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ABSTRACT

We describe a study of the color dielectric
paiameter ¢ 1n 2+1 dimensional QCD, based on the
Schwinger-Dyson equations. With the help of the Ward
identities in the axial gauge, we conclude that e(qz)
displays a (q2)~% singularity in the infrared limit.

This behaviour yields confinement af color charges via

constant chromoelectric fields at large distances.
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I. INTRODUCTION

In the past years there have been many investigations

’2’3. This approach

of-color dielectric models of confinement1
ines én intuitive picture of the QCD vacuum as a dielectric
medium, the progerties of which give rise to confinement. In

a recent publicationa, we have studied an effective dielectric
model of QCD in two space dimensions and investigated the
structure of its confinement domain,

In this work we wish to show that under certain
conditions, the effective dielectric parameter which charac-
terizes this model arises as a consequence of the quantum_
fluctuations of the Yang-Milils fields. To this end we will
make use of the_methodé developed ir an important series of
paperss.by Baker, Ball and Zachariassen, where the behaviour
of the glucn propagator in the axial gauge is investigated in
the infrared 1imit. These authors have made an essential use
of the Schwinger-Dyson equatiohs for the gluon propagator and
presented arguments that its wave function in the a%ial gaugé
is directly related toc the colar dielectric parameter in the
infrared 1limit. Furthermore, it has been shown perturbatively6
that in physical.gauges the gluon wave Tunction describes the
dqminant infrared behaviour of S-matrix elements in Yang-Mills
theory. For these reasons, we will assums that the long-
distance properties of the gluen propagator in the axial gauge
is relevant to the confinement problem, via the hehaviour of the
color dielectric parameter in the infrared region.

The plan of the paper is as follows. In section II




we discuss the general properties of the gluon propagator for
the 2:1 dimensional Yang-Mills theory in the axial gauge. We
derive exact sum rules describing its behavicur and which

yield important boundaiy condition for the gluon propagator at
high energy. To study its infrared behaviour, we describe in
sectign I¥iI the Schwinger-Dyson equations with help of the

Ward identities in the axial gauge. To this end we use in this
work dimensional regularization7 which yields a gauge invariant
calculation and also allows us to understand the behavigur of
the gluoh ﬁropagator in any number N of space-time dimensicons.
We show that the Schwinger-Dyson équations yield a wave- function

whose leading behaviour in the infrared domain behaves like
2-N .

(qz)vﬁfm for small q2 . We also analyse for the. three dimensional
theory the next-to-leading corrections which behave like
(':12)0'3422 . In the last section we show that this behaviour
yields a chromoelectric field which is constant at large distances
for any value N of the space-time dimensions. We also present
an analytical%y soluble model reflecting the properties of the
true Schwinger-Dyson equatlions, which allows a simple under-
standing of the transition between the perturbative expansion

at high energy and the non-perturbative description in the |

infrared limit,

II. THE GLUGN PROPAGATOR

In two space dimensions, the chromgelectric fielg

Ef , -where a stands for color indices and I denotes the

spatial dimensions x and vy, is given by the expression:

+ g £APC a2 4C

o Py (N

Here g represents the effective coupling copstant,defined for'
instance in the infinite momentum limit8,which has dimensions
of (mass)%. In this case fhe'magnetic field B? is expressed
as follows:

+ g £A0C pb e (2)

Let us now consider the axial gauge characterized by the

condition:
A C= u] 3
( )

We'observe that, if n 1is pure space-like, this gauge condition
implies that the magnetic field reduces to the same expression
as in the free-field case. Theretore all the‘effects caonnected
with the behaviour of the QCD vacuum must come in this case
from the properties connected with the chromoelectric fields
which can be effectively characterized by a color dielectric
parameter ¢ ; To study these effects, consider the gluon
propagétor Duv which in view of the gauge condition (3), wilil
have the following general form

n, Gy + Ny, 9y nzquqv

Z | .
—z - X *
q Y n-q (n.q)2

D“u(q,n) =



n n .
Al MoV _
+ 2 {Gw " } (4)

In order to study the behaviour of Z and 2' let us rec3119

that the gluon propagator can be represented in the spectral

form: -

_ _ uv 2
ng(q,n) = J - — do (5.a)
g° +0° - ie

where in view of the form (4) which is of zero degree in n,

the spectral function puv has the structure:

