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ABSTRACT

A relation is derived which connects the unitarity
.&eFect fﬁnction SfS—1 with the imaglnary part of the absorptive
potential responsible for the nuclear scattering. The concept
of éngle-dependenf reaction cross-section is introduced fof
the purpose. A similar relation is.alsu obtained for the
equivalent quantity ST-—S_I . Several applications to nuclear
scattering are made, and possible relevance of our unitarity
defect relation to statistical coupled channels theories of

-preeguilibrium reactions is pointed out and discussed.
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I. INTRODUCTION

The description of multichannel reaction processes

via ‘equivalent one-channel theories has been a common-proéeduré~_

_in several branches of huclear physics. Thé vehicle_ﬁhfbﬁéﬁfJf;.'

which this is accomplished is the energy-dependent-coﬁblexf:_1_

optical potential

(7]

LJE('Ei ::f?(jf?'+'F?LJCQ:(E-GQsz§i5fi$;[}T} . ;:. } 1-2?&{3“

where Pi' projects -onta the channel: i+ -The operatuf” Uf(é§:»* .

“is explicitly energy-dependent, complex, and honélocal'beéauséﬂ

of the coupling to the:other channels projected by-ﬁQii LGiven

Ui(E) ., the diagonal tranmsition amplitude and -correspondingly:.

‘the elastic S-matrix element in channel i are obtained'Frbm

the solution of a standard one—ghénhel LippmannpSchwihgerﬂ

equation.
N R
”IE[E) = ? Her = U, ~+-ui4.f-g)€ CEITTIED o kmy

oT, equivaiently the"optical Schrodinger -equation

(€-PHR-UE) % S =0




In Eq. (3), Gé+)(E) represents the Green function that describes

free propagation in the channel i and Hy is the diagonal piece

of the total Hamiltonian. Besides -f¢(+} _three other wave
fUnéﬁfcns éah be intfoduced' These are the incoming sqiution
to (4¥. (@é')] and the dual.wave functlons 1@&'}5- and

_($(+)E defined such ‘that

<Nwl‘i’ > —(.27:)5(1&‘—13:) | | | (59
~L =) 2 » i

ilyﬁ D =@ 5 (%) e

' _Owingyﬁ0 tthenergy—dependence;and;ﬁonfhermiticity.of -Ui(E)

the.wave. function. - [4;( % is not orthonormal; ) y{*)y 4
: _ Kk? k
Ff2mP (R R L =Ihe S-matrix. is obtained.as usual from the

'inng;-p:cduct-
ffms;w <5P ¥ ¢ o

Aéglong as the energy dependence of U,  is maintained, no

' simgﬁe}relaiibhs between the wave functions |¢(:)) and their

(x )> 1}

coxtégpunding dual states |¥ exist

. In facf{ to obtain
R N (+) St

Fo*™ 7). from }v*77°) , one has te solve a rather intricate
)

- integral eguation. One has

L_<!°|l;le,‘E >-¢am)£(p_k)+q>(,,, (8)

~ G )

<Y 17> =o' SG-P - %’g (P> 9

“+ ~ o :
q,w (g = 4;) —f CEZ(%) c:[%e?"f:‘) P 10). L

Inllﬁw—énengy.nuclear reactions, the optical potential. U, (E)

_varies slowly with energy and_is usually taken to be locally

energy-independént. Then the dual states $(+) (ﬁ(_)) are
givén simply by the seolution of the Schrddinger eguation with
U(UTJ replaced by .UT(U} .- Explicitly, we have the following

L-5 eguations satisfied by |¢(+)), ]$(+)) . |w(')) . and

@ . | o 2 | @ I
e, > = 18> +G"?’E,:,> U l%‘+>- = 1X> v
Bty e 1 S AT
x ' ) . . o
1=+ e Uity >= 218> oy

1”;’>—IJE>+@:?%JU|§:>?5L;W> BENTTS RS

Of course ]¢£+)) . and |¢( )) are the physical states. In
’ k

elastic scattering as well as in DWBA calculations, these are

‘the only wave functions needed. They, of courée,,satisfy the

usual time-reversal relation.



