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ABSTRACT. A completely causal rotating Gddel-type universe is

obtained in the context of higher-derivative gravity.'The solution

is such that it has no similar in the framework of standard gen
eral relativity. The aforementioned solution presents the interesg
;iﬁg feature of relating the mass of the nontachyonic spin-0 parti
cle, concerning the linearized higher-derivative theory, with the

velocity of rigid rotation of matter.

PACS. 04.60.+n Quantum theory of gravitation
PACS. 04.20.3b Sclutions to equations
PACS. 98.80.Dr Relativistic cosmo ogy

- I. INTRODUCTION AND SUMMARY

Aé it is well known, Einstein's'equations admit unphysical sdlg
tions whose global behaviour violates some requirements (strong
causality, time orientability, etc.)1. The most outstanding exam
ple of such a kind of solution is provided by Gddel's metricz.The
former is a solution of Einstein's equations (with a nen-null cos

mological constant A) of the type

ds* = [dt + H(r)del? - D*(r)de? - dr® - dz?, (1.1)

‘which, following Rebougas and-Tiomno3, we shall call Gddel - type

mz

metric. Gadel solution is obtained when we set H(r} = il sinhzﬁ%q

sinh (mr)
m

-momentum tensor is that of a perfect fluid with a constant densi

and D(r) = , in case m® = 2Q°. The corresponding energy-
ty of matter p and vanishing pressure p. The congruence of curves
cemoving with the fluid is shear-free, has no expansion, but has
a constant non-null rotation 2, which is just the achillet's -heel

of this model. In fact, the existence of such non-null v0fticity

.is responsible for many unusual features of Gddel's space-time,

among which, the most notorious one is the existence of closed
time-like curves. .

In recent years, quite a lot of metrics of Gﬁdel—typea'11, with
all sort of matter content, has a'peared in the physical litera
ture. In a sense, the leitmotiQ ",;f these investigatiens is the

search for a causal Gddel-type universe. In spite of this consid
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erable effort towards this goal, as far as we know, the solution
of Rebougas-and T;‘u:n-nnoll-I is the only known Godel-type solution of
Einstein's equations describing a completely causal space-time
{5T)-homogeneous rotating universe. In this remarkable solution,
the introduction of a massless scalar field is the price for not
having a breakdown’ of causality.

On the other hand, the so called higher-derivative gravity hias

bheen consjidered as a nice candidate for a theory of quantum gravi

ty12-15 since. the last decade. The théory is defined by the ac
tion
_ 4 - R A 2 uv -
I =17 dx/-¢ [I + 5+ oR? & BR RVT 4 Lnl o (1.2}
where o and & are dimensionless coupling constants (in natural

units), » is the Einstein constant, and Lm is the matter Lagran

gian density. The correspending field equations are given by
G --,-T ' ‘ . (1-3)
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“with trace

3
4h

Ll 4(30 + B)OR, (1.5)

=0

This higher-derivative theory has the great advantage of being
renarmalizable by power counting12, whereas classical genéral rel -
ativity is clearly perturbatively nonrenormalizable by power

16’17. From the classical point of view

counting in four dimensions
the theory may be considered as a possible generalization of
Einstein's general relativity, in the sense that it respects the
geometrical nature of gravity as well as its gauge symmetry {in

variance under general coordinate transformations). Recent work

has shown that the arguments traditionally used to reject this
fourth-order gravity theory as a viable possibility,i. e., its
pseudo~nonunitarity does not proceed15’18_23. The reason is that

the ghost contained in the theory, which has haunted the quantum
field theorist's mind for & long time, is an unstable one.We note
for future reference that the thebry has eight totél degrees of

12-14

freedom Two degrees represent a massless spin-2 particle, a

graviton, Anather degree is a spin-0 particle with mass

m ? = 1/2x(3a + B) . (1.6

The former has significance evern in the nonlinear sector2a. The

remzining five degrees of Fréedom are related to a spin-2 particle

with mass

M2 = =1/u8 . : ‘ (1.7)
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So, in order to have nontachyonic spin-0 and spin-2 particles,
we shall require {3a + B) to be positive and 8 to be negative,
respectively. -

