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Abstract

We ‘prove tﬁat analytic gstochastic regularization breaks
gauge invarianﬁe.'This is done by an explicit one loop calcula-
tion of the vacuum polarization tensor in scalar electrodynamics,
which tuarns  out  not to be transversal. We also .analgse the
counterterm structure, Langevin equations and the construction of
composite operators in the general framework of stochastic guan—

tization.




Introduction

Due to many technical aspects, non abelian ALY E
theories are very difficult to dealt withs Non perturbatively,
there are the Gribov ambiguities which prevent a clear gauge
SPECiFiﬁatiani)On the other hand, at the practical side, compu-
ter simulations, using HMonte Carlo methods have unvealed a  lot
about the structure of the models on a lattic;?)ln spite of this

sUCcess, crugial problems ‘still persist whenever fermions

are included. Even at the perturbative laevel the situation is not

much better since, in many instances, it is not easy to Find a
3
gauge preserving regularization ﬁchemgi Case examples are super-
symmettic gauge theories where most of the popular schemes fail,
With such pletora of troubles we found veru fortunate
FParisi and Wu proposal of stochastic guantization as a nean to
circumvent some of the above prmblem;?)Gauge specification in the
first place, is not necessary or, better saying, is actomatically
incorporated thus evading the Bribov ambiguities. Moreover, con-—
cerning gauée theories on a’'lattice, the introduction nf a fifth
variable (the Langevin time) permits =a unigne updating of the
whole lattice data in each step, saving a huQe amount of computer
time.
After Parisi and Wu, some authors have proposed new re-
gularizat ion approaches based on. the Langevin eguation with a non
{(F, 82
white noise. It is one of our purposes to show that, contrary to
these hopes, such procedures in general break gahge invar iance

tsee also (7). This is verified through an explicit calculation

of the current. Green. functions, emploging a .specific shape for
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the regulator noise. It turns ouk that the current is nat
conserved which implies in the Dbreakdown of the gauge syummetry.
The non conservation of the current is due to, finite, non
invariant terms induced by the regulator or/and infinite (as
the regulator is removed) counterterms which would have to  be
included in fhe Lagrangian for a consistent renormalization
Program.
A possible Frilure of cuarrent conservation in the
framework of analytic stochastic regularization has already hbheen
=
notice;?) Nevertheless, it was not clear what were the conse-—
quences for the gauge sywmmetry since this symmetry is  apparently
preserved in the Langevin equation. In ref.(4,8) it was claimed
that the divergent part of the current Breen functions were
transversai; In this paper we discuss the appearance of both ia—
finite and finite terms and the possible implications for gauge
theories. These results are discussed in section II. Besides that
that, in section III we analyse standard renormal izat ian methods

on the light of stochastic quantization.
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IF. Btochastic Guantization and Gauge Invariance

The basic -element in stochastic guantization is fthe lLangevin

equation

%t_}f x8) - & 519 4 =0

| Y. (=t) (110
vhere £ is a FiFth time wvariable and ¥ represents a Ffour  dimen-
ﬁimnm;.gpace - time conwdinafe" 5 is the élassical action and q

a random field with gaussian probability, defining a Harcovian
Process. The two pdint correlation function of the field is
given by

s 940> = 2 5.;3-_ § (x-9)9 (+-t)

(ET.2)
and higher point Green functions are obtaingd with the help of

Wick ’s (decomposition. Using (I1.1) and {(II.2), averages can be

computed through

(‘Ff_’-‘f;li:)]jzl = Qj’éF[\ﬂL{j};P {*%’L&tjdx }L"q&} o

The above Marcovian pruocess can be related to the Ffield

theory specified by the action § as follows. The Green furctions

mF'the_quaﬁtum. field are given by the stationary limit of the

Tequall (Fifth) time averages of the randow field q » namely

.<T¢§{H);;;:_(#,.-“-(xg}>__—._ %&V__':ébéﬂj(zdﬂi;.. ‘;EN (IN,I:)>.1 £17.4)