 < Hf(ﬂ> <P\“f > - | (15)

f similar relation holds between §$(+)) and [$('))

In several recent development in reaction theury}
the dual states have attained a marked importance. Specifically,
the multi-step processes encountered in preequilibrium reactions,
‘which require the use of the spectral representation Df.the
distorted Green funciion and thus products of the -type

|§{+))($(+)] , have heen greatly debated . A recent paper

2)

by Feshbach™ addressed several features of the dual states and

‘thelr connection with the inverse S-matrix, He applied his

3)

findings to Z-nucleus reactions™. Our purpose in the present paper is

to extend Feshbach's results and derive relations between the

-unitarify defect of the S-matrix, exemplified by STS—1 and/or

T -1

S -5 , and the underlying zbsorpbtive potential U . Several

interesting properties of the dual states are also pointed out.
Numerical evaluation of 5?5-1 is also made.

The plan of fhe paper is'as follows. In Section II
we derive our expressions for S+S—1 and S+ —S'1 and discuss
severai transformation properties of the scattering and dual
states. In Section III we apply our result to several nuclear
scattering cases. The angle-dependent total reaction cross-
section which appears irn sts.1 is calculated both for heavy

ion (strong absorption) ang nucleon (weak absorption) elastic

scattering situations. . In Section IV we. discuss the.réievanCe
of our'fiqdihgs to the statistical multi-step direct Ieactinﬁ-.
thesry of Feshbach, Kerman and Koonina), and finally, in Section

v, we present our discussion and conclusions.

II. TRANSFORMATION PROPERTIES OF THE DUAL STATES- AND . THE
UNITARITY DEFECT OPERATORS S' - S~ AND S'S-1

In this Section we discuss fhé;transformationrf .
propertiés of the dual states, defined by Eqgs. (12} and (714).
In particular, we caleulate inner products of the ‘type @f*ﬁqﬁ*%
( (- )|¢( )) ' ($(+)I¢( )) , etec.. P This is accomplished by
flrst der1v1ng relatlons between Iw( )) and its dual state -
[m( )) From these relations we cagculate the above mentioned
1nner products, as_well as S+-S'] and S+S =1,

From Egs. (11)-(14), we can write the following

equivalent representations of the plane-wave solution

&> = .QH;‘ ¥, > | (162
¥ > N (160)
18> = 7 Ty, > | | '(15_::)

> = £2 lq{,f > ' | (16d)
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We now:use Eq. (16b) in Eqg. (11)-to obtain the relation between

[¢£+)). and Eﬁif)).
k k

N (+J

AL

From the follewing identity .

H'.) (1-) 'N . o

Go(ek) = QJE C;, . 7 _ (18)
th%?;fﬁp+)EEk) = (E%Q.He.fﬂf.;iﬁ)‘1:,:Qe:have

N5 L) oy G
e >___§2 [\1} >—}-_Q chg)u Iﬂf > (19)

T 7 f;_ % %

“) ﬁvoﬂ &) ﬂg ﬁ,eﬂ HJ_
e ’ﬁ_ > # GCE)U b

Upon multiplying Eq. (20) from the left by Q£+) , and using
g(+) <
N

S k
in. the following form

the definition of (see Eq. (12)), we can rewrite Eq. (20)

léki;yi; ;2 [§2£*Jj> ‘ﬁf Z;ifék) ( L)—_(J1i).l &;;%§> (21§

Eq.(21) clearly exhibit the connection bétﬁéen |w£+)$ and.
; S -

TGS iUy o

JRPT7C T T_,”TLTV__ - -
_Q*ﬁ' Gegy CU-UT M:'B (20)

|¢(+)) y through the absorptive piece of the optical potential.

Ciearly we can rewrite (21) as

e, > =18, >+ Gl (U-UD 18, > _
Similar relatiqns can be derived for the other physical wave
function’

) D) lug} 1. ~ (=)
|gﬂ1€ > =14, >+@c§zn-(u-u ) 1, > (23)

= 187>+ &g (u-uh 1y”> (20

where G(-)(Ek_) = (g -t -uT - i)™ and E(-)(Ek) = (6 M -U-1e)""

It is now a simple:matter to obtain expressions for

théddiffereﬁt inﬁer products,

<wg LU-UD LS

o« c+) _ 3¢ ; {(25)
<Yf'—ﬁ >~c21r)561€—12)+ EleFEk' +ig
: ) > + =
=) )] 2 ¢ <*(1J ICU-_U ) ’g-J'IE'>
. _ & '
<¥1E-’_]Ek-ﬁ>*tzx)5#f)+ E:k,fg.k,-—ii ze)

where we have used the normalization conditions, Egs. (5} and

(6). From time reversal invariance we know that the matrix

elements (wé+}ju —U+[¢£+}) and (QE'}IU —U?lwi")) are equal.
L : r /08
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Then we can immediately calculate the difference between the - wave function on the ome hand and the ratio between twice the.
abave two inner products ) ' matrix element of the .imagirary part of the.resanance hamiltonian

taken with respect to the resonance wave function,. and ‘the. width
=3 ;

<Q.’ I‘f_ﬁ> < 2 ,fk’_ﬁ, > = -2 S(E k')l 'Y (27} of the resonance, on the other hand. Of course no relatiq_n'
g_,‘_‘;, ,( U UT) Igf‘"’ similar to £q. {(30) exists for the resonance case, since there
ﬁ.) (285 is only one relevant boundary condition.

