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ABSTRACT

We develop z scheme for computing the free energy
af topelogical defects at finite temperatufe. We compute, as
am application, the free energy of topelogical defects (monopoles
and domain walls) fer the minimal SU(5) model, by using the
semiclassical appreach at high temperatures. This proceéure
allows us to get a better picture of the phase diagram of gauge
theories at finite temperatures and obtain the critical

temperatures associated to the various phase transitions.

*Work partially supported by CNPg, CAPES, and FAPESP.

I. INTRODUCTION

One of the most important problems one faces iﬁ
field theory is the determination of the phase diagram of gauge
theories. The difficulty in this context relies upon the
guestion on how to distinguish the different phases af gaugé
theories when coupled to matier fields. Bricmont andFr&ﬂid#?}
have propesed that the distinction-cbetween different phases in
gauge theories) is aechieved by anmalyzing the free energies of
"topological defeets®,

_ The defect free energy -approach relies upon thé
study of the change in the freezéneigy that takes place when
one faerces a topelegical defeef.to;appear in the systems through
the use of convenient boundary eonditions. Comparing the free
energies of the systems, when ane imposes different boundary
conditions, one can learn about its phase diagram: when the free
energy becames-insensitive te certain boundary conditions the
system has reached a new "phase®.

One can have a better picture of this method by
applying it to the Ising medel: the analogue of the free energy
defect is the surface tension. The surface tension is nothing
but the free energy of the topologiceal defect of the ising model
(domain walls). The temperature at which the surface tension
vanishes is the critical temperature of the model, since one
can prove that the spontareous magnetization vanishes at the
same temperature(z).

Now suppose that the system, originally at a given




phase a4t zero temperature, is in contact with & heat bath at

1 At low temperatures, defects with positive

temperature T =28
free energy are rare or nonexistent (those which require an
infinite amount of energy). However, for sufficiently high
temperatures, quantum {entropy) effects come into play in such a
way that the free energy of a given topological defect vanishes
Hence, there is no energy cost te introduce an extra topologicsal
defect into the system, which implies that one has reached another
phase of the thebry - that is, the one in which the condensation
of defects takes place.

Topologically nontrivial structures (defects) emerge
in field theories whose symmetry is spontameously broken. At
the classical level, tﬁese defects correspond to topologically
noptrivial solutions of the Euler-lLagrange equations.

In this paper, we shall be concerned with the
computation of defect free energy for nonabelian gauge theories
at finite temperature. Explicit results are derived in the one
loop approximation. We have 1llustrated how the scheme works by
considering the minimal SU(5} model, which exhibits two types of topological
defects: domain walls and magnetic monopoles. The extension of this
method to other models and different defects is straighiforward,

This paper is organized as follows. Section Il deals
with the general framework and specially with a formal expansian
which allows us to implement the semiclassical approximation and
an explicit separation of the zero and finite temperatupe terms

of the free energy. In section II1 we apply the scheme to

(3-4)

obtain the free energy of the topological defects of the minimal
SU(s)Y model. In the high temperature 1limit, we obtain closed
expressions for the free energy of domain wslls and magnetic
monopoles. We end this paper with conclusions in sectlon IV.

This paper 1s supplemented by two appendices.

II. FORMAL EXPRESSION FOR DEFECT FREE ENERGY

The partition function for a given gauge theory,

whose Euclidean Lagrangean density is L, may be expressed as

a functianal integral(s)
8
Z(B) = N (B) % [De] exp{- JdT J % U_—J(x)@(x)]} X
g
x gauge fixing terms (2.1}

wheré T 1is the euclidean time, ¢ stands for all fields in-the
theory and the integral over the fields is subject to the

following boundary condition in ¢ :

p(x,0) = o9(x,B) for bosonic fields

and (x,0) -@(X,8) for fermionic fields

N is a normalization constant which may be chaosen

such that Z{w)=1.

The free energy of the system is defined through



the following equations(S):r

F(B,d) g enz (2.2)

MGG = oMyt = - $ERL (2.3)
B
I(B,Mj) = F(B,3) + g1 J dt J ¢% My 00300 (2.4)
0

F(B,MJ) is the generating functional of one-particle irreducible
Green's functions and is the free energy of the fleld configuration
MJ. The effective potential method analyzes T for constant
field configurations MJ in order to obtain the phase diagram
of the model(é).