For perturbative purpose, it is convenient to split the
action fin two terms, a gaussian, quadratic in the fields, and an

interaction tevm

-4 =

_ 5(¢] ’%&f*' Du’j%‘ + VL) ' S s

so that the Langevin equations can be vrewritten as

..%.%.':_4— D*'ti \:?é = - 9N ‘I’L. (1I.8)

Y
whers
Z .
oy = S;;( -+ a® ), for a scalar field (II.7a)
2 .
and D =~ Sy + 9,,,9,, for = gauge Ffield (II.7b)
v [ ’

&% noted elsewhere, due to the time derivative on the

left hand side of (II1.46), the propagator

gi; = [g’c ¥ D]-:g

exists even for # gauge theory. Indeed we have

hCi-l.a. (kXY= éia'_g (t) EIP{‘tUJI*Wﬂ} o 11,9 ..

AI11.82

for a scalar propagator and -
G, 0.0 (5o baboJorp (1) » b

for the propagator of a gauge field {the tiildes denote Fourier

(II.10)

transformationi.

In (IT.i0), the presence of a longitudinal part is ‘to
he noted. It has been remarked that suéh term does not contyibute
toe thie Green functions of gauge invariant objects. However, as we'
shull see later, such term hecomnes part icularly dangereous if a
non invariant regualarization ﬁchemé_is employed.

Equation (I11.42 can be solved iteratively, giving
) = 'gV - X '_g.l"- )].f
e QL'&' * 5@;‘.@ Gy P
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where the asterisk is to remember that the products must be taken 4 look at the amplitudes constructed with the sbove

. ) . . o ;
in the convolution sense. Using (II.41) and (II.2) the N paint rules shows that they in general diverge. It is true that graphs

Green functions of the ? field can be computed. In a given order
{8)

of perturbation the following Feynman rules obtain

Wwith more internal crogsed lines have =a better uwltraviolet

belaviouwr but it is alwaus possible to find graphs at least as

i. Draw all topologically dFSt!HCt diagrams., divergent as those in the usual Fformulation of Field theory.

2. Use a cross, +, to represent the contraction of two'qs Following Fefs.(5,4) we introduce a non white noise

Thus a line connecting a pair of vertices ctan be either a crossed

or an uncrossed line. The crossed lines are digtributed in  the (fo,t)'th A :ZS}M B iéﬁt—t ’

graph so that (IT.1i4)
2.1 Every loop has at teast one crossed 1ine. where
2.2 Two external vertices can not be connected by a con- éjm fett) = gtt)

tinuous path of lines without crosses. e CIL.45)

2.3 Any trossed line can be connected wi .
ed with an external To be concrete, we choose a particular form for £

€

line by a path without crosses.

The number of crossed lines in a graph is €4
Fe lt) = €1ty
# of + = # of loops + # of external lines - 4 CIT.18)

(11.42) The meaning ef the above procedure is the introduction

Ohserve also that the vertices at th [ -
es = e ends of an uncro of a non Marcovian element in the process descrihed by (11.2).

ssed line are naturally ordered accordi i
rg ing the values of their The Green functions regulated by the use of (I1.44 - 14)

fifth times. On the other h i i i i i
and, if all lines linking a pair of are mereomorphic functions of € with poles on the real axis. As
vertices are crossed lines th th i
4 en e amplitude for the graph in the case of analytic regularization, we could adopt different £
decompases inte a sum corresponding to the two possible (fifth) for each M FOhtFﬁCtiD&S) Although arbitrary thi )
@ : F: . [ s 'Y, this as  some
time orderings of the vertices.
advantages over the use of a unigque € . In the sequence, we will
3. To the lines are associated the sropagat
ropagatars ver ity that not even the most divergent gauge - dependent