=~ Y J(EI.EPEILI) <SE‘!& ]ImU‘ l

We ‘turn:-new to .the S- matrix defined through the

Since the matrix element (1J_E+)|§Imu| |¢_E+)> is just L g follwolng matrix element £q. (7)
k - .k

K "R
with an being the total reaction cross section, we can ) . ]
e ] ‘ :
introduce an angle-dependent total reaction cross-section, <‘ﬁ I S |'E> <‘f i ‘Q.ﬁ > ] . (31)

oR(eJ , given by

The inverse of S - 1s immediately found frnm the cumpleteness

G‘z (> = -E_- < IIW,U‘ ] C (29) relation invelving |9 (+)) @(+)f , and Eq. '(6), namely .
_through which Egq. (28) can be rewritten as S‘c\'ﬁ (TC [ S \'ﬁ ><t l Q lt‘} =2 JCI‘Z"’E). o

+) o =3 () S ) , d 'ﬁ. & P "l—)

- , _—— 3 ~ {is 3 =E&r) (- (32)

N, > - <y, Yy > = "‘LT‘E*&E&'%)GE _.) (30) - <El’. |f ,,><{-}3 I“Jf ,> @ )5 t)
Si'nce from time reversal, @(+)|ﬂ3(+)} ( (+)|¢ +)) and Therefore we have, as does F.e.sh_b_ach -
( )Ilb( )) ( )HJ( )> , @ relatmn 51mllar to Eg. (30)

% SRITIC I ITIE reo =1 ek
_should hul_d for the dlfference (EJ Im Yy o- ]\p Y. <-E ‘ < ‘—El S = [93 > _ o {33)
In a way, Egs. (25) and 26) represent an extension )

of the Bell-Steinberger relationss), involving reson.ance reac- We can now relate .5-1 to 5+ » using our wave function
tions, to scattering from a complex optical potential. In the transformation relations 21-24 . We calculate first

<\])( )I‘-(+)

farmer case, the relations involve the norm of the resanance From Eq. (21) we can write




L.

e -9
R : %
M T _ o -h _<§L,‘§‘:"|(U"U )’ > 5
G E> =y
and from £q. (23), we have .
D =3, ey el o )
T =T Sy 1
* ¥ 3 Eiifnhgiz'f‘ig

Using Eq. (35} in Eq. {34), we have the desired relation

~ T | C—> 4 o . -) + ;B

N i = w =4 5} -c -
<& 1¥, > <w ,[__1}.>+ i eI U)[%)(%)
Taking the complex conjugate of (36} interchanging K_ and k!

and using the time reversal property of the matrix element

dﬁg')l(u -U*)I@i+)) , we have finally
k* . [ .

KT 1% =<Ky +2m Bz ) D

"Eq. (37} can be further simplified by inserting the complete

=(-~) - K'Y ' '

set j[¢» ).@d )fiihig inside the matrix and using the
) (Yl .k" (2.“.)

definition of S-1, Eq. (33) again. The following integral

- equation is finally obtained -

A5 = F B +ami S5, ) « (6)
« (2B e 157> <L (u-Uh 187>

(23

Since all matrix elements are completely on-the-energy shell,

the integral in the above E£q. (38) reduces to an integral our
solid angle only. Removing an energy delta function from all

the operators above, we can then write

— _ T | hg J:{ ) ql. ”
Sppr = Sy * G e Spuy Og CEED (39)

where T is the angle-dependent total cross section introducgd

earlier, Eg. (29). Eq. {(39) is simply a generalization of what
is known as Moldauer% sum rules) in resonance reactions, to the
scattering from complex cptical potential. When expressed in
partial waves, Eg. (3%} reduces to the following relation

—1 -1

kS — 7 )
5 = 5%1 + :%é (q;; (40) _

ar the well-known result

() '
(ﬂg = 1 —| 3& ’2' _ | F51)

