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SUMMARY

It is shown that the wavefunction, in an internal
colour space of three quarks taken as gentileons, has a bi-
spinorial character. Thus we verify that, in this coniext, our
formalism differs drastically from parastatistics and fermionice
theories of guarks. As a direct consequence of the spinorial

character we see that the SU(3) representation can

colour

naturally be incorporated into the 5(3}

gentilionic symmetry
and a selection rule for guark confinement is deduced. Comparing
our results with Dirac's bi-spingrial formulation and with

Prentki-d‘Espagnat theory, striking resemblances are found.




1. INTRODUCTION

(1)

In. a preceding paper we have shown, assuming the
Quarks q; gentileons, that the baryon wavefunctions are given
by. ¥ = @.Y(colour) . The one-dimensional wavefunction

¢;=-(5u(6)»oﬂjj co;responds, according to the symmetric

symmetric
qua;kﬁquél-of barybns, to a totally symmetric state, and the
-fﬁurgdimensional state VY(colour) , corresponds to the interme-

(3)

diéte représentation of the symmetric group S In order to

preserve the 5(3)

symmetry, this wavefunetion Y{colour),
ought'to depend on three new quantum states. They have

been named red, blue and yellow only to be in agreément with
the original idea of primary colburs; they have not been assumed
to be the well known SU(3)c eigeﬁstates, where the subscript
£ means colour; We think that, to state general results and
to avoid possible misunderstandings, it would be better if we
have indicated, generically, these primary cclours by o, B
and Yy, as we do in whét follows. Indeed, in section 3, we
will see that the SU(Z)c eigenstates are a particular and natural
representation for «, B amd y. .In terms of «, B and vy,

¥{cglour)  is given by(z):

Yy (123)
: 1 | Y2123 v, )
Y{ecolour) = Y(ufy) = ¥(123) = — = : (1.1)
- o VB[ Y5123y Ly

LY, (123))

where,

Y, (123) = (|eBy> + [Bay> - |yaB> - |yBa>)AVE
¥,(123) = (|aBy>+ 2]ayB> - {Bay>+ [yaB> - 2|Bya> - |yBa>) V12 ,

¥5(123) = (-|a8y>+ 2|ayB> - [Bay> - [yaB> + 2[Bya> - |yBa>) 12

and  ¥,(123) = (|aBy>- [Bay> - |yaB> + [yBa>) ¥4 .  The calour
v
state Y is decomposed into two parts, Y = [vj, where Y, =(Y1J
Y3 ' 2
Yy
implied by the reducibility of our representation in the
{1,2)

and Y_ = [ ] , corresponding to the duplication of states

intermediate gentilianic states In section 2, we shall

show that Y, and Y_ have a spinorial character, resulting a

"hbi-spinorial" character in Dirac's sense for Y{colour) ,

according to section 4, The probability density function(z)

for Y{colour) 1is given by the permutation invariant function

vy o= 22 v, ? e v,17 e 1v517 s Y, 1704 . The bi-spinorial

character of Y(123) 1is responsible for selection rules(1’2)

predicting: (1) Baryon number conservation, (2) gentileon con-
finement and (3} saturation. It is worthwhile to note that,-
in this context, our thegry differs drastically from parasta-.

tistics(3'7)

and fermionic thecries of quarks. In the fermionic
gase, Y would be given by, Y = {|oBy>- |oyB> - |Boy> + |yaB>+ |Bya> - |vBa>) A6
and in parastatistics_éase Y would be writteh as, )Y = aY1 +
+.bY2 + cY3 + dY4 y where a, b, ¢ and 4 are arbitra;y constanfgg
For these last theories the wavefunction ¥ 1is dne-dimensional,

from which the selection rules (1), (2) and (3), above mentioned,



cannot be deduced.