One can define the free energies of the different

types of topological defects(1’4’7) by
z
Fy. = =87 &n [Z—M} , (2.5)
v
-1 z
_ B S
FS = - .___L &N [——] ’ {2.6}
v
-1 zZ
and Fy = - 82 en N , (2.7)
L v

where FW’ FS and FM are, respectively, the free energy for
domain walls, strings and magnetic monopoles., Usually a given

model does not exhibit all the three different topological

6.

defects, 50 one must considéf.cnly the relevant ones. " Zys ZS
and Z, stands for the partition function of the system
evaluated when one imposes boundary conditions that force the
existence of a magpetic mencpolie, string, and domain wall défect
in the system, while ZVAC is the partition function obtained
using topologically trivial boundary conditions {vacuum sector).

L 1is the size of the system.

The various thermodynamical functions can be written,
in the one loop approximation, as shown in the appendix A, as
differences of the effective action of the theory evaluated at
certain Tield configurations. Let T(¢) be the effective
action of the théoty and Py be the constant field configuration

associated to the vacuum of the theory. In terms of the

effective action one can write the effective potential

3

veff = —— {1(%) - ?f@v}} (2.8)
L8

where the bar stands for constant field configuratienms.
Whereas for the defects that we are concerned in

GUTS (momcpole, string and wall) one has

Fy = [I‘((pM) -I‘(q)v)] , (2.9}
1
Fis = T [F(ws) —P(cpv)] . (2.10)
1
and F = — |[I'(g,) - T(g,) , (2.11)
R




that is, all thermodynamical parameters can be written as
differences between the effective action computed at some
.special fieid theoretical configurétisas and those associated
te the vacuum of the theory. These special field theoretical
configurations, within the semiclaésical scheme, are the
defects associated to the classic solutions to the Euler-
Lagrange equations of the model.

The general structure of F[B,mD(x)] is

= n
T8, gy(x)] = Z 1 _111 dr [ d3xj 9ptxy) P(n)(T]—)E} veenT %)
s ,
1

(2.12}

where r(n)(rlil,...,tnin) are the one-particle irreducible

Green's functions, ?g stands for the fields associated to the
defect. If one uses the Fourier transferm of r(”) , Qiven

by

3o

e d'k,
m, =+ 2 -n 0 i ozm), o -+
TV X e, X ) = B0 T — IV (w R, .. ,w K ) X
171 nn j=1 nzm J (2.")3 1 nn
n
X exp [— i (uh¢£-+ﬁliﬂ)} (2.13)
=1

-1 .
where Wy = 2148 » and remembering that translational symmetry

allows us to set

f(”’<{wi§i}) - s(zn)3a(2wi)s3(zﬁi)T(”)({mi§1}> (2.14)

then, for static field configurations (those with which we will
be concerned in this paper), the general structure of P(B,¢D)

is

o 1 n wr ™ oy=l0) 3.
= — L plak, RV .
T80 = B ng ; ILJcI Ry TR o, =008 (3K

(2.15)

The graphs that contribute to T(n)

will involve
sums over the discrete wj which, once performed, vield a term

independent of temperature plus one which has the full 7

. dependence, This separation can always be implemented if one

uses identities of the farm

1
B _— = i — . (2.16)
o [2nn]2 . 22 2z 2(862—1)

{n}

One can then spiit T into two parts

R u=0n = T (o) - TV (R e = 0) (2.17)

where the second term contains all the T-dependence. The general
structure of this dependence can be inferred by making a change
in all internal momenta integration variables, This change is
just a replacement P » p' = B8 . After this scaling in the

internal momenta one can predict, from pure dimensional analysis,



that ?gn)({ﬁi,mi =0}) have the following structures'®’

S E]

—(n), divy)
IV (R 0200 = 57 G,
'Yn

Ei

n

where  d(y,) 1is the superficisl degree of divergence of a
graph. y, contributing to T and GY is dimensionless.

n
Putting (2.15}, (2.17) and (2.18) tcgether, we have

= diy,)
- 1 n 3 > Yn
I'(Bs‘:PD) = TO(CpD)_-P z a7 jE1Jd kj ch(—kj) z T X
n=1 ¥
n

K
x G [J EJ 83(5% ) " (2.19)
Tn T'T J

where FG(¢D) is the effective action computed at the back-
ground field 5 at zero temperature.
Using. (2.9)-(2.11}) and (2.19), the free energies

of the various topological defects can then be written as

D o 1 1 c 1 = 3+ o+
L L j=1
n=1
d('Y ) TE. dt n
kI n m 1N Y
x 87(IK ) T GYn[T’TJ'ZF? T x
¥n n Tn
my 3
X GYn [D ,TJL (z.20}

where o is an index that, in accordance to (2.3)-(2.11), runs from O to 2.