. 2
conogqgo+n g n-g.q
z 2 n.g TR VO VY
o (o7 ,n,q) = p [U ,———] § - + +
[TRY o [m] uv (n.q)2

+ P o, Al s - TRAY (SIb)
2 ' inj uv 2 .

n

We will now derive two exact sum rules satisfied by

the form factors op and p 4

i To this end we use the fact

2"
that Dij is connected to the vacuum expectation value of an

equal-time commutator via the relation:

- ab 2 2 2, ig.% b >
58 J do pij(c , n,q) =.J g°x eld x'(Of{Aj(O) 2 3 Af(x,o)][o)

0

{(€.a)}
‘In & non-abelian theary, aoﬁf " is not canonical to Af . In
‘fact, from (1) we see that, in terms of the cancnical mamenta

a
Ei we have:

. ‘3 a a abc b .o - !
BD Ai = Ei + ai AO -qgf AO Ai F6.b)
Since AO is not a dynamical field it must be eliminated by
solving the equations of motion. 1In the axial gauge, it is
possible to accomplish this exactly to all orders in the
coupling constant. We then obtain for the equal-time commutator

in (6.2) the resuilt

3 - a b
s |:6. B o0y Ny . g ay N [ QA (0D (Q|Aj(0)|0)
ab| ij n.q (n.g? ™ g [n.(q+Q)1?
- 590 J do? bij(oz, n,q) ' (7)
0

where |@) denotes a complete set of intermediate stateg and
CYM stands fer the Casimir invariant of the Yang—Mills'Fields.
The second expression on the left-hand side af {(7) depends on
q ﬁnly through the combination n.g and in view of the gauge
condition (3) will be proportional to 6ij -ninj/'n2 . This
combination is independent from the first term in {(7) and
therefore, comparing with equation (5.b) we obtain two sum

rules satisfied respectively by the form factor o and p

1 2t

0

J da? p][oz,ﬂiﬁq = (8.a)
0

ni

(8.b)
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We are now in & position to study the structure of
the gluon propagator Duv' Comparing equations {(4) and (5),
and making use of relations (8), we see that in the high-energy

domain Z and Z' have the following behaviour:

Z{g+=) = 1 (9.8}

| @[ado) |y [?

3 {(2.b}
[n.{g+Q)]

Q

It can be verified that, although. Z' vanishes to ordgr gz,
it is in general a non-zers and gauge dependent quantity in
this limit.

In accordance with reference 5 we will now make the
ansatz, tc be verified later, that 2' 1is irrelevant in the
infrared limit for the determinaticn of physical ﬁuantitieé
like the colsr dielectric parameter. In this ﬁase, only 2
will give the deminant_behaviour of the propagator in the
infrared region. Then, the vacuum polarization tensor Huv
will be essentially proportional to thé inverse of the free
propagator, having the structure;

Huv(q-+0) = Z_i(Guv 92 - quqv) (10)
This procedure is consistent provided Z is a physical, gauge
invariant quantity in this reglon. This has been verified
pérturbatively in [6] and also checked numerically in reference 5
where 1t has been argued that Z is directly connected to the

static dielectric parameter £ via the relation:

q) (11

In what follows we shall take advantage of the gauge
independence of Z in the dominant infrared region and make
n.g=90, a choice that will enable us to study analitically the
behaviour of € in this region. With this choice, we can
determine 7 by looking af the scalar eguation obtained by

multiplying (19) by npnv/n2 . We obtain:

(12}
nq n.qg=o

In our study it will be impertant to determine the:
boundary conditions satisfied by the wave function Z . In the
high-energy 1imit these conditions are given by expression
(9.3), while the lowest order corrections are obtained from the

second order vacuum polarization graph Huu shown in Fig. 1.
Y
(1 1}1 (1 ? Fig. 1 - Diagram representing the

second order contributions

to the gluon self-energy.-

K

‘With the help of equation (12) we obtain:

2
v @) = 22 g
Z(g==) = 1+ 35 Cym Z;ET; _ (13)



IIT. THE SCHWINGER-DYSON EQUATION

We now turn to the determination of the infrared
behaviour of Z via the 5-D equation for the polarizatian tensor

' Huv' The relation expressed in equation (12} allows us to

reduce it to a single scalar equation involving the 3~gluon
vertex as illustrated in Fig. 2. In this equation there aré no
four gluon terms attaching to the external vertices since these

cantaln delta functions like 6uB where B is some internal

index. Then nu becomes transferred to a gluon propagator and

therefore

nB DBB' vanishes in consequence of gauge condition

(3).