Our intention, in this paper, is to show gxplicitely
the spinorial character of Y(colour} and to establish funda-
mental properties of the gentiliceic system that can be deduced
frem this spinorial feature. Thus, in section 2, to show that
¥, and Y_ are spinors we study the rotations of an equilateral
triangle in an internal tri-.dimensipnal Euclidean space EB’
that ié called "colour space". In this colour space, three
privileged colours «, B and y gccupy the vertices of the

triangle. These are the primary colours o, B and vy .
. In séction 3, we obtain a very simple geometrical

interpretation, in the celour space Ej , for the invariant

[2,1] (1)
Kezo 1 :

analysis we conclude that the total colour guantity corresponding

associated with the gentilionic states From this
to the three states o, B and ¥ ‘is given by a vectorial sum

in the triangle plane and that it is a constant of motion, which
is null. We alsp verify that the calour states «, B and ¥

can he naturally identified with the SU{B}C eigenstates blue,

red and yellow. Thus, considerimg these grimary colours of

[2,1]
(2,1

represented by the operator M = G,+8,+08; , where §; =

SU(3)c we see that, in the plane of the triangle, K is

= (13 +V/2)i . IB- is the colour - isespin, ¥ the colour hyper-
charge and the indices i=1, 2 and 3 refer to the three
quarks of the baryon. Considering the SU(3)C representation,

we show that, only celour singlet steates, for baryons and mesons,

can appear ‘in the gentilionic approach. This last result is
extremely impeortant since it corresponds to a selection rule
for gquark canfinement.

In-section 4 we explore some connections of the
gentilionic approach with some well established theories. A
cemparison of the gentilionic colcurspinor with Dirac's bi-spinor
formylation is given and an analogy lead us to substantiate
our definition of particles and anti-particles. A&lso a revisiaon
of the main ideas of Prentki-d'Espagnat theory is presented and

a sound interpretation of the classification scheme of particles

[2,1]

is given in terms of the colour invariant l»\:(2 13 -
3

2. THE SPINORIAL CHARACTER OF Y{COLOUR)

In this section we presemnt a detailed study of the
symmetry properties of the state vector Y(colour) = ¥(123) .
We have emphasized the non-trivial case N=3 alming to apply
the theory to the description of SU(3) 'models of strong
interactions. Of course, it is possible to extend our results,
concerning the structure of v , for N>3, at the expenses of
unnecessary labour and ﬁon essential complications for our
purposes, Since wé intend to formulate our results in the
guantum mechanical framéwérk, let us recall that the symmetric

(3)’

group S consisting of six permutation operators, necessarily




imposes a unitary space with dimensien 6 for its representation.
Besides the two one-dimensional spaces, bosonic and fermionic,
we have a four-rowed representation for the intermediate state

expressed in the form,

HEVIN R

J
where “j (j=1,2,...,6} are 2x2 matrices given by:
1 0 -1/2 V3/2
ﬂ1 = = I H n2 = .
1 0 ~-V3/2 -1/2

-1/2 -v3/2 1 0
Ny = n, = ; (2.2)
VET IV, 0 -1
-1/2 V3/2 - 1/2 -¥3/2°
Mg = and n, =
V3/2 /2 -/3/2 1/2

From the point -of view of group representation
theory, Eq. (2.1} immediately suggests the reducibility af the
intermediate representation. Although these matters are
discussed in detail in section 4, it should be observed now
that, due to the separation of Y into two objeets with twe
components, Y, and Y_, an interpretation of these objects

is claimed.

“i.et us show that it is possible to interpret ths
transformations of Y_ &and Y_  in terms of rotations of an
equilateral triangle in a particular Euclidean space E3. That
is, we assume 53 as & space where the colour states are de-
fined by three orthogonal coordinates (X,Y,Z). Due to this
assumption, this space will be named "colour space". It is
also assumed that, in this colour space, the colours a, B and
Y occupy the vertices of an equilateral triangle taken in the

(X,2) plane, as seen in Fig. 1. The unit vectors along the X,

Y and Z axes are indicated, as usually, by 1, j and K. In

Fig. 1, the unit vectors m , m .and i are given by, ﬁ =-K,
4’ s & Ya My .
55 = -(/3/2)T+ (1/2) %k and _rﬁs = (/3/2) T+ {1/2) k , respectively.

(INSERT FIGURE 1)

We represent by Y(123) the state whose particles
T, 2 and 3 occupy the vertices a, B and y, respectively.
Thus, we see that the tfue permutations, (312) and (231), are
obtained from (123) under rotatians by angles & = * 27/3
around the unit vector j . As one can easily verify, the
matrices .

