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~ABSTRACT A general theorem concernlng any Godel type solutlon aof

: hlgher derzvatlve gravrty field equations, whlch may he” produced

by any reasonable physrcal source with a constant energy momentum

tensor, is aoalysed. The resulting class of metrics depends ‘on'

two parametere, one of which is related to the vortlcity.A_general
clhss;of solutions of Gﬁdel-type'spaceutime homogeneaus universes
.1n the context oF the hlgher ‘darivative theory is exhihited. This

'15 the most general hlgher derlvatlve SDlUtan of such tyse = of

metrlc and includes all known solutlons of £instein’ s equations-'

=related to these geometrres as a specral case. A number cf - com

pletely ‘causal rotatlng models is ‘alsa: obtalned Some of them pre

sent the 1nterest1ng Feature of hav1ng no analogous in the framg"

work of general relat1v1ty

PACS Uﬂ 60, i Quantum theory af grav1tat1on
PACS. 0G4. 20 Jb Solutions to equations

PACS. 98.80.Dr Relativistic cosmclcgy

'51dered as a very attrac

1. INTRODUCTION

Geoeral relat1v1ty w1th hlgher derlvatlve terms has been con:
-4 : o

gravzty. The theory 15 deflned by the actlon

- dax ._.g £%+ %_-{;GR,_: , -. . 7: g (11)
where a and B are dlmensionless coupling constents {in. naturalp'
unlts), * and A are the Elnstein end cosmologlcal constants, rgd
spectively, and b is the. matter Lagranglan den51ty The corre

sponding field equatlons are glven by

Huv==,"Tyv ’ - {'3;1f? , __y;. ; .’i' 'Eﬂ" SAr.2)
Hpv = % (Ruv - %;Rgpv}:+f% épu
:aleoﬂ=qu . ;ﬁguv‘g‘rQHQegy;elévﬁun3 : | ' (1;3i.‘
b s{-zoﬂu; - Rgeﬂbﬁéﬁvlteagppegﬁog=_:gpyuﬁ-rzvuvpﬁ),'
with trace
T = %-f;%§ +Ed(3e*+;s)oﬂ. ) e L . __‘;(AJAS'

For ‘the doentuM'FieLdjtheorist:thie'higheIQderivetive theory

"k
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- has the great advantaqe'of‘beiﬂg rehormalizable by power cmrmingn
whereas, as it is well known, classical general relativity i's
clearly perturbatively nonrerormalizable by power counting ln
four dlmenslons5 6.

' tloned theory may be considered as.a possible generallzatlon of

ElnStEln'S general relathlty,'ln the sensé that it respects the

geometrlcal oature of! grav1ty as well as 1ts gauge symmetry (in

variance under general coordinate.trsnsformetlons) Recent work

.has shownﬂ 7- §2

that the presence cf a-.ghost responsrble -fo;, a

nseudo-nonunitarity oﬁ-the thecry,.which was considered its achii
.les‘s-heel 15 ng- more a vulnerable point of: lt The reason  is
that the ghost is unstable In splte of the previously mentioneo

virtues, comparatlvely 11ttle is known about fourth—order gravity

theory. Of ,COUTse a better understandlng of its behavrour is of-

vital interest to those worklng on quantum gravrty and in particu
iar, quantum cosmology~ Consequently, the 1nvestlgatioﬂ .of cosmg
logical models in. the framework of hlgher derlvatlve grav1ty s

well suited.

Here we wLSh to focallze the 50— called Godel type unz.verses13

'These models are defrned by the line element
ds? = [dt? + H(x)dyl? - D*(x)dy? - dx? - dz?, s (1.5)
.and. are’ such-that.in case

