lippmann-Schwinger equation for T{AV}, obtained
from the exact solution of the scattering eguation with the

potential AV.

T V) = AV AV § ey T (AV) )

We formally calculate the derivative Of T(AV) with respect to

x, obtaining thus,

d TV _ V+VGcEJT(AV) +

) T v @
G ST

the formal solution of Eg. (B8} is

d

or

4 T av)
aa

Since the operator_'(1-—AVGc(}+)(E)}_1 is nothing but

-t . o
AT (AV) — G.’_ A\ C-;(:()ED [_\/_-1-\/@?5)‘1‘( RV)_}_ (9)

e '
= (L=WE ) T (v (10)

(1.7 ) 0w el ™1, we nave thus

-8 -



=2

CD;T;AV) (_L'f‘T(?\\;)G(F/)\/CL+G(E)-1—(?«V)) (1)

Taking the plane wave matrix element of (11}, and using the

L-5 equation, we have finally, after integrating over i,
S i o )
<‘&‘_"\T(V)|t‘>=Jd1<¢t,czv)|_V[tpt(;\w> e

Eq. (12) is valid for a general complex, energy-dependent in-
teraction. For future use, we write below the partial wave

expansion form of T. We have: first

(A)

.\l/ (W) = -4‘*——2(1) e*‘ffk,r)\fc:an (£22) 13

. _ (-) ) *
Y., AV = ¢ (av)
o W=V (a)
-4 ‘nY R )Y(&
=_&:F_.Z(1) C. ,r)YC L’ 7
RY &

Thus, we obtain immediately

o {oo 2 _ .
<3 ITlE)I‘E (2£+|)e_ UJRJJ ,r) tr)}té}i’)us:

" In the abhove equatlons, °£ denctes .the. Coulomb. phase shift
and fé})fk,:) is the exact radial wave function cbtained from

- the solution of the radial Schrddinger eguation with the po-

tential av.

The Xi-integral in Eq. -{15) should be compared with

the conventicnal radial integral, namely

A AN o
Ld')tjidv .@Q f_k,vﬂ.\/tr) = fﬁr&ﬁckr)g Crl Y . a6

where j,(kr) is the usual spherical. Bessel function, which
arises from the partial wave expansion of the plane wave and
fE(k,r) is just f;l=1)(k{r). Equation (16} suggests the
following useful identity

(A =2

A
Ja (g n) =

valid for any interaction. Clearly f

(A=o0) (A=1)

JQ cerglckr) -

(2=0) (k,r):jékr}.

Instead of using (17) which would then accomplish
nothing in so far as the eventual evaluation of the partial
wéve series, we concentrate our attention on the i-dependent

radial integrals J dr(fék)(k,r))zvtr). This integral is
o

restricted by the range of the interactioﬁ Vir). :FOr a
Woods~Saxon potential, commonly used to describe nuclear
scattering, with a strong imaginary part, it is expected that
for A close td one, the integral above will have a narrow
distribution as a function of angular momentum. This is so

since the small partial waves will be strongly absorbed and

-10 -




the large partial waves will contribute very little due to

tha short range nature of Vir). The maximum of this- f-func-
tion will be situqted at an 2-value corresponding to a grazing
collision. For x smaller than unity, the lower partial waves

(x)

will contribute more as the correspondlng £, . is less damped.

fnccordlngly, One eqxrts on general grounds, that. the 2- -dependent. -

" radial integral to . behave,as a function of ),as shown sche-
_matically in Fig. (1). This behaviour will be corroborated

on’ in' section IV through an exact calculation.

Thus in the sﬁall t~region {(low paitial.waves)
the small X region in the i~ 1ntegral EUDDlleS the dominant
contribution. The large £-regmon contributes. very: little for
all values of A and finally in the grazing i-region, all A
values contribute roughly the same amount.. As a function of
.2,-the i-iﬁéégral.would:theﬁ:béhavé'schematically as shown
in ?ig.'tzi; ' From this discussion, one may wonder whether
there:exié#; a particular value of i, call it A e 10,11,
whiéhjsﬁéblieS'the-domihant coﬂtribufidn to the A-integral,
in: th&' sense .

fan ({3%)) \/m oc Jﬂ Lo Vs

Such a situation, if it_a:ises,_wouid be extremely

interesting, as it would imply shifting some of the strength

-11 -

" can be achieved

of the potential from |¢i+)
k

> in Eq. (1) to the vlane wave
-+
<k'l and thus renders the convergence of, say, a doorway ex-
-+ -+
pansion treatment of <k1T|k>, much faster. This guestions will

be fully addressed in section IV.