Uncrossed ling ~o——— Y Glu,t)
:)( ‘t{3 t . counterterm cancels if only cne e is used.
" Crossed line —w-——) LHT-X = 1dC d - -t—'(’,) (1‘- - ) :
. [ J 3 ( hF j,t_z Using (Il.i4-14), the crossed propagatar must  bhe
< (II.4%

replaced by



DGU«.»«:»:’:t,t') = J d% | dz'’ .dl'g Gimmypt=T ) Bl -yt -2 .‘PE -2y
o o _ (II.17)
which for a scalar field gives N
oo (s g £ w |
Jo (o2 ot Y us? {II.i8}

Iﬁ the special case delfined by (II.46), we obtain
~ -€
fw = eMe sy 2 sim(F0-6)

Let us now concentrate ourselves on the discusgion of

(I1.49)

gauge invariance in scalar electrodynamics, which is described by
the Lagrangian density
) v # :
£ = _ZL_ F}LUFH +.¢ :[)3P¢ :\)tb:gtl_—\-l.el'\r—
(IT.20)

The Langevin equations governing the evolution of the

rields A for 4.) and (P,* ar'eig)(ioj

Au g_A. R TR L L A
4) = —§2; -+ Wl ']fﬂ) +-TT

= -85 L y* . -TFe* *
43 &¢ K ' ‘P M (1I.24)

with the random-Fie]ds'qF,Jfﬁand'q_satisfging
MM @8 Yy @) D = 28 fe (1) 8-
<'}7 ix,t) , 'O'*'(x',t!) > = 2 l?e (-8 (x-x)
<7((xrf_} . .72(*-‘,9)-2 = O (II.23)

We  wre particulariy interested in analysing the
contributiong. . to the_photon polarization tensor TCFU v In lowest
order of perturbation we found- the graphs shown in fig I. Note

that there is.ome graph contributing to fig I.a, four graphs

contributing to fig I.b - thég correspond to different . giraphs

with the same Ftopoloswy and having two crossed lines, one
external and the other internal - and two graphs for the ?ig;

T.co We besin our analysis by making a preliminary calculation.in
two dimensions. Also for simpliditg, in comprting correlatidhg'
functions, we suppose that the fifth times of the fields are z11
equal and very high. We then integrate aver the {ifth time of thé
internal vertices and keep only the dominant terms (f.e., fhnlg
those surviving in the infinite ?ith time Yimity. Thus; for  the

graph I.a we get

! £1en® (K z)”El[k*'P)z‘f‘“le%[(E*Pﬁ"‘g* 1}*'2'“@ t11.23)

This gxpression is very difficult to be evaluated.
Althangh in two dimensions we could still aobtain =a closg& form .
for it, we find ﬁure instructive to employ a differaent procéduke
which has the advantage of being generalizable to -'fdﬁr
dimensions. The basic observation is that Itpv is analytic in - m
for m big enough . Then T ucan be expanded in pouwers of-ﬁi {or,
equivalentiy, in powers of the external momenta) and the
transversality property of TUMU will be c¢orrect only it it is
satisfyed in each order of the Exnpansion.
In the forthcoming caleulation we will analyse the terms of the

above mentioned expansion, up to the first one to be finite when

the regularization is removed. For the graph of fig I.a we have

F;ca IQ., - SF_\) (I1.24)>
gﬁ'¢?wv% .
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GaN For the graph of fig (I.b) the calculation is also

straightforward but a little bit more extense. We get

CTh = b | Lk (2k+ pla (2k+p),
FyTb = j N

PR ) @R (Fewd ) [t pFr B s 2mf]
A —-_;éhﬁ.___ + - Etf” — .
457’(‘;‘)1 ( ) 244 gt 24w ()i ¢I1.25)