S . (e

In: the pure: classical framewerk, the aforemen.-

3

14

we rTecover GHgel's-umiverse'’,which is a solution of  Ejinstein's

'equations with an energy-momantum'tensor glven-by

Mt o2 28 = wp = 207, 1Ty
where_o is:the cohstant;density‘of matter,_vg_ls the fluld Four-
~velocity, and @ is the rate of rigid rotation: of matter . Qur’
choice for Godel-type models is dlctated, first ot all,_py_”their
simplicity,_which Will allow us to'accomplish the formidable task

of finding exact solutlons of hlgher derivatlve gravlty fleld equa“

‘tions, in the case of models that are homogeneous 1n space :and E

time (ST-homogeneous) And secondly, because this analy51s _will_
glve us the opportunlty of answerlng a very 1nterest1ng questlcn, »
i..e., what happens to the oausal pathologles of these unlverses_

when quantum corrections are 1ntroduced in the stendard general

'relatlvity theory

We organlze the paper in the following way. In'section 2, we.
present a general theorem concerning any Gidel-type solutioo " of-

fourth-order gravity fisld equations with constantxenergy—momatum

tensor. The resulting class of metrics is characterized by two

-parameters?'ooe of which is relateo to the rotation of tha matter_

relative to the compass of inertia, Of course, any reasooable phys'

Jigal scurce will put” restrlctlons on. these parameters- through the_

"hlgher -derivative equatlons Taking lnto:account the last .consid
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eration, we shew in section 3 that a gecmetry having as source a
perfect fluid plus a massless scalar field and an electromagne
tic field can fit the parameters of the ST-homogeneoue GBdeI-type.
universes. This is the most general ‘higher-derivative solution
concernlng this type of ‘metric and includes allkncmﬁsohmionsofElns
tein's equatmns related to such geometnes as a spec1al case,. On th‘e
.other hand, contrary to what generally happens in Exnstein's_thg
ory, the Testrictions on the parameters of the ST-homogeneoes_ GQ
_del-type mddels, imposed.byethe soufcee through the higher;derivé
‘tive:equatigns, will proQide usreith a ﬂumber of solutions which
“cortain no cxosed'time;like lines, 1. & - that are completely cau
sal. We will lock 1nto this subgect 1n a comprehen51ve way’ in the

last sectlon
2. A GENERAL THEOREM

In order te facilitate our calculations, we shall use a class
af” locally statlcnary observers represented by the vectors e(A)
deflned by GA = (A) dx , wherein the 1-forms GA are given by

o0 = dt « HOOTy, 8 = ax, 6% = Dix)dy, 07 = dz.  (2.1)

(Capitaljletters are tetrad indices and -vary from 0 to 3 angd- greek
indices are tensor indices). As a consequence, the vectors e(A)a,
assume the form

1'=e 3=j|,8_'2_=‘H,E 2.=D, B £2.2)

and the geometry'(EZS}”mey,be written as

. A.B
ds? = nug0"e° .

(2.3)

‘where n,p = diag{+,-,-,-).

On the ather kand, taking into account fhet ox®’ = eaEA)eA,we

" get immediately

0 1.3 ..o _ _H 2 .
B CIANE PRR N € R R ¢ Tt I R ¢ S B

We shall also need the Riccl coeficients of rotation defined by
A C(A)

X BC = -© ;a;Be (8)8° () - o ) = - 7(2.5)

" [We use the comma for partial derivative, the semicolon’ for: co

variant derivative, and the bar for tetrad componénte-of covariant

: ; s : _ s a ;
derivatives. for instance, RABIC = RAB;ae cy “'RAB,ae (Cj]' From
(2.2) and (2.4) together with:.(2,5) we'get the following nonvan
ishing components concerning these caoeficients

o _ .t .1 2 z- - _ .0 _HY
Y12.5 Y02 S Y20 Y01 =Y 10% " Yoq T 3F

2 o1 S . o '
-Y12=-Y22_F" i (2.6.?

where the prime-denotes diffeténtiztion with respect to x. -
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In the local inertial frame defined by GA = e(A)adx? the.
higher-derivative gravity field equations, Egs. {(1.2) and (1.3} ,
take the farm

- _ 2,7
Hag = - Tag . (2.7)

[

: 1 :
ag: = %. Rag — 2 Ropgd + 3 npg

+

2 o CD M
al-R Nag * 4RRA8 - ﬂnnan -(Rlch -y CDR|M)

' M ' cD oo
4(Ryale = Y ag® M + BO-RTRegngg + 4RpepgR

-+

€D M _ M
- 7" Riejo = YeoR|u) + 2(Rq g - YRy

Do CDrn M Mo
=2 Ragicio - (Y acRMa|n * Y acRamo

COM M M SN
< * T acio®me * Yecio®am’ - Y ap(Rua|c T Y McRis

- N

: oM . N N
- YecRun) = ¥ pofRampe ~ Y acRm o Y

McRan?’