So far in our discussion, we have employed the
stationary time-independent theory of scattering. For more
genaral appiications, in pértiéular, in connection with field
theoretic description of the collision, it is more advantageous
to develop a time—depéndent version of our theory. This goal

5) ; .
by introducing the evolution operator

UA(t,t'), defined by

{ 512 Uyctat’y = X Hyeor Uy eyt 19)

where HI(t) in (19) can be cast into <the usual form, in terms

of'phe time ordered product of the interactien Hamiltonian,

UA (-l-,-tf) TQ’XP[_ ‘de’t H m:'):( {26}

or, intorthe-follQWIng, more convenient, equivalent expression,

Uy t') = 1_1jaaj4'ru (1,r)Ht'c)u m) (21)
<

From (21) it follows that the usual evolution. operator

[~]

- 12«



.U(t,t')EU):1(t,t'], can be written, for asymptotic times, as

. 1 =
Ulw,~2)=1- ij\clkfcﬂ' UA( oo, t) H].(t) UAC‘EF"“) (22)
(] —00

This formula is our basic result. It allows us
to write syimmetric expressions for the T-matrix for time de-
pendent potentials as well as toiéymmetrize the T-matrix within
the context of Quantum Field iheofy. Thué it represents a
major generalization of the time indepéndent description pre-

- sented. earlier.

In order. to derive, from (22), symmetric expres-—
Sions-ahaiogous to (6} for time dependent potentials (Vi(x,t}},
we will wbrk_within the'secoﬁd quantized scheme. In this case,
if we represent the non-relativistic field operator by
plx,t}, thé ihteractidn.Hamiltonian asseciated with this problem

= yd"?,i ?tx;t)[\/(x,t)] P (X,t) 23

Using {23) in (22) and after inserting a
complete set of states in (22} it is possible to derive the
following expression for the R-matrix {which is just . 5-1,

where S ls the S-matrlx)

<FIR|D> #-qjdﬂfdxal{-’{’ (Xt)vtx’t)\” ("'f) (24)

which is obviously symmetric with regard to the "wave functions"
wkf(x,t}, wiktx't)' ‘These wave functions are defined, within

the second guantized scheme, as the matrix elements: -

—eft . :
\HA(?‘:*) =<°’¢P(X'f)€ : UA({“:“"')]1> (25)

t | —iH -
‘-li,x(x,t) =<{] Ul(w,f)e QDTfX,t)_.lo> (26)

The above wave functions satisfy +the wave .equations

. 9 _
1'§;?q5“F5<;1:) a,I: M

with asymptotic conditions

+?_LV(X,1:)J ‘k\(x,t) {27)

) o (X = P . |
Jom o000 = B K)o

t—>—

k”; (x,vy = /Q'u...: x(Xj‘tJ © T 29)

ts+o 420

where xi(xf) is the wave function of the initial (final) state

of the system.

- 14 -




For time independent potentials, one gets, from
{24), our expression {g) for the T-matrix, after paying due
attention of course to the energy conservatiop delta function
implicity contained in R.
: fwé can fuﬁther extend the time-dependent approach
for the treatment of the Many Body Scattering Problem. We.
shall illustrate how this can be achieved within the context

of the two-body problem. By assuming that the Hamiltonian B

can be written és )
¥ 2
- 14° 2 ¢ 4 /e x,¢
H= fx Pl yyme] 900,
t3 dfxf&’ Yo <p Y xixe) p ol Pl

where we are using the second quantization approach with

6(x,t) being a field operator and Vi{x,t) is an external poten-

tial to which the particles are subject and U({x,x',t) is the in-

teraction potential between the particles. In this case, if
one uses (22} one can'writex the following expression for the

S-matrix elements

<£ U (o,-) ]z} -_-.-% Sy

. 7 . z 7 15 . L . P
- fat i J & geanmlves Ly 0 v

TS Ay
x ¥s (K,x,-(-)
where the “wave functions".Gs(x,x',t) and-fs(x,x',t) are given,

respectively,by:

=15 =

- Lt f 4
,3: FOESE]! UA(M,I)C P xit) PR |O> 2y

5 (o S O
)\(x,x,f):<oljo_(x )?rme U}&}-x:;l_ > ta3)

and satisfy the Schré&dinger equation

s
xyt)
e N (34}
Cx,x,8F

A

,‘j_{ fsouxiy) o *
31, 35 (K,K;{}

satisfying asymptotic conditions analagous to (28) and (29}.