The 1mportance of Eg. (392), however, is in cases where 2
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partial-wave representation is not advantageous such as in the
statistical multi-step direct reaction threory of Feshbach,
Kerman and Komﬁﬁa). Since the operator S'1. is required in
the final result of FKK . owind to the use of the speetral
representation of the Green function, a transfarmation of the
type given in Eg. (39) could be of great use. This point will
be fully discussed in Section I?._ _ |

An immediate consequénce of Eq. (38) is a closed
exﬁression for the unitarity defect function SST—1 . Upon

mueltiplying E£q. (38) from the left by S and integrating over

intermediate plane wave states, we obtain the following

&((ssT-0 18> =-wSc'fgi»<“5;!(U’U’t) 12> @

= (‘i-?rEh); “Ek) 0-1(9) (43)

Equations (39) and (43) constitutes the principal results of
this section. In particular, Eq. (ﬂZ) exhibits the deviation

from unitarity of the elastic S-matrix, exemplified by STS £1,

through a deviation of the momentuh transfer k' -k = E , from
zero value. The degree of this déviation is measured by the

angle-dependent total reaction cross-secticn, aR(ﬁ.ﬁ'). Clearly
this function is maximum in the forward direction and oseillatory
vs. B . Its value at B =0 is just the total reaction cross-
section o, . In the next section we investigate in details the

R

behaviour of aR(ﬁ.K‘) for several nuclear scattering systems.

CLih

III. THE ANGLE-DEPENDENT TOTAL REACTION. CROSS SECTION og(k.k")

In this SECthﬂ we analyse and calculate the angle-
dependent tetal reaction cross-section UR(k.k ), which was
shown in the previous section to represent the degreé of unitarity
defect of the optical S»matrig, We consider both nugleon- and
nucleys-nucleus elastic scatterimg. We also test the[sensitivity
of °R to different optical potentials.

7 We take first the heavy-ion elastic scatterlng case,
as if represgnts the least model-dependent case pwing to the -
strong ab;grption that dominates the scattering ﬁrpcess. We

first write:the partial-wave-sum of GR(K'.Q),
('ﬁi{ié} k <: «) ) . > .o :
g W . !IM-U( ey S © (48)

’02_ Zze—H) “szcma) (45)

where TE -is the ath partial wave transmission coefficient
given by
T =t- (=T e
= ,Er._fs_j‘dr ]qzw)] [Im U“’" Co(an
o 2 |

&
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In the above ¥,(r) is the radial wave function in the g th

partial wave. DOwing to the strong absorption exhibited by the
heavy-ion system, one may accurately characterize TR by the
limiting or grazing angular momentum, iq » that specifies the
boundary in angular momentum space between the strong and the
weak absorption regions. For simplicity we write for TR ,
the sharp cut—off form

= — (48)
‘I;_ @(13 {4y | 48

where C) is the step function. Consequently we have for
cg(ﬁ'.ﬁ) the following

L4
i (2240 [T € covor (49)
,kz . . ',i 3
A=z '

Many years ago Blair

O, (&) =
®
7) derived an exact closed
expression for the elastic scattering amplitude of neutral
particle scattering treated within thg sharp cut off model
being discussed nere. Since op(k’.k) has a similar partial
wave sum structure as the elastic amplitude, we shall follow
in below the steps followed by Blair7). We first remind the

reader of the following recursion relation among the Legendre

polynomial

@Le0T, = T — L e

where

A
P/CcaaE}J =
£

Alcos B
Using the fact that P{'):O and P}=1, we have immediately

T € cnrmr)

the desired closed éxpression of Eq. (49}

; /! Vs
oy G FV =5 (T2, )

Eq. {51) can be further simplified with the help of the following
relation between the Legendre polynomials and ordinary Bessel

functions of zero order,

Blwo) ~ J7 (@ k)o] e

Since Rg »> 1 in heavy-~ion scattering, we may place the sum
Pi t Pi ~ 2Pig+%. We thus find, with the help of Egq. (52}

the following, Fraunhofer diffraction type expression for_dR

' ! L }? +1 _.__fé:__;___ ;r
O FF) == S-S Sl

3 2 g +ned
- EL@9+D _ [Q(j—\—ﬂ&

J. L8]
ECQJ_H) 0 :[ | R (53)

- GG
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g

where o (k%) = I (e +1)2 - L Z (20+1) “1is the total reaction
k K

L=0
. CIDS5- SECthﬂ evaluated in the sharp cut-off 11m1t

Clearly at =0, oR(ﬁ'.ﬁ)', Eg. (53), is just
k2)

a = = (£ +1) » @s it should., At small angles (£g+1)

(
R k2
may be identified with the momentum transfer times the inter-

action (strong absorption} radius,

@oq‘*'l)%f_’-hﬁ% =k gékm%)ﬁg LR (54)

In.(54), we have ignored the Coulomb barrier (high energy
approximatian). This restriction, however, can be relaxed by
retaining the (£g+1)9 form and taking for £g+1 the Barrier-

modified form

@gﬂ)g hzfim_%a__]%. .