Finally, the graph of fig {(I.c) gives

F' L o= ,:éﬂ___ d} .__——iL—————
3 Le )2 (2.‘(,_)2 (kz+ 3§ ).‘-+ €

= —5,.w Saw (R E (1T.26)
Adding these contributiona we note that the divergent

pieces exactly cancel, leaving the result

i (5u+ ZPHP\)\ g:—-—u
24 okt : p? j 2w () CIT.27)

which is, evidently, non transversal. We could, of ctourse, add

non gaude  invar iant counterterms top remove the nriwanted

cantributions. One possibie choide is to add the counterterm
A AN L AFTAL
4 dewam

which will change (II.27) to

M(é v Mv_)
24 gt : P*

After this warm up exercise, we turn our attention to

(11.28)

(Ir.2%)

the four dimensional case. The contributing diagrams are the samng
but we will have to proceed further in the moementum expRANSion,
becguse the wultraviolet divergences are more SEVENE. To have
complete generality, we allogw diferent E% for each crosged line

propagator. Our results are {(for simplicity, we have et m = 1),

- 10 =

Fig Tua = b ‘CL['.k_. (2"*1’)»- (2k+p),

- PZ (Z?t)h [fp2+(p+k)2+k2+ ZJ [EH_]”G’ Y_(kf?)z-t A-]'“G?
O (PR R S X

(fm)" L12€n 4 2404 )?- Z

Fig T.b dh 1 PR | | (Zken)y (2keRy
. LT}) L?Jt) [(P*“)z-o-i]“e [kz-t-.i e 'U:Z+(k+9)2w?+z]

, €= €t €,

(IT.30)

= —28,»»\4 _ Slw’ 5;5___%*_ Pv __’:1____4:}
L) (gF €  6mygLe €1 3(FPumfle 3

i Toe = _;zé»_v_‘( Al 4
(P J @l (kira)ite

(I1.349

- 28 (_4__1)

oy ()t (I1.32)

Z z
For equal EE note that the term gpv/ﬁ4ﬁ) L] € {a  mass
counterterm? cancels betwsen (IT1.34) and (IT1.32). The remaining

divergent terms are

{ Suv (1 5\ Pepy }

Um_)z pz 2 G‘l'l. &€ f 3 (41:)2(15*)26

CIT.33)

I+ all & are made equal this expression is  not
transversal . However wfth unequal € we have more room to achieve
transversality. In particular For e.!?.:G we obtain
_-—i_.__.{é — fupe )
5(4&)2 ‘PZ c pv ,P?_ (IT.34)
. However, not all  problems are solved sinece the Finite

tarmns
——e Agip:_L}
9(41)2 { i +. (IT.35)

are wiill not transversal.
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In the usuxl (i.e., non stechastic) formulation of gauge
theories we have Lo add a gauge Fiving termr to the Lagranﬁian
density. In a Lorentz gauge, this term is given hg(gpAﬁgéM, and
cinogeneral  the Green Ffunctions are & dependent. Observables
“lincluding the % matrix), on the other hand, must be K
independent . If & pop gauge invariant renarmalization scheme is
ghploged then K independence can be achieved anly at the sxpernse
of  adding GRUGE depﬁﬁdent counterterms  to the criginal
L.agrangian.

The putative o dependence of the Green functiocns COmes
friam graphs pictorically represented on fig 11, The contributions
of thiﬁ_tg{e of diagramﬁ vanish on shell only if the gauge Field
ie coupled tn.a-cmﬁserved curren;f

In the framework of stoqhaﬁtic duant ization, the above
‘problen can be particularlg dangerous since the longitudinal part
of the Aﬁ field propagateor had & piece propaortional te the Fifth
.t?mw,.Theh@Fare, in all cases, ig ig‘mandatmry that the gauge

field be courled to a conserved current .

% For a rigarous discussien of Bauge invariance in QED, sg ref.

JRACH

ITT. Renocrmalization

In this section we ghall discuss some peculiarities of

Che renaronl izatdien in the formalism of stochasbic aquankization.