Ny and Ny, that correspond to these permutaticns

are represented by;:

n, = -1/2 + i(/3/2) o, = explid.&(a/2)] and
(2.3)

expli].5(s/2)1

It

.ns = ~-1/2 - i(ﬁ/z)cy



where the Tys Gy and o, are Pauli matrices.

Similarly, the tramspositions (213), (132) and {321}

are obtained under rotations by angles ¢ =% around the axis

Ea, Es and Eé y respectively. The corresponding matrices are

given by:
. . = -
n, = 9, = i expli m,, . c(o/2)] ,
ng = (/3/2)0, - (1/2)0, = iexplif, .5(¢/2)] and (2.4)
N . =+ -+
ng = (%3/2)0x —(1/2)0Z = 1expli m, . c(2/2)]
According to our preceding paper(1), there is an
algebraic invariant, KE%'}} , with a zero eigenvalue, associated
¥

with the 5(3) gentilionic states. In analogy with continuous

(.

group, this invariant will be named "colour Casimir® For

permutations, that are represented by matrices with det=+1,
the invariant is given by Krct =My N, +Ng . For transpo-

sitions, which matrices have det=-1, it is defined by Kinv =

) 3 . -+ -+ >
= Nyt gt g - Taking imte account My Mg and m, and Egs.

(z.4) we see that, K, = N, tNg+My = (

- -+ -+
+ Mo + MM . g = .
inv ) o

4 5 6

This means that the invariant Kinv can be represented

=4

geometrically, in the plane (X,Z) of the colour space, by °

M- ﬁa-fﬁsv+$6 = 0, &nd that the equilateral triangle symmeiry

of the 5(3} representation is an intrinsic property of Kiy =0 -

Egs. (2.3) and (2.4) suggest a spinorial interpretation

-on group isomorphism

16,

for v, and Y_ . BHere, starting from a general standpoint,
we show the correctness of this contention. It is well known

that the non-relativistic spinor can be introduced in several

(a:

'ways . The interrelation of the various apprecaches is not

aobvious and can lead to misconceptions. In order te overcome
the necessity of enumerating several approaches, let us stick

on a gecmetrical image, recalling the very fundamental result

(9, (3) .
: S ~ PSLZ(FZ) , where PSLZ(FZ) is

the projective group associated with the special group SL2

defined over a field F, with only two elements. Obviously,

2

PSLZ(FZ) ~ SLZ(FZ)/SLZ(FZ)rvzz, where the group in the denomi-

nater is the centre of SL., and corresponds to the central

2

homotheties, since 22 is the intersection of the collineation

group with SL2.
If we consider the matrices (2.2) as representing
transformations in a two-dimensional complex space characterized

by homogeneous coordinates Y1 ang Y2,

Y a b ' -

Y2 [ g Y2 )
where p 1is an arbitrary complex constant and the latin letters
substitute the coefficients taken from (2.2), it is clear that

(2.2) constitute a homographic (or projective) group.

Making use of defipition (2.5) we can see from




1.

(2.2) that, apart from the identity N, . the two matrices n,
and N , which have det=+1, are elliptic homographies with
fixed points i . If we translate these values for the varig.

bles of E we see that and

30 M2 N3

rotations around the J axis by an angle & = x2n/3, agreeing

correspond to finite

thus with Egs. (2.3). The remaining matrices Nys N and Ng
are elliptic involutions, with det=-13 .- They correspond to
space inversions in EB' considered as rotations of +n around

the three axis m,, M. and Eé , respectively. These matrices

42 75

completely define the axis of inversion and the angle *7m, as
is seen from Egs. (2.4). It is an elementary task to establish
the cerrespondence, via stereographic projection, between the
transformations in the two spaces, Y,(Y_) and E3.

A topological image can help us to see the 4w
invariance of Y. @and ¥_ . If we consider the rotation angle
${e) as the variable describing an Euclidean disc, the covering
space associated to this disc is a Moebius strip(10). Adjusting
correctly the position of the triangles we can have a vivid
picture of the rotatian Properties for each axis. This construc-
tion allow us to visualize the double covering of the transfor.
mation in E3 and is a convincing demonstration of the spiagrial
link between 53 and Y, . _

From this analysis we conclude that Y, and Y_

are spinors. As will be seen in section 4, the four-dimensional

Y
state function Y = [Y+] is a "bi-spinor" in Dirac's sense.