M N N L
-y CD(RAB|M © Y amPng - Y aMRan?ll - (2-§)

We are ready now to demonstrate the following general result.

Theorem: Any Gdédel-type solution of higher-deriﬁatiﬁe dgravity

field squations Hyy = - T,o, haVi”Q:SS séurcg of the geometry any

field with TAB ihdependent'of the points of the space-time, is

space-time—homogeneuus up to a local Lorent? transformation,

Proof: The only surviving dcmbohéﬁ€§ of'HAB (Eq.(2.7)) relatsd.to

Godel - type metrics (Eg.{(1.5)) are

R CEL CE ICIRE T A0
CeBE) )8 EE T e

S I NEEE ol O NRRE N AR 8 o
SEEE 8. ew

-.[H']z ML %] - & 4 ol-R? - 4R - R(H'/D)?]

IO CLRC T

ju nd
1l
|
e
ol

Hog

x
1
T
i.ll-
N7
ol

22 °

+ B
H' Dt ‘Hl ' H! Hryn H'Yy 2 A -
- EEJ -5 B PEJ + QEEJ T ¢ (2111)
Hyy = 3o Ly arre wospe - 4 B gy 3 (10 S
33 %2 -5 v alR? - ER R bl by SR
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‘wherg-

. 'I 2 Dlt R h ‘

R = f-ﬁﬁﬂ S22 o . (2.14)
The assumption of TAB constaht, however, 'implies that HAB is
cohstant-too. 0n the other hand, it is not difficult tb see from

the ‘abgve eqUatiohs that HAB is constant in case we have
T o ’ D" B ' 2 - :
= canst = 20, 5 = const = m? . : c (2.15)

These are precisely the necessary and sufficient conditions
to'a Godel-type metric ‘be space-time—hdmogeneoU515’16.QED.
Thus the whole class of solutions with Tap COMstant is charac

terized by the two independent parameters m and . It is not dif

. ficult to show that the last parameter is related to the vqtticify.

5

In fact, in the local'fiaﬁe,bohsidefed,.the:ratation may be writ

.ten as

R T TN BRI St SR s IUX: IR P
copg =7 [ = vag) + S - gl o (260

far & velocity field given by

Ty o= @ 0:50 . 7 o _ '_ (2.‘177)..

As a chnsequence, the vorticity assumes the form -

[N

w

. i L : o tz.18)

ABCDm

It follows then that the vorticity vector o = € Yy | is
given by ' ' C

$* = (o,0,0,0),
where 20 = H'/D. , _ . C H2aa9)

3; A CLASS OF HIGHER-DERIVATIVE GODEL-TYPE SOLUTIONS

It is reasonable to question, ab initio, what material u“cog
tent we may consider as source of our geometry, in order to obtain

the most general higher-derivative,Gﬁdel-type solution, i.e., 7 a

solution which includes ail known solutions of Einstein's equations related to
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such geometries. The answer.is stralightforward if we appeal to a

6, Ihere, they’ exhibit a remark

recent wark of‘Rebougas and Tiomno1
able class of exact solutions of Einstein-Maxwell-scalar " Pield
equation which is the“most'general;solution af a-GEdel-type ST-

—-hompgeneous metric. So we consider a rotating universe (8 = 0}

for which the material caontent is & perfect fluid of density pand .

pressure p'plus a source-free electraomagnetic field FAB and a
massless scalar field S. Conseduently, the energy-momentum tensor
in the tetrad frame becomes

(8) - L(EM) .

'TRB = QVRVB -_p(nAB.__vAvB)-+_TﬂB + T_AB ; {31

where
(EM) _ 1 _ - .CD M
Tag” =% Feof Mag - Famfp o
. (3.2)
{S5) _ 2. o - _ 1 e MN o
Tag = S{a% - 7 MM -

and v is given by Eg. (2.17).