In particalar, we will show that thie counterterms necessary  to

render the $#iwld theory Finite can also be interpreted as
counterterms i the stuchast{t theory, i.e., at Ffinite Fifkh
time. In spite of that, there may be differences { finite
repormal izat jons?) since the degres of divergence depends not only
on *;ht-:-: topology but alse .on the numbér of internal crossed lines.
For simplicity but without loss of generality we thoose the ¢ﬁ
medel and scalar electrodynamics to base our considerations.
First of =all, we notice that for +Finite, non zero
times bherg will he & strong convergence factor, provided by the
erpronent ial in the stochaséic prapaéaturs. As  an especific
ewample, consider the case of the photon self energy in  scalar

electrodynamics

dl’k explt L bk ol .ka’f-.z’ﬂ}- exp {’({'Z}PZ}
@y Kiemd _ P (IIL.9)

which is finite, insofar T is non wvanishing. If we now integrate
over the ficticiots time then .a divergence shows ug. Indeed, we

e t

T -tz
Je dx = 5—e'_

* {IITI.2}

and the first term giﬁEs aorigin to a (leogarithimically) divergent
integral. To exhibit ghis divegrgence in a more natural way, it is
convenient also to Féurier transform with respect to the fifth
time. Our notational convention is that the Fourier transform,

~J
Fiuwl, of Fitr is given by

- 13 -




[e 44

Fur— | dt &

o [CA ] (IX1.3)
and we observe that w has dimension two in mass units.
With the above definition, the Fourier transform of the

propagators are

i
Uncrosseds g (P-“’) = PE Xt AW (I1I1.4)
= i i =
Crosseds D (pw) = T id TG PElE (FI11.5)

As an illustration, in the following we will be specific
to the four dimensional ¢q theory. Using (III.4-5) and not ing
alsag that each loop contibutes with & to the powsr counting, we

get that the degree of superficial divergence of a graph is

S(¥) = 6m -2 - 2X

CITE.4)
where
m = # of loops
n = # of internal lines
X = # of crossed lines (hﬁermﬁ)7
Using now the relations
Xowm + Ny~ 4
(ITY.éa)
m=n -V + i
(IIT.4b)
and 49 w ogn. + N
(IIT.he)
with Ne Ny - and ¥ denoting the numbers of . external 1lines,
.gncroﬁsed external. lines ang vertices, we obtain
S(K) - 6"_ T Ne T WNe,
(III.7)

- 14 -

where Ne is the number of crosued lines. We see that graphs with
N » 2 are superficially canvergent. Let examine now each case of
ure.
pastible divergence

Lo Ny ™ & Ne. = 0. These are graphs cohtributing to
the two point function and having noe external CFOﬁﬁﬁd.linﬁﬁ (see
fig. ITI1). Tt is easily wverified that such divergences gan he
absorved in a multiplicative venormalization of the random. field
« At infinite Fifith time the propagator associated to the
crossed line will tend to the free propagator of the 1limiting
field theory, Therefore this normaliztion is not an independent
one but part of the wave function renomalization of field theoru.

2. Ngpe= 1, N = 3. This ias the ususal logarithmjc
divergence of graphs with four external lines {(see example in
fig. IV). It corresponds to the fusua]) four point vertex
renormal ization.

Be Nyme, = 4, Ng = 1. This is.thé usual quadratic
divergence of gelf energy graphs {see Ffig. .U). It rcan be
eliminated through a mass and wave function renpﬂmalizatiﬁnE.

In the stationary limit of field theory, all the
QMEEfnal fifth times are made. equal. This corréspduds to Join
all external lines of each centributing graph in a new vertes,
Vgr #nd  then integrate over the w variables of the additional
loops. One can verify that no new divargences arises in this
process. Actually, a simple calcqlatLon, similar te the one above

gives

8(%) = 4- N - 3-Num_c.‘3-” (111.8)

- 15 -
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where W denotes the number of internal lines of meeting at
Since W Y % then, necessarily, 5(?) ¢ 0. These conclusions agree
with those in ref. (ii), where 2 similar power counting was dong

directly in the space of the stochastic time coordinate.