L10.

To get a formal series for the free energy from
ény solution associated to a pérticular defect, we just
introduce it in {(2.20). Just for the sake of completeness,
we write the expression for the effective potential. From

(2.8) and (2.19) it follows that

— = _ d{y.}
veff(3) = % [I‘O(cp) —I'O(cpv)] . z ni, " - o)) z T GYH[O,%
n=1

Tn

(2.21)

Once the general formalism is set we shall apply

it to ocur specific model: the minimat SU(5) GUT.

III. PHASE DIAGRAM FOR THE MINIMAL SU(3) GUT(S)

We shall consider the misimal SU(5) GUT at finite

temperature. Its Euclidean Lagrangean density is*

1 1 2 3.1
L=-7 Tr[Gquu\J] + 5 Tr[(Ducp) ] + V(9) ( )

where ¢ is the Higgs multiplet belonging to the adjoint representation,

2 2
V(e) = - B 1r(e?) + 2 [Tr(@z)] + % Trle®1 (3.2)

*In our calculations,we are assuming that the coupling constants are such
that the phase transitions are expected to be of second order.




LT

z24 s 24
i i
& = }: gl A ; W= z wh A ,
uv B s u v
i=1 i=1
24 i
i ig
® = z P — N D& =3 & - = Tr[W ,¢] and
. 5 Hu B S5 H
i=1
Ai {i= ty-..424) are the generators of SU{(5) in the fundamental

representation (normalized so that Tr{Ailj] = 2Gij). We also
impose that b>0 and a > -7%-b . The notation used is the
one in ref. (18).

This model exhibits two different topological

defects: demain walls and magnetic monopoles. The background

field describing a domain wall is

A
3“ = & tanh(JL x] 24 ,
VR V2 2
{3.3)
WC.Q - 0
u

with A = a-p%%b . MNote that this solution depends only on one
spatial ecoordinate, which we chaoose to be the x one. The

classical field configuration associated to a magnetie memopole

satisfies the ansatz(g)

_a e —

W, =0 for a:';,...,za;w§=o=<pa for a=1,2,...,20,24

. . .

W é X E(r) for  a,k = 1,2,3 (3.4)
I

—2a

L2,

and the boundary conditions

F{r) —— 1

= P e

Let us exhibit the structure of the free energies
of the system under these backgraund fields in the one-loop
approximation, In the zero-loop approximation one has, fram

(2.20),

T[S(ch) - S((pv)]

b
ﬂo)(ﬁ) 5 As(o) . (3.5}

L

That is, in the zero-loop approximation, the free energy of the
topological defect is just the difference between the classical
action associated to the defect and the energy of vacuum. For
the monopole, AE(O) , defiped in {(3.5), 1is its mass whereas
far the domain wall Ae(o) is the mass per urnit area.

withiﬁ the one-loop approximation F{G,Wu) wiltl
have the structure predicted from (2.12) which, for the example

that we are considering, has the structure

rER) - se@iy - O - O O e . £
A

+ %;Z}+ vee. 4 rw{\_yW-c-qu)m.,. _“,+w€:}~‘+



dt J SE R . L ' (3.6)
u v .

Scf is the classical action associated to the backgreund field,

"E (T} <can be represented graphycally as

— ab '

z (1) =‘—1—Qv— & i}— (3.7)
a b a b : .

.whereas HEE(T) can be represented as

‘ " "
ab I TN N‘LQW\J“ M}mOw«rwv\ +
I T) = b Javbans + A
wn( T a. ~ b ' a b a b ’

M v K Vo -
+ “g”“i}"wg” * +“g§i“h“ _ (3.8)

a b

The wavy, sclid and dotted lines stand, respectively, for the

gauge- bosons, Higgs and ghost fields {for the fluctuations we

are working in the tandau gauge). Hab can he identified as

uv
(19)

the polarization tensor for zero external mcomenta . Following

our earlier prescription {2.17), we can alsg write

.
Yo = _ZO '+ZT (R}, u=00 G.)
ab ab Fab, - :
D) Moo * TaylT) (3.10)