[—11: _ V?: z+:\\/(x,t): +’X\/Qfﬁ)}%§

If one assumes that one of the particles is free and

the other one is in a bound state whose wave function is

e-iEbt
wB(x)

then the appropriate ésymptotic,condition in

this case

'. . x, | iG'E _hi-E'E"
Ain fx0) fo e ¥ 2~
't'—a—-’b t—g—.@
'P . _ —'.':Px:f X)) -"3'5)
- g

Before ending this section we comment on the re-

lated work of Tikochinskys). The derivation of Eg. (12) pre-

- 16 -



sgnzed in Ref. 6 is based on the repeated use of the Gell-Mann-

Goldberger relation for the two-potential scattering prcblem

name iy, Tikochinsky writes

| 1
Vo= 2ely 45V e

and
i . +) -1
= < 1RV Y RV
> , +) "t
+ <:\¥;. (v) l —1;'b/ ‘QY: ('_?T_A/):>>

(37)

After n-1 transformations similar to the above, one can write
- 20 Y - -
I &) | e _
T, ;kz ++ <Y, (_ﬁ_v)?\/}‘f:.(l%!.v)>_ 38)
) .

Letting n+=, one obtains the integral fdrm}'Eq. (12)

L&

) U R L
ﬂT;. = 1dXx <\l‘f (A\v) ‘V "33\!",;: (’AV) > o8

fikochinsky-discusses Eq.‘fiéy ;njthé;ccnteit'of Ligh energy
scattering, and shows that the.conditioh ﬁsually cited in
.connection,withlthe validity of Glauber approximation, namely
'% << 1, can be relaxed to %; << 1 with 0<x<1, thus extending
the validity of this approximation to medium energies. 1In

particular, he finds within a simple model calculation of

- 17 -

nucleon—nﬁcieﬁs'écattérihg at E=33 Mev, that mosé.of ﬁhe
contribution to the i-integral comes from the vicinity of
A=0.2,the value at which the integrand peaks. Thus even at
this low energy the Glauber approximation may work since

0.2y

B < 1 for V=50 MeV,

In the next sections we investigate this point

further, through schematic and realistic model calculations.




IIY. EXAMPLES: HIGH ENERCY SEMICLASSICAL APPROXIMATIONS, AND

SCLVAELE ONE-DIMENSIONAL PROBLEMS

In this section we evaluate the T-matrix element,
as given by Eg. (12} for several analytically solvable preblenms.
We also present the case of the high energy Glauber approxima-—
tion.. We starf first with ;he Glauber approximation. In this

(-}

g {av) | are given by

(+})
case the wave functions |¢E+ (AV¥pand <

+ - ) .
<riYy V> =<=p Wy AVDS (40)
B o )
= e‘t"' zxp[tfék (2;p) 42
and —ao

ooy o BRSO .
< " (W)|¥r>= ¢ exp[;zfAb(%,w A;J (41)
=

the incident momentunm i is taken to point along the position
%-axisg, and b is the compenent of ¥ perpendicular to %, which
is assumed to vary little along a small—gngle trajectory. The
exponent of the second facter in ¢i+) is the amount of the
generally complex, phase shift accﬁmulated along the trajec-
tory up to the point (2,B). The integrand of this phase shift

is, in this high energy limit, %'<< 1,.given by’

(A3
Lk = = - _E%- AV (2, b) (42

- 219 -

and thus is linear in A. Note that Viz,b} is generally

complex, and k represents the asymptotic wave number, k= %%E.