The Maxwell egquations econcerning the source—freer‘electromag*

netic field are given bj

. _AB A M8 B _AM- - "
F IB + Y HBF' .+.? M8F =0,

Frasjcy = *urcY asj = 0 - : (3.3)

11

whereas the zero-mass scalar field equation is .as follows

AB. M . AB.  _ : .
nUS|ags < Y oasn SM= 0 (3.4)

The brackets deqofe total éntigyﬁméffi;atich... 7

"On the cther hand, the factrwé‘are'requifing‘spaceitime_Homg
geﬁeity of the Godel-type models imblieé that:TAB'is'constant(cf,
ﬁheofém in the last section). We remark alsd that-we'have a- pre
ferred diraction in-our universe determined by the rotation.Taking_
inteo account ﬁhe above considerations we can seek solutions af
(3.} )y and ( 3;&),.respectively, related_to_our model,Let usfirst‘
considef'the electromegnetic field. Since it is not a pure ' tesﬁ
field but also acts as scurce of the curvature, it must then': bé'

compatible with the space-time symmetries. As a conéequence; ' we
N Y k : .

-

are led to take both E and B along the direction of rctation.Thds;

..the only nonvanishing components of FAB are

Fig = - Fg3 = E(2)

Fag = - Fpq = 8(2) o (3.5)

Using (2.6) and (3.5), equétiogs (3.3) reduce respectively to

s
\
+
UFE
m
1l
()

I

By - E=0." S ey
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o . _ : o ' . 8l128% < 2n% - Bmr0?] D o 3.11)
But, since H'/D = 2R(ST-homogeneity), the general solution of Eq< o ) o S :

(3.6) can be written as

As a rTesult, the higher-derivative gravity field éﬁuations

E = £y cosl2n(z - 21 , : : , feduce"to the-folldwing‘set offtpgée.equations
' : : : B0 3., & By o ok oy 4 oy pa
B = Ey sinl20(z - zy)1 , - . . L 3.7y p=5 -Fat - - 72m {24 ¥ B) +_Vit§l (o + 38) + 0%/un, (3.‘12)
E az A 4 4 . ;a .
- where E, and Zd are constants. In the case of the massless scalar pr-m v+ s+ (20 +'B? v 128 (é + 38)

field it is trivial to show that if we take

S~ 16 2'm? (o + B) + Qf/w o, - _ L (3.13)
‘5 =az+hb, . . {3.8) . _ L s
' : D=6 0% (a4 38) 4+ 4nf(20 + B) = 28mQ% (o 4 8)
where a and b are constants, we can satisfy €q. (3.4 ) as well as g
_ ‘ _ . R _ R S L SR YA
the space-tims symmetTies. : ' ) 2 ® _EO v e - ' . ' S . i
Now, the ron-null components of H,., for the ST-homogereous G ‘ ' . : : o o N ,
" gel-type metric are ) : | _ The pesitivity of energy and pressuré is QUa;anteedrzf;: Fhe

cosmological constant satisfies theArelation

[-302 + m?] + % ¢ al-200% - 4 0% + 200707} : .

o= 1 .
S0 T w 4 4 o
= 128 (a +°3B) -~ 2m {2a + R) +_16m’ﬂ"'(c1 + B)
+ BL-6007 + 2am?*p® - 2m"] , (3.9 £ i . .
B ' . v - B L A s ugha 4 38) - 2nf(20 + B)
_ R A PP T S
Hyq = Hop = 5 [-2 ] - Tt a[7129 - 4n” 4+ 160 m7] £] 5 Qs . .
rgomFat e L (3.15)
‘ 4 .olzoz 4y ' '
+ B(-380" + 16m2R% - 2m”] , i (3.19)

which implies that

P - EERIL S N S 7 Y SR DL : . _ .
. | ‘ S _ 4 H

8O (v + 38) & QF E} - 8m?{qy + Bﬂ -&% 2o, : (3.1¢)
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the eqbality having as cenasequence

g2 N . - i . .
Ao B2 gopt(a + 36) + 24 m77(a « 8) - 2n(2a & B)
' S ' (3.17)
Equations (3.13) and (3:1&) iﬁply in an eguation of state

' p = yp for the casmic fluid, whérein ¥ is a caonstant. The ‘Lichneg

rowicz congition, O < ¥ LR . wi;l be ensured if

==

A
m
N|Sn

- a? - Zma(2a + B) - auafu + 3B) + 892m2(a + B) ,

7 (3.18)