First of all one notes, looking-at (3.8), the

L4

appearance of ultraviolet divergences. These, however, can be
treated, as usual,. by adding appropriate renormalization
counterterms which are just the usual ones at zero temperature'(s).
This means fhat the zerp temperature renormalization scheme
suffices for getting finite expression to free energies of. .
topological defects. Substituting (3.6) into {2.15), one céﬁ*_
obtain the topological defect free energies of the SU(5}

mmdel.

| J &% |9y, 0w, 00

i
~
—
—
|
=
m
1
[~
-
. ~
—
—
—
Oy

- a\ﬂ b - _ ERRCIRED

where Ae, is the energy density of the wall taking into
account quantum corrections at zero £emperature up-to one lLoop;
Egh(x) is given in (3.3), o, = ;%%-124 , 5?24,2%T) %5;9%V§n
by (3.9), and the dets represent one loop contributioms not
included explicitly in (3.1%).

. On the othér hand, for the magnetic monopole ane

obtains

dt j % [53(§)$b(§) - @3-5a 5, ] -
24 2_4




Lo,
where now M stands for the renormalized .mass of the monopole

& ab ' _ab
at the one loop level, E: (7T) and Huv

and (3.10), the fields g° and Wi are defined in {3%.4) and

(T) are given in (3.9)

the dots represents contributions that are not shown in {(3.12).

One could go further and write down similar
expression for all the one-leop graphs for the topolegical structures of
the SU{5} model. However, instead of doing this explicitly,
we will just analyze the high temperature limit of the free
energy. In this limit, the form (2.20) is particularly useful,
since the leading power in 7 of series {2.20) is easily
obtained. Property (2.178) permits us to identify these con-
tributions, which are the ones with higher superficial degree
of divergence. These contributions are precisely the ones we
have written explicitly.

In the high temperature limit, the graphs appearing

in (3.7) and (3.8) yield

2
- 282 T mn
_&‘_ = - (263 + 75 b) 5 § (3.13)

m n
5
A‘JL,_ --2g° 1 5§20 (3.14)
a b
( 3 4212 530 F
v j A uv or . w,v=1,2,3
H —
s ks = (3.15)
a b
5 2
t =z 9 72 Gab Guv; far i and/or v=4

=
<

"

)
=l\q
]

w3
[
4
o
(=)
o
o
(=2
=
<

(3.16)

5 2.2 .ab .

75 9 TO 8 5uv for u,v=1,2,3
W v
W = {(3.17)
a b

5 2.2 .ab B

-3 9 T8 Suv for uw and/or v=4

5 421250 f =1,2,3

797 " oT W,V = 1,2,
M Y]
ﬁmwmi:}Nw%A = (3.18)
2 ° 2 szdabﬁ for and/or wv=4

- 49 " 1 =
i1l v

_ 25 2.2 .ab

WM%%N b"zagT‘s 81v {2.19)

From (3.13)-¢(3.19), (3.7) and (3.8} we have the

cd
asymptotic expressions for z {(T) and HES(T)

=rcd 2
T 2 1 282 cd
Z (1) - [59 + 3 (263+Wb)] § (3.20)
=C 35 2 .2 .cd
" (n -359° 7 8 suasw . (3.21)

One obtains from (3.11)-(3.21) the high temperature

tehaviour

2
. T 2 1 282 2 2
Fwall(T) be, v & [Sg v 3 (26 a+ s b)]de[mw(x) -cpv]

(3.22)

282
15

FylT) ~ M +I—-|:592 +%(26a+

5 b)] X

24 24
3+ J —a—a 21 g —
X J g7 x N ;% g’ 7? J % Y Wl
[

LEl:'\



17,

At first sight, the appearance of the term Jcﬁ?(Wi)z

in the last expression, could seem to be a problem: (3.23)
is not explicitly gauge invariant with respect to gauge trans-
fermations of the background fields (we have just fixed the

(7)). At this point we are forced

“gavge for the flﬁctuations
to adept a "physicalﬁ gauge with respect to the magnetic
monopole degrees of freedom or generalize gur calculation to
include & Jacobian for the ghost like degrees of freedom

(10) When considering the

associated to the magnetic monopole
background (3.4) for the magnetic monopole we have decided for the
former strategy, since this background satisfies W:: 0

Therefore, in this gauge, we have for the monopole

2 24
T 2 1 282 32 -3 —8 2
FM(T) ~ M 4 5 [59 +§(263*‘ 15 b}] Jd X z ¢ -y

) a=1

(3.24)
The substitution of (3.3) into {3.22) leads to

282
15

(262 + b+ 15g%) (3.25)