Thus, we may wonder what will happen to the causal pathologies
of ST-homogeneous Gddel-type universes when quantum corrections
are intreduced in the standard general relativity theory. To
answer this guestion we proceéd as follows. In section 2 we exhip
it a‘class of gxact solutions of the higher-derivative = gravity
.field equations, coqcerning ST—homoéeﬁeous Gddel-type universes ,
whose source of the geometry is a perfect fluid. These solutions
are characterized by two parameters, one of whieh is related to

the rate of rotation of matter. The next section is devoted to

the discussion of the breakdown of causality in the universes

under consideration. A first consequence of such analysis is the

fact that among our solutions there is one which is completely

causal and has the remarkable property of relating the mass of

‘the nontachyonic spin-0 particle (microphysics) to the constant

velocity of rotation of matter (macrophysics). We conclude - the
paper with some interesting observations about the results ob
~tained. -

II. MATTER CONTENT, FIELD EQUATIONS AND SOLUTIONS

We choose a tetrad field e(A).(x) such that the line element

(1.1) can be expressed as

5
ds? = n,g0”eB
=@ - D - eHr - geHr,
Wheie the‘eA = e(A)adx are giveh by
T.QU = dt +‘H(r)d¢, o' —dr, 02 = D(r)de, 0% = dz . .  (2.2)

‘Here capital latin indices are tetrad indices and run from O to 3,.

whéreas greek indices are tensor indices.
The matter content of the model is a pérfect fluid. In ‘the

local inertial frame considered, an observer comoving with the

fluid is assumed to have the four-velocity

iagh, ' _ ' (2.3)

which correspdnds to a matter veloeity field e(A)O. benoting by p

-and p the density of matter and the pressure of the fluid, respec

tively, as measured locally by the comoving observer (2.3), the

. energy-momentum of the fluid can be written as

Tap = (9 +p) Vavg - Plgg- ' (z.4)

On the other hand, the non-null components of GAB for the

metric (1.1} are




N

®]|—

=4

L] D'
)+2-ﬁ-[

wheére

R :% (RYD)? - (20")/D , ' : (2.6)

and the primes denote differentiation with respect to r.

Following Gddel stép52

, we restrict our amalysis to the case
of a perfect fluid with constant density of matter and constant
pressure (Gidel original work is concerned with a'perfect _ fluid
with vanishing pressure). Consequently, TAB is constant. However,
Tpg constant implies that HAB is constant toe. Now, the preceding
.equafions show us that Hpp 1% censtant provided that

HI D" : 2 .
o = const = 2@, o~ = const = m?, (2.7)

Taking into account that Eqs. (2.7) are the necessary and  suffi

cient conditions te a Gidel-type metric be spaée-time-homogeneous
10'11, we conclude that our models are homogeneouws in space and
time. We remark, en passant, that any @Bdel-type solution -of
higher-derivative gravity field equations HAB = - TAB’ with TAB
constant, is ST-homogemeous up to a local Lorentz transformation.
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Thus, our SDlUtlDﬂ is characterized by the two parameters m? the cosmological constant must be bounded within the interval

and @, where the last one is related to the vorticity. In fact .

the vorticity vector -120%(a+38) - 2n%(2048) + 16m*02 (a+B) - 22/2 £ A/ S 40%(ae3)
A _ 1 .ABCD S : : :

o= € " wgevp ) o K .-- 2m4(2a+8) + Q% , ) - . .(2.12)

is given by : - which implies that o o o " .
= (0,0,0,8), ' (2.8) . 82%as38) + @%/x - Bn*%(as8) 20, _ _ L (2013)

where 20 = H'/D. _ ‘ ) the equality having as conseguence

As a result, the higher-derivative gravity field equations .
for the model - M= - 203/x - 200%(as38) + 260707 (asB) - 20°(20+B) . (2.14)

HAB = =Tags In the 1ntegrat10n of Eqs. (2 93-(2.11) we have three dlffer

ent classes af solutlons The flrst of them corresponds to

Teduce to the folloeing set of equations o
| S C160%(as38) + an®(2048) - 2407m%(asB) + 20%/w = m® > Q. (2.15)
p = 0t/x + 40%(as38) - 2n%(2a+8) - A/n , (2.9)
| | The metric is given by

2w o+ 1294(a+38) - 1622n*(a+B) + 2ma(2a+6) + A/ ,{2.10)

L
.|

. : o ? = [{dt « %% sinhz(-"%ir-)d.fb]2 - ;% sinh?(mr}de? - dr? - dz? ,
mu = 207/ + 162°(ae38) - 24m2027 (asB) + 4m7(2a48).  (2.11) 7 7 o (2.18)
and the following relation holds