~where Vg is the height of the Coulomb barrier. Goirig back
to the high energy representation aof (£g+1)8 , we have as a

conseguence, the following

Iy 'JE%RJ s6
0y (%) = 0 (g) = 2[ L (59

The above equation shows that 9 (kr.%& is roughly a function

of the momentum transfer g, on which it depends through the

£18.

fraunhofer diffraction amplitude;like'(J,(qR)/qR). Clearly at
certain values of gR, GR(q) becomes negative rendering

{K'|SST]ﬁb larger than "unity" and thus violating unitarity

locally. By unity here we mean a delta function in 4. On the

average, however, <E-jss*|ﬁ) comes out "smaller" than a delta

function since the interaction is absorptive (ImU< 0). We also

note from Eg. (56) or (53) that at large enough values of gR

or Lg , UR(ﬁ'.ﬁ) becomes pfacfically zero, indicating that

Gz'|S+S|E) hecdmes en the average a delta function (21}36(E¥§'L

Thus, absorption, in the sense of S*S , is not felt at large

values of Eg
In order to exhibit the above features of dR(ﬁ'.K)
more quantitétively, we show in Fig. (2) the result of our

calculation using a smooth cut-off model for T namely

= [j_ + zxf(_’,_aﬂ_ba;:qf_) ]#i S (57)

For the parameteré Eg and A we have taken the values 25

and 2; respéctively. For simplicity we have set k2=1T. We

see from the Figure that the period of angle oscillation of GR

is roughly —————7 , as can be easily evaluated from Eq. (53}.
The envelope Df the oscillation drops faster than that of Egs.
(53) and (51) owing to the nonizero value of A, in Eq. (53).
An approximate analytical expression for UR(E.E') appropriate'

7)

when A #£0 , can be worked out easily. gne finds
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&t = o LUFPI £ raey (50
R 74 éz ,+j%9 4
7
where the smooth cut-off damping function F1(AB} is given by

(when a Woods-Saxon form of T is used, Eq. {57)}}

2
o 668 )
E‘_(AS) — _ {59)
A (7a9)
At large encugh values of & F1(AS) hehaves 1like

% w4 H expl-wa8], which clearly becomes exceendingly small if
& is appreciable,

As a consequence, Eq. (58) serves to distinguish
between cases of strong absorption, (A small and ag large},
intermediate absorption (Q_;arge and Eg large, and weak
absorption (A large and Lg small}. The words strong, intermediate
and weak we are using here to characterize. absorption, refer to
the.éhgular range over which dR(ﬁ'.K)- is appreciable oh.the
average. for example in very heavy-ion systems at above barrier
energies one has Eg >> 1, %L << 1 witﬁ & of the order of
several units of fi and thus, according to our criterion above,
the HI system is a strong-absorption system. 1In contrast,
light-ion reactions, are invariably characterizgd by small lg
{(implying large value of [(Eg+1)9j—% £q. (5B)) and not so
small A (compared to Rg). Thus cR(E',K) is appreciable

over -a rather wide angular (p= cos_i(F'.El) region.’” This

.20,

we call, a typical weak-absorption system.

We turm now to this latter case of weak-absorptiun'
scattering system, exemplifigd here by neutron-nucleus .
scattering at low energies. To be specific we consider n-p160
at 'En = 20 MeV. For the purpose, we use three different
optical putentiéls, proposed to fit neutronenucleus elastic

scattering at 0« En< 100 MeV. These are the Beccheti-[}reenlesa)

9) )

Hodgson-Wilmore” ', and Rapaport10 optical potentials. In

figure 2 we present the corresponding transmission coefFicientsj
In all three cases, T, exhibits features guite different from
that of Eq. (57). There is a very conspicuous maximum at =3,
owing, partly, to the importance of surface absorption in thésé
potentials. However, the two guantities which characterize TL‘
namely gg and A, are still the important ones in determining
UR(B). This we show in Fig. (3} for the three optical potentials

citéd above.