Fwall

2
- I w2
(1) Asw - T

whereas the substitution of (3.4) into (3.24} implies

o«

' 2
T2 L2
T~ M- Eg +3 (262 + 222 b}} 4m J r?dr g2 (1-n* (x))

0
{3.26)

IV. CONCLUSIONS

This paper deals with toﬁalogiéal defects at finite
temperatures. 1In the first part we were particularly concerned
with the evaluation of free energies of the defecté. Since,
as shown in appendix A, the computaticon of this thermodynamical
parameter is eguivalent tb computing the effective action for
the configuration associated to the defect, it is possible to
develop a formal expansion for this parameter In this formal
expansion one can separate a zero temperature contribution and
an explicitly temperature dependent part. Very simple. arguments
invaliving dimensional analysis allow us to infer the. leading
power behaviour in T of the temperature dependent piece.

We have exemplified how the method works by Eomguting
the free energy of domain walls and maghetic monopoles, in the
high temperature limit, for the minimal SU(5) model.  The
temperatures in which these free energies vanish indicate fthe
occurrence of phase t:aﬁsitions. These critical {emperatures,

for the minimal SU(5) model, are

2

Tﬁ = ey s0u (5.1)
590 ¢ 13(15a + 7b) + 50b
- : i _ C (4.2)
[592 + 3(280 4282 b)] 4m g2 J drr2(1 - ni(o))

-0




19,

where we have taken for Az = in {3.25} its classical value

2/7 ut
3T

The temperature TW computed by us has a simple

BEW = Aeo =
interpretation, -as pointed out in ref: (4). The point is, since
the ‘minima of the affective potential at Tw enter into the
region in which the effective potential develops an imaginary
part {see appendix 8 for this), this temperature is just the
highest one for which the descriptien of the system in terms

of perturbative constant field configuration makes sense (and
consequently the perturbative effective potential). In appendix
B we show further that if the phase transition is of second
order, then gne cannot avoid the perturbative effective
potential becoming complex at the minimum for temperatures
sufficiently high.

Therefore the topological defects free energies
approach gives a richer description of the phase diagram of the
SU(5) .model at ‘higher temperatures than the traditional ane
based on the effective potential.

Once the temperature is greater than Tw (ar Tm)
we expect the system to be in a new phase which is characterized
by a condensate of domain walls (end(or magnetic monopoles}. It
and T

wauld be particularly interesting to know if T are

W M
equal or which one is the smallest. If the two temperatures are not
equal it is important to know how to evaluate the free ensrgy of
a given topological defect in the presence of a condensate of

the other. (We met this kind of pfoblem in the determination

.20,

of the phase transition for the Zn-symmetric spin anc gauge
theoriesil1)J. .

The.exisfence‘of a new phase, which is & condensate
of topological defects, may have far-reaching consequences ﬁos
cosmology. For instance, the existence ﬁf a condensate of
magnetic moﬁopoles can drive the system to a superconducting
phase. Another applicatiqn would be to verify Qhether the
contragt density produped by the topoiogical defects satisfies

the Zeldovich spectrum(12)

and consequently see if the conden-
sation of defects 1s responsible for the large struclture of
the universe, These questions are now under investigation by

US(13).
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APPENDIX A

In this appendix we will justify expressions
{2.9)-(2.11) that give the (Gibbs) free energies with respect
“to three different backgrounds. Although,within the one-loop
approximation, our expressions give results that are by now
standard and éan be found in text books(TQ), we present this
derivation due to the fact that it is fairly general and is
just an extension, to finite temperature, of the background
field method' 27,
Assume that Py is a generic field configuration
and let us compute the thermodynamical properties of the system

in the presence of such a background field. This should be

inferred from the functional Z [J,¢O] defined by

B
_5[¢_¢0]+J dT_[d3§ ICxelx)
20[3,%] - J Dlo] & 0 (813

By means of a change of variatles one can write

B
J dz_[d3§.3(x)¢0(x)
ZO[J,%] = z[3] €D (n.2)

From (A.2) it follows that

8
wol3,9,] = WLl - B! J

where wo(w), ZO(Z) stands for the thermodynamica: functions

dTJ ﬁiau>%(x)_ (a.3)

.22

evaluated with (without) the ‘background field.
By usinmg the definition (2.4) it follows that the
Gibbs free ene.gy in the presence of the background field (@0)
is given by
8 0
o, 0,1 = WOLI,5,1 - s“J dT-[dB; 2&%%?% 3(x) (A.4)
0