.. In order to have physically significant solutions we must gua

rantee the positivity of energy and pressure. To accomplish this, 02/u > - 82%(a+38) + 100%m*(a+B) - m (2af8) . __(2.17}




The next class of solutions is characterized by

_ _ ;
160% (a+38) + 4n%(20+B) + 260707 (0sB) + 3%- = - n? <0,

Q. | (2.18)
The corresponding metric is as follows:
Cds? = [dt + 42 sinc ngd¢]= - §i%;££ do® - dr? - dz%. (2.19)
We alse have that the relafion
'6“(2§+B) + 20202 (ard) < 0 - (2.20)
hnlé#. ¢lear;y,'ng (é;19)‘%s:an gnéiyfical extension of Eq.(2.16)

with m + in.

Finally, the last class of solutions is such that

B 2
1604 (as38) + 2 = w7 - o, (2.21)
with a metric given by

ds? = [dt + Qr2ddl? - r?dé? - dr® - dz? . (2.22)

It may be thought as a limit of the first (m? + 0) and the second

(n? > 0) classes of solutions, respectively.

11

On the other hand, nontachyonic spin-0 and spin-2 particles,

require (3c+B) te be positive and B to be negative, respectively

{cf. Introduction). Consequently, these restrictions on the param
eters a and B must be included in our results.

We remark that our coordinates are true cylindricalcoordinates,

25

in -the sense that they satisfy Maitra's conditions®”, i.e.,

H=r?xconst ,D=1. (2.23)

Last but not least, we call attention to the fact that all
Riemannian GGdel-type ST-homogeneous metrics with the same value of

m* and R are isometricf1.

III. A COMPLETELY CAUSAL UNIVERSE OF THE GUDEL TYPE VIA
HIGHER-DERIVATIVE GRAVITY

Now we are ready to investigéte if the closed time-like lines
usually present in the solutions of Einstein’'s equations related
to Godel-type universes, will remain in the framework of higher-
-derivative gravity. To do so, we write Eg. (%.1) in the form

ds? = dt? + 2Hdedt - dr® - dz? + Cde? , ) (3.1

where

e(r) = H? - D . - SRR (3.2)
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Clearly, if C{(r) becomes positi#é‘at'ri'< T < Iy, then the curve

.t =z =0, r = const ig a closed time-like trajectory. As a result,
the principle of causality is violated.

It is not diffiéult to show that in case m = G, we can not

have completely causal solutions, Thus, our analysis must he can

centrated on the models concerning m* > Q. In this case, EQ.(2.18)

gives
cir) = & sinh=ﬁgj [G§¥-f 1] si§h=G§g- 1] . .3
bonsequently, if
m? 2 407 ' .W S (3.4)

our sclutions will be completely causal. On the other hand, the

follawing inequality holds-in case m? > 0:

A8% 2 3508 (as38) + 40mPRF(a+B) - 4mY(204B). (3.5)
[ |3 . )
Eqg. (2.13) was used here.

Undoubtediy, the solution m? = 40G2% is compatible with (3.5).

"It follows then ‘from (2.11) and (2.13) that

a15

: 1 . .
= 1?2 = —-ﬁ ETY L | . (3.6)

Here (3a+f) is positive in order to avoid the presence of a tachy

3
onic spin-0 particle [cf. Eq. (1.8)].
Now, from Egs. (2,14}, (2.9) and (2.10) we get
Q® .
A=_§2_’p=p=0' (3.7)
Equations {3.6) and (3.7)'completely determine our causal - soly

tion.
IV, CONCLUSION

We have thus succeeded in finding a completely causal © rotat
ing universe of the Gddel type in the framework of higher - deriva -
tive gravity, An interesting feature of this solution is that it

relates thg mass of the nontachyonic spin-0 particle (microphy§

ics) to the constant rotation of matter relative to the compass

of inertia (macrophysics). In fact, Egs. (1.6) and (3.6) provide

us with the remarkabie result

Q2 = mozfﬁ . : {4.1)

In a sense, it allows us a nalve estimative concerning the mass

of the spin-0 particle. Indeed, from Egs. (3.7) and (4.1) we get

" inmediately that

34

m, -~ 10 MeV ., (4.2)
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On the other hand, the above results tell us that the rate of rig
id rotation of matter is very small. In this sense our model 1is,

"grosso modo", a Machian one.

To conclude we point out that this causal solution has no an

alogue in the context of the standard general relativity.
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