V'thch is consistent with (3,15) and (3.16). '
‘fn the integration of Egs. (3-51)-(3-{ﬂ) three cases arise s

according aé m®* is >, < or = 0. In order to make easier the 'com

parison of ouf results with those of the ;iterature, L expreés

our solutions in cyliﬁdrical coordinates. Of course, Godel - fype

metric in.cylinqrigallppo;dihaﬁes,_1.83,
ds? ;.[dt ;_H(r;dé]’ - DZ(r)?wzi; dr? - dz?-f . .‘(3.190
is ﬁretisel& of thé form (1.5). Godel universe correspondsrtb
2/

CH(T) = == sinhz(%;)-{

o(r) =-§iﬂgéﬂil \ (3,200

where & is.an angular coordinate. We also call attention to- the

15
fact .that the theorem of section 2 is valid mutatis mutandis.

“In case I

22
E

[160% (ar38)+4nt (2048)-26m207 (a+B) + - Ej +at=n® > 0]

we-obtain
ds? = [dt + %% sinh? F%J dol? -,ﬁg sinh?{mr)de? - d¢r?® - dz?i -

(3;21)

Here ¢ is ta be regarded'as‘an-angular coordinate, iIn fact, Eqs,

.k3.21) satisfy Maitra's conditions for Iegulﬁxity near the origin

17, i.e.,
. "H ='r?* x-cohst, D ='r.
- We also.have'that the relation
Q7 ES S o . " ‘ . - .
S T - 897(e+3B) + 102%m*(a+B) - m-(204+B) (3.22)
. holds.

Case I1

[160%(a+38) + 40"(20+8) + 20n%0%(asp) + 2 gz 4 a0

= =-nf <0,.m* = - n* < 0]
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correspdnds to the following metric:

ds? = [dt + %@ sin? ng-d¢3’ -'512723 de® - dr? - dz?,
. (3.23)

‘The relation '
EZ 5 2a% + Bn2Q7(asB) + 4n(2048) ‘ (3.24)

holds. Eq. (3.23) is.an analytical extension of Eq. (3.21) with
m + in. We femark that our coordinates are true cylinaripal :codz
dinates, i.e., they satisfy Maitra's conditions.

The remaining case, m* = O, may be considered as a& limit of
the first (m2.+ 0) and the secand (n? »10) cases |, :espéctively.

The metric is given by
ds? = [dt +Qr2oe] - r?dé? - dr? - dz?, (3.25)

In this cese the following relation holds

457 20

‘We have thus succeeded in deriving the most genéral higher-

-derivative solution concerning S$T-hamogeneous Godel-type uni
verses. As we have antecipated, our salutions are such that we can
recover from them all Known solutions of Einstein's equétions éog

cerning such geometries. Indeed, as «,8 + O, we chtain Rebougas

<. 3204 (asr8) 2 El = 50 + a® + t60*(as38) 2 2a2.  (3,26) .

7

16

and Tiomno .solution ”, which ;ncludes all.known solutiaons of Eing

tein's equatiens relaté& to these geumetries.[Fér instancey when
14

®,B,Eq,a > O, we get G&cel solution'® with m? = 28*(cf.£q.(3.20}),
If a,B,a,m - O we recover Spm—ﬁbycﬁaudhuri metric183 ___Banerjeeer
-Banerji19 as well as Rebougaszo saolutions ‘are obtained _ when:

a,B,a = 0, noting that the first-one.conqérnsﬁto a‘charged':fluid

énd thus the electromagnetic field is'diffeyent from that of the

second one, but both have the same T(gg), and so onzf'za.]we also

remark that Riemannian Godel-type ST-homogeneous metri;s with the

same value of m* and n_are_isometricjs.