With the above expressions, we have for
<k'|r}k>, Eq. (12) the following
_ i e ' L o
UE-B)r 0,
KBTI :f:{i Pe T e axp[i Ak(e,maz'J V(z,b)
- & .
o -

oo AZ;‘ pu
v AR N ds
:iiejdﬂ_g 2xpf- 1 _Z_E.:r:/(i-,uhj\/&,y)

o0
o N -k ’ 4
e o — V2] d2]
ZPEJM JEF el ?_gj: 91 VoL,
-0 —'-—-;_g J\/Ce—;b)de'

. o =

wiiich is of course the usuai Glauber expréssion for the T-ma-
trix element. Note that q, is assumed'zero. Cleéxly, we
have apparently not accomplished anything new in so far as
obtaining a better approximation to high energy scaﬁtering'
{e.g. a wider angular range validity). However, as we shall
show in details in the second papér of this series,.with a
slight medification of the method of evaluation of the.in—

tegrals appegring in Eqg. (12},“we will be able to obtain a



high energy approximation which has a wider angular range of

‘validity. This arises from the symmetrical form of the in-

. 4 . .
<kl T N> =\/.,fau Qi) < G pinkr>
) (1~ <a4™))”

tegrand in-Eg. {12). Further the approximation can be extend

: 2
to .lower energies. . 4 .
| T 7 N\ <gd? <9 aindr> -
We now.consider an interaction potential, which : »<936G,3>
i& nonlocal, but separable, namely _ . [_'—_—'dL"FTJ— —_— ,'L]
-V <3g¥
Vinr'y =\, e ger” : | —y S8 Ainkr>
: - ' ) (47}

| 1-=V<3§73>
For simplicity we consider only s-wave scattering. The wave
_'fuﬁ-ction q,_f” {AV)', then becomes : which is clearly the expression obtained by directly applying

Eg. {1).

-+
AV,<6,3> (<Y ainkr>

T (44} ' The third case we consider is a delta function

@) '
-\Ytg (AV) = Ainky 4

- A\/; <3 Go 3> potential,
and ' '
_ . _ T (48)
7 x o . Ve = al\, §cr-a)
) . d . . .
Y (V) = sinbky 4 AVe<G, 3 >0 <8(_:m > (46) '
k’ 1 - ‘Av" <8 G, 3> ' Then for s-wave ‘scattering, .we have
where the notation < > implies an integr.a_tion over r,
( grat] &) _ L ) &) :
<Gé+)>{r) = 6" (r,r')g(x)dr’ and Gir,r') is the 2=0, L|chr) = Auky 4+ AaV, G(r,a) q)hCa.) C (49}
a B .
Green function given by - i— e KT, sinkr .
or
With Egs. {45) and (46), we have for the T-matrix . _ ‘
&) ' '
element . q}” = Ainky 4 A aVe GUGa)pinka (50)
= Jun o !
k L -AaV, G Ma,a

- 21 - - - 22 -




and similarly
=) > | v ) o +)
- . A . 3¢

Y (v = Anler + Aav. G E‘J(:_J:th = 4" Cav) {51}
k. l—-)\aVDG (e ) |- . .

The T-matrix element in this case is just

1, &) |
CelTle> =V, [ & "cav)) 4a
(-~ Y=
* ~6i*3 ka : !
=V _ : A
*J(l=AaV, §éa,a)

(52)

.2
- e — )
! A q (a2
which is again as one might have obtained using directly the

conventional expression for <k|T[k> = <k[v|¢é+)>.
We turn now to a slightly more involved example,

namely the square well potential.

Before considering this example let us derive
some general properties of thg;sqat;ering-amplitude that

follows from our symmetric expression for spherically sym-

metric potentials. By'using the usnal partial wave decom-

position cne can write

'Y'fm =1 (zmu.(ez—'c&—t) Peesnp) 53
. _ thlx;; S £

' The phase shifts §: can be written in  two

--23 -

eguivalent forms

et a8, o 2Ak [Ver R en g comr™ar
e £ L

L e
— 2N thlJ\Vcr) Rz (ey TE dr (54}
4" Ao 7

[

where the second expression follows from the partial wave
decomposition of the wave functions €13,14) and then sﬂmtihnﬁng'
this decompositicon into (6 ). The funection R,, (r} in (54)

is the solution of the equation

/" / 2 L)}
. 2 é' — r)] — ni/A¥ 3 Rand
Q},;\(r) +_; R}]ﬂ") '1"[ _h-._(e AV( )) vz %ﬁ{) — 0 _(.55)'

Rgtr) and ji(r} are just particular cases of Rll(r), namely
. ¥ ’

¥ (e =. R Cr) _ (56}
Q,Q Ly h=1 . i .
jﬂ(\-) E Rj,:\u ) (7
If one defines Xy A r) as
=y 'Q“""{I" S s . (58)
xj’a(r) . . jla ) R AR T I e e . ,

ity
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then, from (54} follows the following identity