From the above discussion, we conclude that the

renormalization problem is essentially the same as in the wusaal

formulation of field theory. The divergent parts can be removed

by reparametrizing the oriaginal wodel. This c¢an also be

implemented by adopting a convenient subtraction scheme. Without

committing ourselves to any particular scheme we want to add some

remarks on  the properties of the resulting theory. The first

issue concerns the derivation of field equations. If, far

z 2
example, we consider the Bilinear NGO ¢ -3+  d - where the

symbal N indicates a normal  product prescription - ther a basic

step in the derivation is amputabtion of

-t

the line associated to

the operataor ¢ )¢ This is a trivial task since in

2 ] ) ) .
momentum space - 9t ) is Just the inverse of the propagal or

and one can alwaus arrange things so that this also happens in

the regulated theory. So, it is possible to define bilinear

nermal products formally .ocbeying the classical Euelepr Lagrange

gquations. However, this result does not imply the absence of

anomalies in Ward identities, since the Green functions of the

current operator have an independent definition and, in

principle, its divergence is unrelated to the abpve ment ioned

——
normal praducts. Indeed, Green functions of the object qﬁ 3P¢ N

regulated with the use of eq.(Il. 46) do not satisfu current

censervation  hecause the regularized propagator is nmnot the

‘

v
inverse of (=9+M 3. This observation is . in complete accordance
with our results of section II.
Another remark concerns the behaviour of the Green

functions under renormalization group transformations, st  +Finite

fifth time. Since, as we have seen before, the elimination of all

divergences can be accomplished by the usual wave, mass and

chearge renormal izationg { the TZ field renormalization is, as we
saw before, part of the wave function renormalization), then oane

should expect  that the Green funcbtions 6 (r& ,...,x") of the

stochast ic field ¢ would obey the renormalization group equation

[CA)

7 CCITIL
with the same @ and ¥ as in the limit field theory. Equation

(ITT.9) can be

proved  as follows. We introduce differential

vertex operantlions (DV0), corresponding to the different field

in 4ﬁ we

regularize

monam ials of the Lagrangian of the model. Thus,

consider (to be more careful, we could dimensionally

our amplitudes)

A, = _.;_Jdl‘x 4}2. 4y =L§°& 454

N, = __.é_ oz aHb3F¢

which are defined by the same Feynman rules specifying the Green

(ITILE80D
functions. Thus, éh neans the inseftiun of 2 mass vertex in the
grabhs contributing to the Green functions. It is also convenient
to intr aoduce a DVO, 114 s which counts the number of crossed
lines in a graph. It is given by

8y= qu“ ”{l'

(ETI.&%)

- 17—




As will be clear shortly, is not indepencdent of those

in (ITI.9). Using these DV0O s the action becomes formally

5[] = (1+0)4, + (-0)0y + (cg) B, +d Oy

(ITI.i2}

where &, by, ¢  and d are counterterms. We adopt intermediate
2 2

rengrnalization - so that the propagator has & pole at po =*m but

its - residue: and the other renormalization conditions are
1

dependent on the value of =@ new mass parameter rb r & different

renormalization spot.

j%__ and 213 have simple expressions in

% o

terms of the DUO's (II1.40):

9 " _[.2e % 4, 2cala, , A"
-gq '_'["'?a?ﬂ’ + ~§§03+%@-63+3—3_&]9

The derivabives

(I11.13a)
: * . m

3 GY_[-2a 4 WA, L A LAl

-;F;'G “[_gr_z: 1+ o7 - R gﬂ-rzﬂ‘f)q (I1I.13b)

There is also a counting identity which ig nothing

but- the integrated equation of moktion
_.Nzgm- = [(A+bjA2 +rd-2) By +(c-9)d; +d A;,]Gm CITI.14)