We have analysed so far the fourth-order gravity sblutidns_
from a classical point of view. In this sense, the parameters_ e

and B are quite arbitrary. However, in the frémgwork of quantuym

field theory, the situation is rather different. In fact, . the
higher-derivative theory contains two mass scales 2~ (%222 - asso
ciated with the spin-U and spin-2 particles present in the -kin
" earized theory} They are given, respectively, by
m§ = 1/2u(30+8), _ E . . ';7) (3"27}_
and
S TN 727 L (328
“The spin-0 particle has significance evén_in'ﬁhe‘nonlihea: ‘seg 7

tor26;
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"'Thus, nontschyionic spin-0 and spin-2 particles, require
(BQQB) fd_bé positiﬁe'and 8 to be negati#e, respectively. Conse
queﬁtly;iheSE reSfrictiods'dh £h§ parameters o and B must be in

clueded in our solutions.

4. ROTATING GUDEL-TYPE UNIVERSE WITHOUT VIOLATION OF CAUSALITY IN
" HIGHER-DERIVATIVE GRAVITY '

It is intefestihg to consider the question of closed timelike

lines in our soluticns. To accomplish this- we writerEq. (2.38) in

the form
ds? =“q£2 foHd¢d; ;_Ldéz-'.dfzi— dz?, = ‘_” . (4.1)
;here
() = D* WL - o | (4.2)

Cieafly, 1f £(r) becomes negative at r, < r < Loy then the ﬁurve
§§fineﬁ by r,t,z = const is.a_clqsed.timeiike trajectory.The exis
tence of such curves: poses a difficult problem related to the pos
sibility of_violation,ef-tﬁe well—estéblishéd causality principle.

In our case,; when m?* >0, Eq. (3.21) leads tor'

L(x) = miz sinh’: [%) [1 - [%172 . 1] s.inh"_ [1“-25]] . (4.3)

Consequently,:unless

© 19

m? 2 oant, = (s

L{r) will bgcome-hegative‘For

mr .M.V - T o
: sinhz[—z%}f> 1//[ﬁﬁ2 - 1] . (4.5)

Thus,-the limiting case'in which the noncausal region will'

disappear correspands to m? = 407, On the other hand, a straight
forward calculation gives the following relation in the case of
our solutions with m? > O:

40 > m?
b H

It

- 320%(as38) + 40M?Q%(04B) - 4n%(204B) . (4.6)

Undoubtedly, the solution m? ='492 is compatible with- the
preceding inequality. It folldws then from {(3.14) and (3:.16) that
20t

2. 16(3a+8)0% - £} + a% C(4.7)

¥
(=]

- 16(3asg)Rt + B a2 2 (4.8)

-Cansequently,

£z =0, & < ar v 1603asp)0". _ (4.9) -
Now, from €g. (3.17) we get:

| .
< 4(aep)nt - 2T (4.10)

s
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-and from Egs. (3.12} and (3.13)

p:b:[] . : o (4.11)

Admitting that 16n*a®(3u+8) < 1 and taking into account that

(3a+8) must be positive in’ order to avold the tachyornic spln—U

part1cle, we obtain from Eq. (4.9) the following values concern

ing.Qza
afey = [1 - VT - Ten7a?{Fa+B) 1716(3a+R)un , (4.12)
2%q) S 01+ YT T TETET(355EY 1/16(3asB)n . - (4. 13)

when (3a+8) =+ 0, REC) -+ E§E , and we recover Rebougas and Tiomno
' 16

;SDlUtlUﬂ , which is the only known exact Gddel-type solution of
Einstein's equations deseribing a completely causal space-time

. homogeneous rotating universe.

We have thus succeeded in finding two completely causal rp

ta;inp splufions;we should like to mention that the_solution con

cerning ﬂfq) has no classical analogous, ahd it is, as far as we

know, the first known exact solution of higher-derivative gravity.-

field equations with this characteristc. "Classical" here  means

wfrom the point of view of general relativity". On -the other hand,

Jit is not difflcult tp show that in case m £ 0 we can not have

'ccmpletely causal solutlons

Last but not least, it is intefesting to question if the

21
causal pathologies of these universeereanrﬁe'aveided in the ab
sence ¢f the scalar Field. The answer is yesﬁ-Iﬁdeed cur previcus
results provide us with the completely causal rotating SOlUtlUn R

in case a? = 0 and m? > 0:

‘2"- 1__"_1___ -_2 '_ _' .
2 —m— i ,.I'\-— 29., p_.p_O. ("1_.1&)

" We point out that the abpve solutlon has no 51mllar in . the

framework of general relat1v1ty.
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