S(BWO)
§J
By substituting (A.3) into (A.4) it follows that

where 9y =

8
r%(%,,9,) = W3l - 87! J

[

dr'[dji 3L, (%) + 9y ] (A.5)

consequently if ore derives (A.5) with regard to J one obtains
T3 - % 9 (A.6)

Being W[J} and TIf{y]l the generating functionals
in the absence of the background field one gets, from (A.8),

the following relaticnship

By = 0 - B {A.7)

If one substitutes (A.7) into {A.5) one then obtains

‘ B : '
25,9, Wral —6'1J dTﬂ{ds; Ix)P(x) = T(g) =

HI

T($O4-¢O) (A.8}




.25

Expressicn {A.8) is well known within the context
of the background field method - that is, the generating function
for the theory in the presence of the background can be obtained
from the generating functionsl without the background field
computed just making the replacement ¢ - Eh + 9y

The free energy in the presence of the background

field is
B
F%(8) = 2im w'3,0,3 = kin [ro(ao,wo} +B"‘J dszB_i AT }
0
J+0 J=0
0
{(R.9)
Finally,one notes that if P, is a particular
solution of the classical equation
%% = 0 {(A.10)
P=9.
- that is,
Wy = O, = @ (A.11)

then in the limit J-+0 (A.11) leads to EO =0 . Under this

circumstance it follaows from (A.9) and (A.8) that

F(B,9,) = Tlo ] . (A.12)

i.e., the free energy of the system in the presence of the background

field mé' satisfying.the classical equation (A.10) is given by

.24,

effective action computed at this configuration. If T s
computed at the zero loop leves, (A.10} corresponds to the
classical tuler-tagrange equations. This is precisely the
situation that we are interested in the semiclassical

approximation.



.25,

APPENDIX B

Usually one evaluates perturbatively the effective
potential in order to know the different phases of the model.
However, the perturbative effective potential exhibits some
problems like non-convexity {and imaginary parts)(4’16). Although
these problems can be scilved.at zero temperature by means of a

Maxwell construction(4’16),

this is not always true when gne
works at finite temperature, as we shall show. If the phase
transition is expected to be of second order or very weak first
crder, then one cannot avoid the effective potential becoming

complex at the minimum for sufficiently high temperatures.

Our starting point is

B . '
203y = J Dlo] exp{j—J dTJ'd3§(L-J@)} (B.1}
4]

where L Is the effective lLagrangean for the field p - that

is, we have already integrated all the other degrees of freedom.

For high temperatures L «can be written 35(17)

L = % (Buw)z + Vig} (B.2)

Lets, Initially, analyze the case in which the phase
transition is expected to be of second order. In this situation,

V(p) 1is well described by Without loss of

Vclassical(¢) :
generality we are going to consider the minimal S3SU(5) madel

and evaluate the effective potential for fields & = gpdiagf1,1,1, 3 2

B AR

.26,

In this case (g) ‘is shown in figure 1.

. Vclassical
The Maxwell construction for veff(e) is obiained
by considering the contribution of all the local minima of

)(16}_

Vcl -Jyo to (Z{J This procedure yields

Veff{p) for lel > oy,
(veffl, = {B.3)

1 Vefflo,) for o] < @y

where [Veff}M is the Maxwell censtruction for the effective
botential, Veff is the result that cne obtains when just the

gicbal minimum of Vcl-Jm is considered, and is the

M
positive of the minimum of veff (see figure 2). At temperatures
low encugh Ty is outside the region where Vgl <0 and
[Veff]M is real. However, for sufficiently high temperatures,
9y lies in the region of Vgl < 0 and EVeFF]M is complex.
Since 9y does to zero continuously, [VeFF]M becomes complex
before Py vanishes. Thus, one cannot trust the perturbative
effective potential when the phase transition is expected to
be of second eorder.

For strong first order phase transitions, the
situation is completely different since Vv differs a lot of

v In this situation ¢,=0 is a local minimum (if T 1is

cl
high enough) as shown in figure 3. The Maxwesll construction

for the effective potential yields(16)

A A I S e s
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FIGURE CAPTIODNS

Fig;

fig.

Fig.

-V .
classica

l(q:) . The region between the dotted line is

the one where v C.

i<
The solid {dot-dashed) line stands for Veff([VeﬁﬂM).
The region between the vertical lines is ithe one for

which v

el 0.

The solid (dot-dashed) line stands for V ([Veff]M).
The regions between the vertical lines are the ones

for which V¥" < 0.
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