12,

Since E3 is a "colourspace", Y, and Y_, in analogy with the
isospinor in the isdspace, will be named “"colourspinors" {see
more details in section 4).

As will be seen in next section, the vectorial
representation, M = Ea-+ﬁs-+ﬁs = 0, of the invariant &,
will be extremely useful in connection with the SU(3)C madel .

fiv

We observe that the same transformation properties
of ¥, and Y_ can be obtained if, instead of the equilateral

triangle shown in Fig. 1, we consider the triangle drawn in

Fig. 2.

(INSERT FIGURE 2)

In the vertices of the equilateral triangle of the

Fig. 2 we have the colours o, & and ¥ . The unit vectors

* o + -y -7—*__-» -h-*_——)- —r*_-—l—
My M3 and mZ are given by, my = My mg = Mg and ag = me .
This means that, in this case, Kinv is represented geometrically

by M*=m*+W%+m* = 0. This two fold possibilities for de-

4 5 3
picting the triangle will be physically interpreted, in the next

sections, in terms of the existence of colours and anti-colours.

3. THE S{;) SYMMETRY, THE SU(3)c AND QUARK CONFIMNEMENT

Useful physical interpretations. relevant to properties

of hadrons may be obtained fram pursuing further the intimate




13,

relationship between certain geometric properties and the
conservation laws of particles. In section‘z, we have shown
that it was possible to interpret the Y(colour) transformations

in terms of rotations, in a colour space E of only two

3 r
equilateral triangles with vertices occuplied by three privileged

colours ofw), B(B) and y(¥Y). The Y must constitute symmetry

(3)

adapted kets for S In other words, their dispositien in

the plane of the triargle must agree with the imposition made

by the colour Casimir. According to Fig. 1, these colours are

-

defined by, & = Mg = (-v/3/2,1/2) , & =, = (/3/2,1/2) anc

&

Y = Ea = (0,-1), and according to Fig. 2, a = ﬁ; = -35 ,
B=m=-m_ and ¥ =% = -, . The equilateral triangle

& [ 4 4
symmetry of 5(3) piays a fundamental role in E3, allowing us
to obtain a very simple and beautiful geometrical interpretation
for the invariant Kiny =0+ Indeed, since the 5(3) symmetry,
according to section 2, implies that W = ﬁ¢-+ﬁ5 +E6 = 0
(M* = EZ +E; +EZ = 0), we conclude that the total colour quantity

is a constant af motion, which

of the baryon, pictured in E3,

is null.
At this point it is instructive to compare ocur
results with Gell-Mann's model for strong interactions. In his

h(11)

approac , the colour states (red, blue and vellow} are

eigenstates of the celaour hyperchange {¥) and of the colour

isospin (I3), both diagonal genmerators of the algebra of Sui3),

These eigenstates are given by: |b>= |-1/2, /3> , |r>= |J1/2,1/3%

.14,

and {y> - |0,-2/3> . Observing the vectorial character of the
charge opesrator in the plane (isospin, hypercharge), the guark

charge ocperator in the SU(3) ? SU(3JC representation is

flavour

written as:
9 = gp + 8. = (13+ ¥/2) + (a I,+b Y/2) o {3.1)

where qe = Iy+Y/2 refers to flavour charge, g, = a i3+ b ¥/2

refers to colour charge and a and & are arbitrary constants.
Since it is not possible to determine, in the framework gf that
theory, the values of a and b, "ad hoc" values have been
adopted for them. Gell-Mann used a=b=0 and Hap-Nambuy used
a=b=-1.

