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Abstract

The recently developed theory of the
symmetrical T-matrix is extended here to the
felativistic description of proton-nucleus scattering.
The 4x4 symmetric T-matrix is reduced to an effective
symmetric 2x2 matrix using projection technique, The
resulting non-relativistic-looking T-matrix contains
relativistic (virtual pair) effects to all crders.
Glauber theory is then applied to develop a reasonable
approximation which could be valid even at large angles.

During the last several years a great amount
of effort has been devoted towards the construction of a
relativistic theory of nuclear structure and reactionsl). In
‘such a theory nuclecns and mesons appear explicitly, with the
Dirac eguation used to describe the former's motion. Though
several problems still remain to he solved,lmany major
advantages over the conventional non-relativistic theory with
effective two-body interaptions,have been unambiguously
established. A méjor test of the relativistic theory has been

its predictive power of spin observables in elastic and inelastic

‘+ Supported in part by the (Pq and FAPESP.

. Proton nucleus scattering at intermediate energies, where

the basic vector and scalar interactions which arise from

w- and o-meson exchange, respectivel?, can be constructed using
the impulse approximation. For a more detéiléd and stringest
comparison of the theory with experiﬁent data at relatively

large angles are required.

Quite recently data of 200MeV proton scattering
from “"%ph were measured at the Indiéna University Cyclotron
up to 0 = 909 ywhere the cross—sectidn drops to about 10_15mb/sr.
To perform an exact relativistic calculation of the cross-
section up to these angles, a quite costly and lengthy numerical

effort must be.a allocated. On the other hand, the much

" simpler Glauber (eikonal} approximation is obviously

inadequate at the large angles involved, In this contribution
we develop a new modified Dirac eikonal amplitude which avoids

the partial wave sum and vet may work well ‘at large angles.

The starting point of our discussion is a
relativistic generalization of the fecently proposad
symmetrical T-matrix, developed in great details by Hussein

and Marquesa).
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function which satlsfles Dlrac 5 equatlon

where | Hﬁ (KU):> is a four-component scattering wave

LBy = > + (=m *'“'f!)ﬁ"““- o> o

whefé 113 4-;>' is a positive—eperqy plane wave solution

of the free Dirac egquation and the séaled interaction AU is
“lLeft here as general as bossibie, consiSbeﬁt with relativistic
covariance. - The ingoiné-wave function <:1££E)(1.UT)[

is jusE the time reversed version of Eq. (2). Of course the
4x4 T-mabtrix itself, satisfies the Lippmann—Schwinger Dirac

equation with the unscaled potential

T =U+U (fom+in T )

Equation (1) is an alternative exact representation of the

T-matrix.

Since what interests us here is just a 2x2
sub-matrix of the T-matrix, Egq. (3), which describes the
upper component only, we have to first projects out from (3)

the lower component. Introducing the notation et {upper) ,

T (iower), T+- (mixed upper-lower) été,;rand'thg following .

spectral representation’of the free Dirac Green function

IPry<Ba| 1P PL
CPHHP%MD jgp "E st +'E+E —Vz}
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where <Pil :<Fj:]bf°

we can write down two coupled matrix integral eqguations for

" ana 7. Eliminating T'T in favor of T we £ind finally

T 2 ‘U‘**-r—‘v"’"*g"*’*"r"‘* (5)

with the 2x2 matrix ihteraétion‘vﬁ+ given by

VT Ut e ut (60 U—*)“'_}_L Ut e

The second term in Eq. (6) takes into account the virtual
nucleon~-antinucleon pair creation, This is the term which
intreduces genuinely relativistic corrections to the now
apparently nan—relaﬁivistic . matrix which satisfies the

L-S equation (9).

We use Eq. (5), instead of Eq. (3), to derive
the symmetrical form of the 2x2 matrix T++, using the operator

manipulations of Ref. (3).



. Xy 2 ” 'l'. ™) R | - where Xy and %' , are the Pauli spinors fo'r"i':he'in'c'joing
GIT™ B> =Jc!}\<ﬂfﬁgwﬁ)lv ]wﬁcw Yy

and cutgoing solutions {(of course beth depend on the directicons

of the momenta,and thus the prime on s in the second spinor).