4 oo 20
Eo\}\jﬁv Cy) f)(,z v dy = \/Cr)x (r}x ey Ay (59
Y. o Lax - A= 2a=o

A stronger version of the above identity is

1]

/Q:A-:l X»?&Zo
=0, 0w gﬂcr)
which is exactly identical to Eg. {17), with fél) =

Sd-’% -‘x: N X.x cry X e {60)-

Xz'l-
This is a guite interesting property satisfied by the radial

wave-functicn th(r" This property is equiwvalent to saying
that the average of xik(r) over the whele range of values of

X is equal to the product x£A=1(r] - xzxzd‘

The equivalence of the two expressions for the
.pﬁase.shiftsfleaQS‘to properties of the wave function that
"in some simple:.cases leads to, as far as we know, unsus—
pected properties of spherical functions. We will derive
some explicit properties for the spherical Bessel functions.
in order to achieve this, let us consider the spherically

symmetric poténtial defined by

~v, T
vy = (61)
View { o v >R :

Let us consider first S-waves. In this case the
solutions of the Schr#dinger equation (55), with x(r) defined

by (58) is

- 25 -

x}‘CT) = AAAJ'M Kedr r ' Y <R  (62)

whereas

953\“) = BAAL-.» Reoyr +c"aam .kcw_r ' (63)
= £ AMnfrr + §A) r >R

where ) _ R '

ey = J;%_hﬁ,: (E +'XV.,) : . (64)

By imposing the usual boundary conditions at r=R

and the appropriate normalization one gets

A y = = 4 (65)
JECo)A—L} Rem R + R cas BoR) -
From (5;).and (§5) it follows that’
fdﬁ '/&a?th1?  L
! O z - k!. . 3 '?.
& \'a_(o)AJ-u. h(?\]ﬂ + R cos '3 54

o Pwekedr o ke R
kior ARy R+ Kiny cos ki) (.-k’mmiu;_ lz_:w)@'-thl,to)c}:'kzai&)ﬂes )

In terms of the spherical Bessel functiqn'jofkr)'thé expres-—

sion eguivalent to (66) is

- 26 -




C :,',{-f-f

an 1 3.2 Chearr)
So_- 4+ kR [RRA) —(R ReaY] T |

— Y - — — (kC)r .
}'L * :’S—( kay R)@lktd)) (R kco)) ] 3,, ' )goﬂu OF) (67)

In the general case one can write

vy = A (keyr T < (68)
R, ¢ }2& ) T) R |

A

and.’

Q’,@ﬁ(” B 4— (kfd)?) Cayﬁc:\) +H Ckeos¥) Aln 90\)) (69}
' Y >EK

By imposing the usual boundary, conditions at r=R

and the appropriate normalization we gets

A(')u__ 4”2”2) 9(;\) RptkaR) . so05 (70)
A éﬁtkmm Mmm) %

Vel(l) in (. } is given by

f
Ny tkenR) F 2 — N, ¢ kioyR )
ton B0y = —£ o®) J, 1
4 ;L(mm)—; fkrma)g ()
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with

ks dy CheayR ) "
g = ; (72)
g Cken g Geevy R)

where the prime in (71} and {72) stands for derivation with
respect to the arguments. ' The property of the spherical

Bessel functions which follows from (60) in this case is
4 z 2.
J;DM- A,t ) d’fz (kcaT)
= Azfi),ﬁe(b) Cj { k(i)r')cj Cheo)r) (73)
4 A :
AR(X) appearing in (73) is ‘defined in (70).
We now explicitly check these  identities

in the case of S—waves by computing the right hand side and

the left hand side of (66) in the high energy limit (E>>V,).

'In this limit one can write

A;(A) A ke r =

= -—I:‘%—D) [A«L"‘l lgtaw@. —-AYcos kro)R,)_i.A‘tho)fcmkw)r (74}

ta)
- mukro)r‘] :
where y = ® and :
ﬁ!
Aoto) /4,,(1) /.Li—ukcmr Albwkto-)r: g
= Ll(a-2 e ¢ot lecor®) i
p .l Yo tor )T ‘i‘ . {75}

-+ E'i"—-"( + ) corRic)F pem k(o)ﬂ
23 2. ktw) ’

5l



It is easy to see that (75) is ju§t {74) in-
£Egra£ed'our % from 0 to 1 thus comfirming our predictions

(686) .