G - q ‘ q
HPWHV =nPJ{Z@LnV
o | K

Fig. 2 - Diagrammatic representation of the Schwinger-Dyson
’ equation for the vacuum polarizationm tensor in the
axial gauge.

We now use the Ward identity satisfied by the

‘3-gluon vertex to determine its low momentum behaviour in terms

IGF Z'] Due to the absence of ghosts this identity is very

simple in the axial gauge10:

irgcr\, (k:kiy'Q){-Qv) =1 (k) -1

. (k') {14)

oo

We assume, following reference 5, that the transverse part of

10,

this vertex does not give the dominant contributions td the
infrared singularity of the propagator, and therefore replace
the vertex by its longitudinal part. Then the solution for

the laongitudinal part of the 3-gluon vertex following from

equation {14) has the form:

L . _ -1 STy
rh LKkt ,—q) = 500,[z Nk - 2 (k')k\"]

2 - 27Nk
k? - kr?

|:I< N kg,](k-k')v +
+ cyelic permutations (15)

In this way the S-D equation becomes a non-linear integral
equation for Z whose infrared behaviour will be the same as
that of the true propagator. Using dimensional regularization

in a spdce-time of dimension N, one finds:

N 2 '
(2m) n

{[_.Z(kz)z(k") + 200] (@k')s % 200 -2k
Q) 72

(kk'8_ -k'k .} +
k'? g2 12 2 oG o g’

£ 2K By, + (ko o oon) ) o Ge

where ng denctes the free gluon propagator. Using the fact

¢}
that Duv

has a vanishing angular average: JIGQN ng = 0, it
is straightforward to verify that in the infrared limit, the

right-hand side of equation (16} becames:




L1

89" Cyy wot [ o M-3 2 8200 N-2
R(gq=0) = —— it Mol i [k ), N-2 Z(k)] (17)
(am)™ % N ) ak? 2

This expression vanishes provided the wavefunction Z has the

following leading behaviour:

Z{k) = A(“—J' , (18)
. _

where p denotes a unit of mass which sets the scale of the
theory. Since in a N—dimensiona{ space-timz_ﬁhe Yang-Milis
coupling constant has dimensions UE, (mass)_f_-, we can take
without loss of generality u = gz:ﬁ.

. For consistency we also need that the -1 on the
left hand side of eq. (16) to be cancelled, This requires to
consider the next to leading term in the infrared limit. Our

goal here is to determine analitically this correction which

we denote by z. To this end, let us write:

u?) 2 ' '
Z(g) = A{——} + z2(q) (19)
and linearize (16) in z, simece as g-+0 the first term in

(19) will dominate.

With the help of the following relations:

V2 '
Jde £k, k') EM-»E = (N-2) J dMe Pk, k) (20.a)
(n.k) ) :

and

12,

2 2
N v tnlk)T N . 2 {g.k)}
f d kf(k,k } n—z——-——N_.] J d kf(k,k ) |:|< -5

(20.b)

which are valid when n.q=0, we find that eguation {18}

becaomes:
N
-1 2 d'k 1 1
Z7' gy = 1+g°C J — —
™M emN K e?
N-2
5 2
foo ™ - ).
- 2
k2 q a*
L2 [feA) T L] ke ad? s gkt
N7 (2 7, 2 2 *
q“{g° -k*'")}

2 DGk s (6 - (a0 2R 0P c kT s ek k)
a’(k* - k'?)

N;Z N=2

2 2y 2 2,2 2

- (_EL?] [Z(k) i [93} 2| LK+ (a.k)® (-2)
k! Kk qZ(qZ_kZ)

N-2
s ke K- Nz(q){ g* )T} -(21)
2, .2

We expect that the form of the correction term will
o

. 2 .
be a pawer: z(g) = Bﬁ%ﬂ , 85 g-=+0 . With the help of the
u

methpd used ip reference 5, we will determine a by the following
consistency candition. On one hand, 77! as determined by

equation (19) will have the form:



o
[U—ZJ (22)