(3)

fun-
{11,12)

Taking into account that the SU(3) and S
damental symmetries are defined by eguilateral triangles
it is quite apparent that the colour states §u> ' |B> and
|vy> would also be represented by eigenstates of TB and Y.
Indeed, assuming that the axes X and Z ({see Fig. 1) correspond
to the axes i} and Y, respectively, and adopting the units
along these axes as the side and the heighi of the triangle(12%
we verify that |o>, |8> and |y> would be given by, |a> =
= |b> = [-1/2,1/3>, |8> = |z> = |1/2,1/3> and |y> = |y> =
=|o,-2/3>. If we have considered the states |&>, [B>» and

{Y>, seen in Fig. 2, we should verify that these states would

correspond to the anti.colours |T>, {b> and |y> of the 3




15,

colour representatian.

Thus, if the colour states J|a>, |B> and |[y>
correspond to |b>, |[r> and |y>, réspectively, each unit
vector ﬁj (i=4,5 and 6} 1is represented, in the plane (T3,V)
by the operator @ = f3-+?/2 . This means that the invariant
M=0 can be represented by the operator M = ,+8,+ 8y, where
the indices 1, 2 and 3 refer to the three gentileons of the
baryon. As can be easily verified, M has zero eigenvalue for
the'sta;es ¥{rby) . According to the gentilioniec theory(1'2),
since two particles can occupy the same state, there could
exist baryens described by Y(nnm}, where n,m = r, b and y.
However, for the states Y(nnm) the expected value of WM
differs from zero, that is, <M>#0. This last result contra-

dicts the fact'’

that states with three different colours or
states with two equal colours and aone distinect are both a550-
ciated with an invariant, which is null. Adopting the SU(B)C
scheme, this implies that:only colour singlet states Y(rby)
are consistently described in the gentilionie framework, and
that the states Y(nnm) must be excluded. With the SU(B)C
choice, the baryon wavefunetions, in the gentilionic approach,
will be givem by ¢=9¢. Y(rby), where the function ¢ 1is
defined in sectien 1. In these e¢onditions, in our formalism,
one pessibility is to define the individual quark charge

operataor as:

6.

9 = Qp +Ag = (I;+V/2) + X(Tj +¥/2) ) (3.2)

where X 1is an arbitrary constant. Since with this definition,
the total colour charge of the baryen is given by A <M>, the
generaiized Gell-Mann-Nishijima relation is asutomatically

(1), independently af the X value, because <M> = 0

satisfied
for the states Y(rby). Putting i=-1, we obtain integer
quarks chargeé, according to Han-Nambu, and if X =0 we have
the fractiomal charges adogted by Gell-Mann(11).

Ancther significant matter to be treated here are

{1’13), are

the mesons that, according to the gentilienic theory
composed by a guark-gntiquark pair, In view of the results of
the present section, where we have seen that the 3 and 3
configurations of the SU(3)C can be naturally incorporated
into the 5{3) gentilionic symmetry, we congclude that mesons
are also represented by colour singlet states.

A very important physical conclusicn can be extracted
from the fact that both baryons and mesons, in the gentilionic
theory, are colour singlets: it implies that guarks must be

permanently confined if they obey 52

(1,2,13)

gentilionic symmetry.
In contrast to previous works , where we have used only
arguments invelving dimensionality and symmetry properties of

¥{123) to justify the gentileon confinement, here, a selectign

rule for the confinement is obtained solely baéed on the exclusive

existence of colour singlets.'



L7

(14) that the confinement of

It has been argued
quarks, despite some unusual properties, has a purely dynamical
origin. Although being a reasonable hypcthesis, it ssems some-
what restrietive., Taking into account our previous papers“’2’13)
and the present work, we can infer that some kind of confinement
mechanism must exist for gentileons. We do not know, at the
moment, the exact mechanism. It could be produced by a very
peculiar confining interaction potential between guarks, by én.
impermeable bag as proposed in the bag model, or something else.
But® any acceptable mechanism must be coenceived under the

(3

imposition of agreeing exactly with the 'S symmetry.

4. ANALOGIES AND COMMENTS

Generally speaking, the study of discrete symmetries
is more difficult than the continuous symmetries. Nevertheless, by
analeogy and by extension of some conclusions, some very useful
pﬁysical and mathematical insights can be gained.