Before ending this section, we consider one last
aspéét of our theory, having to do with the semiclassical
approximaﬁion. -This is valid in sitvations where the de
}_Bfogli- wave 1ehg£h]of the particle is much shorter than the

CharadtgfiStic length of the interacting system. This neces-
sarily imp1iés5a large number of partial waves inﬁolved in
'thé;ﬁésﬁm; and“thﬁ; ﬁhe replacement of the f&-sum by an in-
Eiégiélﬂbécémes feasible. Thus, from Eg. {15}, we have l
LR ~ zigedy N

<HITIE>=4cm(ial e r'ep

o e
A * o LS B
PR ~t e+t (pe ~i Ay -
x—-—-Tj:—-,Ti [e '-f-_ ei * ] (76}
@m 1 4in 8) - .

where the asymptotic from of the Legendre function has been

used

L ' ol - ~ ”
= A (L& —T/%
'Fi_6249) fr$>i/ Chm:f.-{_ayk- .( e' /,)

. (77)
LA ) .
£ = 2+Y2

. U S, :
The above expression is wvalid for Bo<o<n=k 1'.';We_--shou].-d

mention, that a more precise statement concerning the

replacement of the 2-sum by an integral can be made through
the =ce of the Poisson series.  Here we content ourseives

taking the leading term of this series, which is precisély

Eg. (76}).
From fhe recognition |
(&)
0, ), : 7
ICH =_2; &8ch e"?LS €43 (78)

where é(k){i) is the usual elastic phase shift for the po-
tential iV, we can proceed in the evaluation of thé intégréls
appearing in Eg. (7¢) using the method of stationary phase
(or more generzlly the saddle point hethcd). We consider

the following integral,
1 ehCx) ' i
T = je * A x {79)

vhere the -limit of integration are generally infinite and
$(x) is real on the line of integratioﬁ and analytic in.some
region surrounding it. If ¢{x) varies rapidly with x, the
integral will he small, but if it ﬁas maxima or minima on
the line of integ;ation, these extrema will contributg the
bulk of the integral, since they are just the points vwhere
the integrand does-no£=6écilléte,“JIf.¢J(xs) = 0,:thén near

X
of
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c\»m 4>cx°> + i}fﬁa’. (x—xo) (50)

Generally, there are more than just cne
stationary peoint near which the phase 4{(x) can be expanded
as in Eg. (80). The integral I then gives, for well

separated stationary poiats

I :Z, -iqﬁ(x; > f‘” z gﬁtxe) ('.K*—Ko)/-‘L

2 P ) (81)
‘“Z gb”(x‘ '

The above result can be extended to the case when the ih-
tegrand contains a slowly varying function A{x) in additon to
the exponential, to yieid
. z;{a()(‘ _

I =pfRet A e (82)

A ;1‘5 (2.0 2 : : .

H
The above result is the basis of the method we employ for the
evaluaticn of the I-integrals in Eq. (76). The final expres-

7).

<‘E'£Tl1&‘> —% jJr’l [N(A9)+ F(A 8)) &3

where

i &

A
' ) cm' ) (A« —if b
N(A@) “Zlﬂ/z-et I(,e’)i?l-ae J (84)-
7 @'(,fj)

, A
¥ zm—u’ ) 24, B
Fe _-Z/E )I 7 '/ ek (85)
% ®ce,)
. & _
where ;j and Ek denote, respectively, the stationary phase

points associated with the two branches of the Legendre

function

), _ o
4 (:Lr.é\' (£)+.;uﬁ‘c,() - 18 = (86)
Yl 1
and

&Y
: <2LS(,2) -1—210‘(,0;) - 169) (87)
b

and o' refers to the derivative, with respect to £ of the
classical deflection function B(ﬁr) = é—%—}g)—]1 . Clearly

ij, ik and @' depend Qn A.

For scattering systems that exhibit strong
Coulomb repulsioﬁ, such as heavy ions, the above calculation
is always valid irrespective to the value of A {in the range
0<l€1) which determines the nuclear phase shift. Clearly

when two. stationary phase points come very close ta each
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other and eventuallv collide, as occurs in a rainbow scat-
tering, one has to resort to the more powerful uniform
approximationa)_ln this paper, we will be content with the

asymptotic representation of <k'|T|k>, Eq. (76).