On the other hand, it is easy to see by dimensional reascning
that by substituting the form for the correction z(g) inte
equation (21), its rlght hand side will yield a contrlbutlon
proportional to (g2) 2 Consistency with the form (22)
reguires that the coefficient of this power must be zero,
Vcondition which will be used in order to determine o . To

this end we will perform the integration in eg. (21) in an

N-dimepsional Euclidean space and rescale its modulustw writing

ki = |q2|% X Furthermore we choose the N1 axis in the
direction of g and denote by y the cosine of the angle
cetween k and g. In terms of these variables if is
straightforwerd to show that the above consistency condition

yields the equation

oo 1 N-3
- 2 1
F(N,a) = dedeUy) FRT
0 -1
2-N 2N
N a 2 N 2o+N-3 2
{2)( (f‘ -f ] + 5 f +
20+N-3 . 2N
+ }-_[\T-:]__H [(N—Z)x2(1-y2) + Z—Xz f 2 (1 ~X2"N"2a)(1+(r\i—2)y2) +
T=X
2=N
e et RN (SRR IS ISAE I
+ 2Xy

2
o [(1-y2m s (N-2) {xPaxy)) + (N_n(w)zﬂ} =0 (23

4.

where f = F(x,y) = x* +2xy + 1.

In order to treat the singularities which arise in
this expression at x=1, we will use the principal valué
prescription. WElshall now consider more specifically the case
when N- 3, In this case, the x and y integrations can be-
evaluated analitically. After a long calculation, (23) leads

in this limit toc the following eguation for F(3,a) = Fla):

Fla) = (43-1—;) lIJ(OH-%) + (lm-—-lgé) [IIJ(U,-!—TV) + metg onr] -

+(¢_1'+1]22°‘_fm_1[1 L. 2]
20 o+ o4+2) senZamn 2 |4 (a+2)2 (a+1)2 __az
- E [z(zms) - 4 T{2a+1) + 81(23-1)]. =0 oo (24.a)

where ¥ denotes the logarithmic derivative of the gémma
function, .y 1is the Euler constant and I(ax) is given by the

series:

He) = gh ) L (24.)
k=0 2 {ksot+ 1) o

" The behaviour of the expression F(a) 1s represented graphically

in Fig. 3. This function has poles at o = O 1 and a zero

1
:f:
which to four figure accuracy turns out to be at o=0.3422.
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Using this value in equation (12) for N=3, we see that the
leading and next te lgading benaviour of Z in the infrared

region is given by the expression:

Z(g-0) = A[“—]% + 5[— (25)

0.0 0.2 04 0.6 0.8 10

Fig. 3 - The function F(w) plotted versus o in the range
O<o< 1) : '

16,

TV. DISCUSSION

Wwith the help of equations (11) and {18) we see
that in an N-dimensional space-time the static color dielectric

parameter has the leading infrared behaviour given by:

. ;2 7 . .
e(§-0) = %[q_] (26)

Thg cpnstant A depends in general on the dimensions of space-.
time,.and should be unity for N=2, since in this case the
YanQ—Mills theory effectively reduces, in the axial gauge, to
a free-field theory where e=1.

We are now in a position to gstimate the behaviour
of the chromoelectric field associated with a guark of color

charge 4Q:

E(z,N) = —m—a—" ' (27)-

(28)

wheré I' denotes thé gamma function. This expression shows
that the chromoelectric field is constant at large distancés,
behayiour which leads to confinement. Although this result

was to be expected in two space-time dimensions, it fepresents‘
as we have seen a non-trivial behaviour which Is consistént

with the Schwinger-Dyson eguations also in higher dimensions.



7.

2

In the particular case when N=3, using the fact that H=g
equation (28) yields in the infrared region the result:

E(r) = lga gznm for rg® »> 1 (29.a)

On the other hand, with the help of equations {11}, (13) and
(27), we obtain that the behaviour of the chromoelectric field
at small distances is given in this case by:

E(r) = 3 23 vl 2 @ for rg? << 1 (29.b)

0f course, its exact forﬁ in the whole range of r© 1is unkrown
until we solve completely the QCD theory. Even the valﬁe of

the parameter A 1is in fact unknown, since it is affected by
the transverse part of the 3-gluon vertex which has been
néglected in this approach. For this reason, by making the
simplest possible ansatz consistent with the boundary conditions

gnd the continuity of the field we can write:

_ Q _Q 2 . .
E(r) = Te(ry - Tt a9 Cyyd (30)
where a = V?jA/ZCYM ~ 23/7' /64 . We can solve this system by
expressing the celor dielectric parameter = as a function of

the chromoelectric field E, obtaining:

2
aC,,g9° @ E
_ ¥M _ 0
e(E) = T - —p— = 1 - = (31}

which 1s precisely of the same form as the one assumed in

reference 4.