One of the mast interesting things about the properties
of the gentilionic spinorisl state Y(colour) is its resemblance

“with Dirac's spinor (or "bi-spinor"). According to Dirac's

theory(15).

y the four-rowed quantity ¢, which is a reducible
combination of an undotted and a dotted elementary spinor, is

given bhy:

. 18.
@1
¥? ¢ (o]
¢ = = , where ¢ = is a contravariant undotted
X3 X ¢?
X3

X3

spinor and yx = [ ] is & covariant dotted spinor. From the

X3
geometrical point of view, ¢ can be interpreted as a spinor
related to the north pole in a stereographic projection, whereas
X can be seen as a spinor telated to the projection from the

(8)

south pole The bi-spinor ¢ transforms under the homogeneous

Lorentz group as,

A 8]
$! = ( 4|® » where A is a 2x2 matrix and (A‘*)_1
0 (A%)" -

stands for its Hermitean conjugate. If & =(.C\")_1 , we have a
duplicaticn of states which corresponds to transformations in
an orthogonal space R3. Only in this case the above matrix
commutes with the space inversion matrix and we get a reducible

L.

representation $* +p° . This duplication of states, as is well

known(?s),

is connected with the double sign of the energy in
elementary theoty, and is connected with the occurrence of both
negatively and positively charged particles with the same mass
and spin in quantum field theary.

In the gentilionic approach, the duplication of

states, Y, and Y_, leads to the appearance of colours




.19,

(Fig. 1) and anticolours (Fig. 2), as was shown in section 2
and 3. Thus, within this framework, our two degenerate irre-
ducible subspaces, Y and Y_, acgquire a very important
meaning: they admit the representation of beth particles and
anti-particles. This interpretation has very far reaching
consequences: it justifies the possibility of using the 3 ‘and
% inequivalent representations of SU(3) to study hadrons and
anti-hadrons in the gentilionic approach.

Another purpose of this work is to suggest an
analogy with the “geometrical" Prentki-d'Espagnat theory of

isospace(15’16).

The main idea for classification ofpaﬁjeles
in this theory is to demand for strong interactiens "invariance
under both rotatiens and inversicns in isospace”. This amounts
to saying that for these interactions there are two invariants:
one associated with rotations, 13 , with det=+1, and one
associated with inversions, Y , with det=-1. Using these
two invariants, they have established a link between the conserved
electric charge @ and isospace, showing that @ may be written
as, Q = I3 +¥/2 . In order to classify the pérticles, they
have constructed isoscalars, isopseudoscalars, ete.. The A, -
for instance, that is a neutral pa;ticle, is represented by a
Dirac spinor-isoscalar: the eigenvalues of haﬁh 13 and Y can
oniy be zero.

tet us consider now our colourspace with Dirac's
Y

.colourspinor Y = [Y

]'._Analugausly te. Prentki-d'Espagnat;

.20.

we have assumed that "in this space, the sirong interactions

are invariant under both rotations and inversions". According
to section 2, this corresponds to the invariance under permu-
tations and transpesitions of the identical gentileons. 1In

this colourspace we have only the "colourscalar" iY|2 =YY = §Y+[?-+|Y_|2 a

Thus, identifying our two invariants, K and K definéd

rot iny?’

in section 2, that are associated with the rotations and
inversions, respectively, with 13 and Y/2 , we see that the
baryon celour charge Q would be given by, G = Krat'*xinv'

Since both K and K

rot have zero eigenvalue, we get the

inw
net colour charge of the baryon equal tc'zero{ with ﬁo further
assumptions. _

We must note that,.in‘our previous pépe:(1){ the
total colour charge opefator ﬁ was_assumeq Lo having a_gigen_
value t/3. It was shown te be zero, This agrees'with-ﬁuf 7
present results. However, we have decomposed .3 in terms of
the colours red, blue ahd yellow: t = tr +tb +ty = 0, for
states with three different colours and t = Ztn-rtm = 0, where
n,m = red, blue and yellow, for states with two egual colours
and one distinct. This decompositiun, that lead us to conclude
that trz tb= ty: 0, is meaningless if the SU(B)c represen=-
tation is adopted. By thé way, there is cne poeint that remains .

to be analysed: the existence, in our gentilionic approach; of

another kind of colour state repressntation, besides the SU(B)C.'
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