We note that the 180° to 0° anisotropy of
) . y

. _o(180%) -
. O = n——;E——— » 1s four times as large as that of the heavy-ion
a{0™) : ;
case, Fig. 1. In this latter case this anisotropy can be

evaluated exactly in the sharp cut-off model, Eq; (4%)., we

fing

)

R, — (—)"d ' _ (60) -

B (,-l?+ 1)

Clearly,_for VETY heévy ion scattering systems characterized by
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!'g >> ,.

situations UR(K'.E) will have large values only in the small

R becomes very small, This means that in these

angle region. Therefore, on the average (ignoring the -oscil-
lations) heavy-ion systems exhibit weak absorption features at
large angles. It would seem therefore that a reassonable

approximation ‘to UR("k"'.K) valic_l for large !.g , would be.
; ’ S A Ay ' B
OE('ET-#,) = Op 2 (k-k") (61)

However, EqQ. (61) would be valid if the function multiplyiné
on(k.K') in the integrand of £q. (39), namely SEEE" is a smoath
| function of k.k" . This is not the case here since S‘EE" is
expected to be highly oscillatery., Im fact, _in the very strong
absorption-sharp-cut off limit discussed earlier and exemplified
by T, =@(Eg—ﬂ,} , Sﬁ&n is obviously infinite. Hawever, as
we have seen from the numerical examples shown in Fig. 3, the
strong absorption limit is never realized in light-ion scattering,
except in the anomalously strongly absorved partial waves
discussed by Kawai et al.”}.

We consider a schematic model for abs'orptioh which
mocks up the realistic situation of Fig. (2), but which makes
possible the explicit construction of cR(E'.R) and co;;gspondihbly
.Sﬁ&, . This model assumes the following form f‘o:J.:r.the partial-

wave S-coefficient SR ,

.22.
S‘ﬂ = x'@(fg—-i’-} + -@Cﬂ—ﬂa) | ' (62)

namely in the interval &< Eg s S, =x#0 and for & >!.gsiS£] =1.
Then simple calculation following the one used in the evaluation
of Oq in the strong absorption {(x=0) sharp-cut-off approxi-

mation leads immediately to (no real nuclear o Coulomb phases

T are assumed present, for simplicity)

Using the épproximation relating P.E to the Bessel

function, Eq. (52), we may now write (for small @)

1 _Sel N 2 Ju[08] -
A e 2 g [Uye)e) .
T, (k-R) = (1= ),—F(Qgﬂ) e e
= Sk ”)+(—-—'_x>if+nz AL (68)
S TIORGOS Tghe
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The above eguations serve to interpolate, in the sharn-cut-off
limit, between weak (x~1) and strong (x<< 1) absorption
iimits. It should be a simple matter to prove that Eq. {69} is
a solution of Eq. (39), given Eg. (66) and (68). - The modifications
which are needed to make the above .formulae valid in the smooth
cut-off case, have already been discussed earlier in eonneétion
with £q. (58). In fact it suffices to multiply Eqgs. (66)-(68)

by the damping factor F1{AB), Eg. {59}.

Finally to approximately take into account the
1

effect of the real nuclear and Coulomb phase shifts in 8§~
so far neglected in our discussion, one may resort to the néar—
far decomposition of J? s namely the running wave decomposition,
and add to the exponents of each of the two branches appropriate
angle-independent phases. Frahn and Venter12) have devised
methods to evaluate analytically Sk§ in cases wheré the real
nuclear phase shift varies smoothly with 2. The same methads
can be easily extended to the evaluation of S&%,.

Armed with the above discussion and findings, we
turn now to an appiidation_fo a particular nuclear reaction
namely preequilibrium processes. This we present in the

following Section.
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Iv, STATISTICAL MULTISTEP DIRECT REACTION THEORIES AND THE
UNITARITY DEFECT OF THE OPTICAL S-MATRIX