The interesting features of Eg. (83} is that the
semiclassital T-matrix is now represented as a sum of con-
tributions'frdm all the statlonatry points each of which is

.givén-as.a sum - (integral} of contributions arising from po-
'tenﬁiais varying in strength from 0 to V in a continuous
'féshidn. This raises the very intriguing question whether a
-strong rainbow gcattering can_be-represented as a sum of

'_ several'non—rainbow scattering contributions. This would

. arise 'if the i-integral in Eg. {83) is dominated by a
}—ététionary.phase pgint. This behavicur, if it arises in

general, is extremely interesting as it would obviously imply

that a simple, separated stationary phase points representation

suffices, even in the presence of a very strong rainbow

scattering.
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- IV. NUMERICAL EXAMPLE: NEUTRON SCATTERING FROM OXYGEN-16

In this section we investigate the behaviour of

('){xv)lvi¢(+’

the integrand <p (AV)> as a function of x in a
reaiistic sgattering situation. An important guestion which
we consider is whether there is a region in the x-integral
which dominates the amplitude, .and if so how does this lo=

calization-depend on -angle.

In Ref. 6; this question was. discussed within a-
very schematic model and for. ¢=0. Our purpose here is to
perform a: more thorough analysis involving the whole angular

range and at very hmvéhd-intermediate energies. Hadron-nucleus

_scatteiing.is tdken--up-here.to represent a typical strongly’

interacting system, wheére the full aétion of thé potential is
réquired.

' As an example we consider the.elastic scattering

_of neutrons from '®0,. at very 'low and-intermediate energies,

' - and use for the purpéseﬁthé-ﬁpﬁicai model. Within this

model, the average ‘potential -that représents “the interaction

© between the @rojeétiléinéut;cﬁ:andﬂthé'tafqet - 180 puelens

i& complex, and can be taken to- havé a Woods-Saxon form. We

use the following

Mev- .. .. (88)




L. Fig. 4b, we exhibit the i-dependence of I(l)(i) at ¢=0, =4
The walues of the parameter Vir) are reallstlcjenough to

and =9,
represent roughly the actual situation.

b luated the inteqrand The larger f-contribution are hardly dependent
We have evaluate e integ

n i since they reflect scattering mainly from the centrifue
< am s v > of Bg. (6) at E_ - 5.0 Mev and 100.0 ° ¥ g Y £

Mev In Figs. (3) and (43' we present.the results for gal barrier. For comparison; we alse show in Fig. (5), the
ev. n Figs. 129, C P : )

II(A)E Eq. (15) as a function of the orbital angular usual elastic partial wave amplitude vs 1, for 1=1.0, namely
gyl ) .
( rum £ 3 0.0, 0.1 1.0. At E = 5 MeV, there is the genuine full-potential strength case and for A=0.1.
momentum. for x = 0.0, 0.%,..., 1.0. = 5 r )
a gradual qualitative evolution of |[I(e)| as % increases. ' An important gquestion which we address now, and
) ; 6) . .
For small values of X, the radial integral drops very rapidly which was briefly discussed by Tikochinsky « is which
with £. _. region in the A—ihtegral gives the dominant contribution to
’ -+, o .
At intermediate values of X, a maximum at g£=1 is <k %Tfk>. For this purpose, we have evaluated
: ' {-) Tl () ' ;
developed. 'This maximum then disappears in favor of a minimum. [<+7  Gvr|vle 7 Gv)>| over the whole angular region, for

At A close to umity, a flat I{2) is seen at small ¢ which several values of X within the interval 0<i<1, at two neutron
t A .clo ’ L5

then drops rapidly to zero at around 2=2. This latter energies E = 5.0 MeV and 100.0 MeV. The results are shown
behaviour is expected in cases of strong absorption - o in Figs. {€) and (7). Also shown in these figures is the
exemplified by the rather strong imaginary component of the modulus of the elastic element of the T-matrix I<K'!T!E>l’
poteﬁtiai. We summafizé ﬁhe above by plotting, in Fig. 3b, At E = 5 MeV, the most important contribution
tﬂe contribution ﬁo Iie) ;f £=0, t=1, and £=2 vs Xi. - to the scattering amplitude at small angles 0<8<50° seems  to
o In.contrast_to”the above behaviour of I‘l)(x} at be the small A region, 0<i<0.4. At intermediate and large
low energy, its_intermediate:energy.behaviour is quite _. angles, there is a destructive interference phenomenon
regglér;.as a funcgiqn of X, as seen in Fig. 4. ‘ . involving basically the whole i-region. The dips in the-