Besides. the above identities, typical of the usual

formulat ion of field theory, we have another equatfan which is a

consequence of llq being an operation counting the number of
crossed lines. Explicitly, from (III. éa~c),

x:-fz-"i-—-——g—-q-Nunc. (ITI.4%)

Using now (II1.i3-4%), we can easily establish the

:renqrma]égation group . equation (ITI.?). We replace (IFI.£3-1i5)

into (III.9) and eqaute to zero the coefficient of each bvg ZX; ,

i=1,2,%. Two of these equat ions  (namely those associated to  the

coefficiants of Ai and A, ) can used to fix (5 and ~‘\ . The

_18_

remaining oag is then shown to be identicallg_gatiéfgéﬁgng-yirtqe

of our on shell mass renormal ization.

19. -
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BeN . IV. Conclusions

In this paper we have discussed the dse of analytic

RefTerences
stochastic regularisxation in field theoru. For gauge theories we

shown that a difficulty arises since the gauge field ig not 1. V. H. DBribov, Nucl. Phys., BL3% (1978) 1.

coupled to a consereved current. A% &  consequence, iF Jjust  one 2. K. Wilson, Procesdings of Cargese Samngr thapl, i?;?, Flanum

anslytic regulator is used then transversality of the PSS . _ _ _ . o
polarization tensor is lbroken by an  infinite term. This 2. E. Abdalla and M. C. B. abdalla, Phgg,.Lettr;Biéo (1%53)510;} )
conclusion is ik accordance with a recent work showing the Nucl. Phus. BR&S €1934) 423,
incompatibility of antalytic sotchastic regularization with 4. G.Parisi mnd Wu Yongshi, Scientia Sinica, 24 (198i) 463,
Zuwanziger gauge Fixigg{ in thenries with just global invariances, 5. . D. ﬁreit, 5. Gupta and A. Zaks, Nirel. pﬁugi,.ng33 (1?343
the proc%dure iz well defined presumably leading to szensible ) 6i.
11

resalts. 4. Ja Bifaro, Nucl. Phys., B253 (1S63) 4&4.

Te defing composite operators care must he taken since 7 7. Bern and M. BQ‘Haipern, Phys. Rev. D33 (i984) 4484,
there are at least two “natural” but  inequivalent ways of D. Zwanzioer, Nucl. PhYs., Bi?& (1?810,4857 .
introducing normal products. The first possibility, which we have g. W Grimus nnd H. Huffel, Z. PgHS- E.-ia.(£?83) 12§_
adopted in the derivation of the renormalization groaup, is H. Huffel and P. V. Landshaff, Nucl. Phus. B2&0 (1?853 545f
supposed t; be treated in the same way as an ordinary Lagrangia% 9. 7vi Bern, Hucl.Phus., b25i (1985) &33. . .
vertex. Another possibility, inequivalent to this

oney o te 10. E. Bazzi, Phus. Rev. D3i (1985} £34%.

obtaingd by taking the duct of Ffields at different ints AE

4 Pro JYTErent poin and ii. J. Alfaro, R. Jengo and H. Farga, Phys, Rev. Lett., G4 (19832
then letting the points coincide. The difference between these ' ' '

356%.
two objects can be traced back to the flow of the Fifth time. In .
42 J. H. bLowenstein, Commin. Math. Phus., 24 (i%71) L.

the first case the fifth time flows into the special vertes

13 Jw H. Lowenstein and B. Schroer, Fhys. Rev. D& (1%72) 1003,
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Figure Captions

One loop graphs coantributing to the photon self energy in

gcalar electrodunamics.

The non vanishing aof this graph makes the Sreen functions
gauge dependent. The special vertex V corresponds to the

insertion aof the gperator

Laogar ithirically divergent contribution to the renorusli-

zation af the random field

This graph contains part of the usual mass and wave

funct ion renormalization.

Fig. V Lowest order graph contribution to the charge renormali-

_.-zatian in the framework of stochast ip quantization.
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