Pre-equilibrium nuclear reactions have been
invariably deécribed in the past several years, as examples -
of statistical multistep direct processes. Both heavy-ion

deeﬁ?{geiasfic‘fé;ci}ons © ‘and light-ion induced pre-equilibrium

‘reactions ére treated as such, In the theory of Feshbach,

kerman and Koonin {(FKK) , the statistical multistep direct

part of the emission is calculated as a convolution of DWBA-
type one-step cross sections, Three basic approximations were
empldyed_by FKK to afrive at their cross-section form. The
first two approximations aré: 1) the use of the on-energy-shell
approximation for the intermediate channel green functions and,
2) reduce the pumber of intermediate momenta (directions) which
are integrated over to N-1, where N is the number of steps.
These two approximations, applied in conjunction with statistical
ensemble ‘averaging, result in a SMD cress section which is a
coqvolution of one-step cross-sections. E.g. for the two-step

contribution is

= k., .
452 I st f e '

@) 2
— A (I)_‘ —_ Pa s — -
d 0 (6,6 ,E) k’t Sdka T Ck.k)- (j"m( k k) (69)
_ ; : _

and the three-step cross section is
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64 0_(3) ket
(g .6 :5,6) =
dﬂ‘; ' 14m2
Ma 4 ~)a o m . (70
© O k) G k) TCRLRY Y

In Egs. (69} and {70), two kinds of one-step cross-sections
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appear inside the integral. These we call and

As one may notice only the last step transition is described

by 0(1) . All other steps are described by 6(1). The

difference between these cross sections is

Q) -
Ol b, o€ 1< 1V 0 > " o
n=—|\

and

G" e ,‘ﬁ)o{l(‘{f IVH“ >l (72)

(0

and accordingly o is a genuine DWBA cross section, whereas

‘6(1) is an "anomalous" DWBA cross-section. In (71) and {72},
v denotes the residual interaction.

In the actual numerical evaluation of the multistep

(1}

cross-section done by Bonetil et al;13), however g was

o1

“taken- to. be exaetly the same as namely the difference
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between (ﬁ(+)i' and (w(")| was ignored. This implies, according

to our discussion in the previous section, and to Udagawa et al.ul
setting S™' = 4, or more explicitly s1(E, &, k) = sk k1)
This clearly means also S= 4, and thus no scattering at all

in the intermediate stages. 'Said diFferehtly, such an apprdxi-

mation is analogous to apprcximétiﬂg the wave functions (ﬁ+ I

" and (ﬁé*)| by plane waves!

Quite recently, however, Feshbach15} brought up the :
questiun of -an energy averaging to be performed on the multi- -
step amplitude, which would, under strong absorption conditions,
render (ﬁ(+)] = {w(')i and accordingly g1 cFi) . He
argued that because of the streng absorption which characterizes
§, resonance-like "states" (bound states in the continuum)
would dominate S~' and thus creating energy fluctuations. The
energy average of this fluctgafing multistep direct ampiitude
would then give Tise to a cross-section of the type (69) and
(70), composed of DWBA single-step cross-se#tinn. ‘Namely

(<¢é+)I)AE . (wé')|. Following the same_réasoning, one would

aléo have (]&ﬁ')))AE = [w( )) since ( )) z 5'1 (+)
k Kk
(see Eq. (33) and (5'1) = 1. tonseqUently, we have
~ s )
L Wy 22,
=) G
=& s 1%y

R8Ty,

A ’
5(12—1#:3 : (73)
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Thus the conseguence of energy averaging is the removal of all
scattering. in the intermediate.stages. Whereas Feshbach claims

that this is a consequence of the physics, Udagéwa_et 31.14)

'16)_cons;der it as a third approxi-

and also Husse;n and Bonett
mation.

We shall not dwell he;e on the justification of
either of the abpve claims, _Rathei we discuss below altermative
means of deriving the statistical multistep cross section within
the two approximations mentioned earlier in this section. For
this purpose we shall use arguments based on our discussion in
the previous section of cR(a) and S"1 In particular,
because of the oscillatory nature of S&?R, it is conceivable

that the cross section 6(1)

.6(1}

comes ouil not quite diFferént
from due tq_what we may call angle-self—averqging {ASA).
As_wg hgyg seen inFthe previqus section, a reasonable
representation of S&&,, which exhibits cleariy itsi ~pseillation

is the.sharpfcut—off_expression, Eg. (&8}

St =[] PG

k k/ (2, +1)®

As discussed earlier, the modifications mecessary for smooth
cut-off absorption and refraction, can be easily incorporated
in (74) following Frahn and Vent‘eru). For our purpose below Eq.

(74) suffices.. With (74}, the anomalous DWBA amplitude becomes
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Ar&f)

ww S -<tr SR TSN
+('—;’L).@a+')1j\4r?" .