. elastic scattering amplitude at 6 = 85° and 15° can he
The strong absorption nature of the system, - ’

easily interpreted this way. We conclude that at small
exsmplified by the constancy of }Il in the small f2-region, '

. . angles {small momentum transfer) a much reduced potential”
and the final rapid drop-at- larger-:; is guite clear. In

(~ 0.25V) suffices for calculating the scattering amplitude

-35 - : - - 36 -



in a symmetrical form <K'|T|™> a <! (0.2 [v]y ) (0 2v) 5.
k! k :
This finding extend the result cbtained by Ref. 6 to very low energies.

At,En = 100 MeV, the same feature seen at the
small angle scattering at Eh s 5 Mav prevails, in fu;l
agreement with Ref. (1, namely the use of Glauber approxima-
tlon, whzch requlres E to be very small, is Satisfied here
even 1f v 1s of the order of E ‘since we have lnstead ﬁ;,
which is small at small angles. At back angles, the situation
is completely reversed, namely in the A= lntegral we hawve
here large \-values contributing most, This is gquite
reasénable physically, since in arder to scatter the flux all
the way to angles close to 180° one certainly needs the actién'

. of the full potential.

‘The above intermediate energy resul£ points to
‘the véry intéresting possibility of extending the Glauber
type representation of the Scattering-amplitude-in such a.gay’
as to be valid at 1ar§e\angles. For this purpoée, oneghayi"
use 1nstead of the usual Glauber scatterlng amplltude, the :

symmetrized one <w( ’(Av}lvlw(*}(xvy> with X belng close to

unity. We leave the deta;led,invest;gapiqn o£_this.pointwto

the second paper of this seriésQ'
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V. CONCLUSIONS

In this paper we have derived and analyzed the
symmetrical expression for the scattering T-matrix, Eg. (6}.
The i-integral was evaluated exactly in several solvable
scattering cases and the result was found to coincide with
the known solutions., A realistic scattering problem involving
the interaction of neutrons with 150 was then discussed in

detail within the optical model.

It was found that the i-dependent integrand of

" Eq. (6) shows several interesting features. At very low

energies, the integrand peaks near x=0 in the forward angle,
region, implying that the i-integral uﬂlhe‘agpnmﬁnétea siﬁply

by the integrand evaluated at-a-small }.‘ At larger angles,

all i-values seem to contribute roughly equally with varying
signs, indicating destructive interference in the elastic

scattering amplitude itself.

At higher energies, where Glauber type approxima-
tion can be contemplated, ﬁe—found_that_ﬂhereas the small
angle region is, still deminated by sﬁali A-values, the large
angle region is by far dominated by the large A-values. This
opens up the possibility.of-approximéting the A-integrail,
namely the scattering amplitude, by-the-x$iﬁtegrand evaluated
at a A close to unity. The resulting symmétrical form of

<ﬁ'|T]§>, may then be used as a vehicle through which the




Glauber approximation can be extended to large angles.

This

last point will be fully developed, in the sequel to this

9)
paper”’ .
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FIGURE CAPTIONS

Figure
. Figure

Figure

Figure:

Figure

‘Figure

-Fig@re

3.

A schematic diagram showing the behaviour of
(x)
|z

(z)l vs 1.

A schematlc diagram show1ng the béhaviour of

If dAI(l,I vs L.

The calculated II:E:I for n + 160 scattering at
= (x)
En = 5 Mev. iI(z)I ve L, and

}I[A)(E)I vs A (see téxt for details).

Same as Fig. 3 at E, = 100 Mev.

The elastic partial wave amplitude vs £ for A =1.0

and A=0.1 for En = 100 MeV.

The integrand [<@(‘)(xv)|v|¢(+’(xv)>] plotted vs
e

g for n+ %o scatter;ng at” E = 5 MeV. a) low
values of i, b) hlgh values cf X, The dashed
curve ‘is the elastlc ampl;tude

BL Iv]w C wys.

Same as Figure Sgat'En_= 1od*uev.
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