We will finally discuss the behaviour in the infrared

“region implied by the inclusion of the next to leading corrections.

To this end we write equation (25) in the farm:

2 B 2 0.8422
Z(CI,N=3) = A (jz—g |:1 + oy [q—£J (32}
}

q

This represents a special case of the general expression which

follows from equation (19) with gz = u4'N , namely:
N-2
’ 2 2y 14V
2ta, = a7 [1 S o R (33)
g u?

The form (32) is obtained in the particular case with N=3 and
v=-0.1578. Furthermore, the result obtained in Ref. 5 by
Baker, Ball and Zachariassen corresponds to the case N=4 with.
v=0.1737 . it is interesting to inquire for the reason why
the bracket in eqg. (33) seems to have, apart from small cor-
rections v, a polynomial expansion in powers of qz/hz.

To this end, motivated by the work of these authors,
we will now consider a model which illustrates the important
features of Schwinger-Dyson equation and which is exactly
soluble. Considering the non-linear term in Z in equation
(16) and using dimensional arguments, we take our model to be:

=+

z7Ma,N) = 1 - cg? 2w J% 22k + Fla,N) (34.)
k

q

where f(q,N) represents the effect of all other terms "in that
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equation. These terms guarantee that when N=2, the solution
of the S«D equation must be Z=1, since in this case the theary
is effectively free. We can ensure this boundary conditian by
considering the function f{g,N) given by:

e DN—Z 2

flg,N) = 5 (34.8)

q

In this case, taking the derivative with respect toc q, the
integral equation (34) can be converted into the fallowing

nen-linear differential equation:

Ne2 2 N-2 2 4N
ST Wk Tl TPl T TN S,
N 3 QS_N

'q

This is a Bernoulli type of non-linear equation which can be
solved using well known metheds11. Imposing, in accordance
with (9.a), the Boundary condition Z{(g-w)=1, the sclution

af the egquation (35} turns out to be:

, )7
z (Q:N) = [2 2}
D™ u
2 2
q N -N g
1 + — 5| LF, |2.555+ 1 Ao (36.a)
{‘: CDN 2 ”2] 21 [ 22 ’CDN-Z HZ]}
where 2F1 denotes the hypergeometric function12 and D is
determined by:
2 1 ’
—_— 4 -N
N N,|N-2 C

.20.

We see that the solution (36) has, as q-+ 90, a power-like

behaviour given by:

N-2

- 2372 (2-N)N i 2
1 g g
Z7 (g+0,N)} = [*—-——J 1 4+ e (37)
g=+v, 02,2 2eN - pN-Z 2

=

This form which is very similar to expression (33) with v=10,
explains why the actual value of this parameter in the solqticn
of the true 5-D equation is small. It is important to note.
that for N< 4, expression (37) represents in the infrared
limit a non-perturbative expansion in the coupling constant,
since_ u2 zgztﬁ- oteurs in the denominators.

-ﬁn fhe other hand, making use of the transformainn
properties of the hypergeometric functions12, which relate |

2F](x) to 2F](1/x) ;, we obtain from eg. (36) the following

perturbative behaviour valid at high energy for N<4:
2y 2 N-2 2 .
7N gae,N) = 1 - oS [E—] P BRI, (38)

We remark that the pole at N=4 is associated with
the ultréviolet singularities which in this case arise in the
fheﬁry. Furthermore, as expected from previous considerations‘
at N=2 we obtain the free field solution Z=1. 0On the other
hand, when N=3 the solﬁtion correspending to eqguations (356-38)
with n =g2 is non-trivial.

‘In conclusion we hope that,despite its limitations, the
approach based on the Schwinger-Dyson eguations might correctly describe the

transition mechanism-between the low and high energy domain of 2+1 dimensionai

Qch.
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