CSIRER) e @ |
-W—@ NV > <7§>

where we have used Eq. {54) to rewrite the argument of the

Bessel function. The Fraunhgfer diffraction function J1(x}/x

is depicted in Fig. (4) vs. 8§ = 005_1(E'.ﬁ"). A possible

reasonable approximation which can be used is to set J1(x)/xz

& % §{k*-k*}. This would be 0.K. if the DWBA amplitude oscillates

. much more rapidly than J1(x)/x , within the angular interval

of interest. - Thus we set

ﬂl‘U.ILP:)) :» <4’(—;) IV l+é+l>p-+%{aj+,)1} (76)

- ! “+ NSNS
= - % . :
=< v e |

Therefore the anomalous DWBA amplitude can be
replaced by a normal PWBA amplitude, however, with a renormalized

residual interaction.

Although the faector. that multiplies v, namely

[:L-t- : @;-H) ] | | (78)

“I%
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may acquire large values in heavy-ion reactions which are.
characterized by small x and large. Eg y its numerical value
in nucleon - or light ion-induced reactions could be quite
modest. From our calculation in Fig. {3}, we find for n +160
st E_ =20 MeV, n = 12. We should stress that this is an
upper limit since taking intc account the surface effect
(smooth cut-off) and the real nuclear phases would effectively
reduce the value of Rg (since the function F1(A9) damps
JT(x}/x J. Accordingly one may very well find values for . n
smalier than, say, 2. The multistép cross section, then
becomes, taking as an example the three-step contribution

3 . 2 : A
4o E 1 E,E,) = b ki fz‘*,fdkjdﬁz .
dg;. ) e lE7wE? i

m ¢ | '
: O"(ﬁ;,ﬁz)'o‘”(t‘zm,)-c&‘m(ﬁ,,'ﬁ.;) 7

Thus, in order to proceed, one has to first perform a careful
analysis of ‘the factor n, considering realistic optical
pﬁtentials. It is quite conceivable that the numerical values
of n relevant for pre-equilibrium reactions dominatéd by MSD
processes, are such as not to jeopardize the convergence of the
.FKK muliistep series.  The remaining part of the calculation,
namely the evaluation of the convolution integrais, is exactly

13)_

the same as the one performed by Bonetti et al. 0f course
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special case must be taken when confronted with cases of
anomalously strong absorption of a particular partiai wave of
the kind discussed by Kawai et alji). On the average, this effect

would increase the value of n (reduce the value of x ).

Convergence problems may arise in such cases.
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V. CONCLUSIONS AND DISCUSSION

- In this paper we have derived transformation

relations’ invalving the scattering wave functions [¢£+)) and
(=)
- ,
With the aid of these relations we were able to derive a new

7 and their respective dual states ]$£+)) andklﬁé')).
relation in scattering theory involving the conjugate of the
S-matrix and its inverse. The basic guantity that enters in
this relation, Eg. (39) 1is the angle dependent total reaction
eross-section UR(R.R’}. The properties of og is then analysed
in the context of nucleon-nucleus and nucleus-nucleus scatiering.
In light of these results, a rather complete discussion of the
properties of S'1 “in momentum space was.presented. Closed
expressions were obtained for Séfﬁ and GR(R.Q') in the
sharp cut-off approximation.

The results for S&JQ were then utilized in the
development of a slightly modified statistical multistep direct
cross-section, which involves convolutions of single-step DWBA
cross sections, just as in FKK, but with 2 rencrmalized residual
interaction. It was pointed out that special care should be
taken in cases of anomalously strongly absorbed partial waves.
The renormalized residual interaction in such cases may become
sufficiently large to render the multistiep series slowly

convergent.

It would be important to perform a careful analysis
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of the renormalization parameter, n, through realistic optical
model calculations, keeping in mind the eventual construction
of a more realistic closed expression such as the sharp cut-off
form, Eq. {(74). The numerical investigation of our theory is

in progress and will be reported later.
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FIGURE

CAPTIONS

fig. 1

Fig. 2

Fig. 4

‘- A 'typical heavy-ion g (§), see text for details.

The dashed regions represent negative. values of cR(Q).

- Typical n ¥160 elastic scattering transmission
coefficients at E, = 20 Mev. Thé results were

cbtained wifh the optical potentials of :Refs. 6-7.

360‘, E, =20 MeV, for the optical

- op(@®) for n+
potentials of Refs. 6-7. The dashed regions represent

negative values of -UR(G);

~-ThHe function Fi(x)/k vs. x, see Egs. (65)—(%8);
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