: ) T =y 4= : We are now in a position to derive an

The wave functicns JW ¢Av7TH > ana ‘EE_E(A'U )> 3 ) ) .
# . : . _ - expression gfgthe integrand <"f' (?'Lh)fuif‘f’;(Au)\ in Eq. (1)

satisfy the mone. familiar Lippmann-Schwinger equations R P ya
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s with the aid of Eg. (3) (or,more precisely,the corresponding

In what follows we shall develop modified ) . e < M E

eikonal expressions for the T-matrix both in the original o a0
Dirac form, Eq. (1) and its Schrodinger equivalent form, Eq. (7}.
To proceed, we write the following form for the wave functionsé)
¥ () (),U_-}—&-)

{1) _ P, <R F - S'\ = C;:fu-++) . . . . :
"i/ P CAfu-' , r—) - e e 4 < : It is now & simple mattsr to derive the

) * ’ . R4 .,{ S:\ - (‘__3 '\rH') (9) equations that would determine the ingoing and outgoing eikonals,
YV e (At )= e € ! ’ p

Dirac equations)
4 » T2 ot 4 ; = = - : V
— RKv § o e Ve (a) ¢ VW5 2T - R g
VoM. (2a7)- 2.9 g P)eo
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apd similarly for Y (r') . Bg. (ll) was obtained, as usual, and unscaled quantities appear in the integrand.

AR
after c]ropp].ng second order derlvature terms and assuming the It would be interesting to compare Eq. (13) with the
asual scalar vector form for U. In Eg. (11), the scaled corresponding (and formally identical) one for

central and spin-orbit potentials are given by

VC(}'): ‘l \/s + ﬁ g—- \/'Ir + —%—L- (Usb—‘ \/u'z).

m Z

<’YHCA'\J'“)M‘r"*,fr]!/“)(f\f\r”)> - of Eq. (7).

Where we £ind

\/ (A]z i d ' 4 d —7 ' VAR + | + {+ ++
Se 2 E+““'A(Vv-Vg) ‘;é—r-_ A(,VM-\/S)] Y ('}r\r"‘)lm_i— l r\{, )(‘Af\f )>:

(12) - .

. : _ “ -S‘ T';.' C \') _n tll‘ "L‘
dr (€ R

We note here that the last term in Ve : ‘< .

—y

7= K-

tguadratic ip the V,s) is scaled by ﬁb . Sccondly the
scaled spin-orbit interaction depends on ﬂ only throughs the {\] - —1. -y A S B ¥ At:'—‘?
’ e - <. TAT - c’ V]}
otential term ’) (v - V).
p nti v s (14)
The "eikonal" form of <nf/ (-)(:\LL) fud (*)(A N
R '\Fre U‘/
is now easily obtained by emnloyinq Eg. (11} in {10}. We find . — _‘? . S’ (_,)
. £ P o A q . A 1y T E
Jd‘r’ Eam O WECE) T V, .V, Ic! €im ) e e gk
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-(-,-__ -3 T = /’
- AT o S . . ) .
T Erm-a(V,- V) -v)_d_[ v\]. 4 35w (7)
. el L 1 .{.— (-E_ f') 5 ("’) e f .
P S _ Xy E’ D (15)
. . » =3 I A ) - .
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(13)

The eguation that determines sA in this

We observe that a mixture of "\ - scaled case is



LR TG0 Mo o N Vg, BRI (Y0

- N U&;'?.Q?CS;;Q Y o+ ) Veo o, (?Qf\TZ) -

N, 2R

(15)

where v, and Voo 2re given by Eq; (12)with f\ equal to 1.
The difference between t};e symmetrical Dirac ‘.r;tpresentation
and the symmetrical Schrodinger representation can be more
easily seeﬁ by comparing the way :§ modifies the central
and spin-orbit interaction. We exhibit in Fig. 1 a plot
of VC(A}/VC(? =1) ws. Q , with v, and VS taken from

p + "UCa elastic scattering Dirac fit at E = 500MeV.

(V, ~ + 270MeV and Vv, = - 400MeV) and using for the radial
density shape a constant value of 1 (nuclear mafhér). " We
see clearly that the Dirac scaled central interaction is
attractive in the interval 0 & D <:. 0.5 and repulsive
in the interval 0.5 {» gt This is to be compared with
the Schreodinger equivalént scaled potential which is puréiy

repulsive in the whole 3 -interval.

The imaginary part of VC(A) . however is
always negative in the whole ﬁ —-interval, guaranteing thus
the absorptive nature of the scattering process. In fact, we

have for the same system,

Dinac ' ' -
D V. (A = - 442 & 335 2T Cney)

]
SeHmo BN € R

Dom Ve (8} = = 4o, 35 A Cnev)

_ _ e
The above findings imply clearly that a -
near—far decomposition of the type used.by Carlson et al.f).
would result the birac case, Eq. {1 ), in a far-side dominance
in the A -integrand in the range 0 (:3 0.5 follewed by a

near-side dominance. In contrast, the Schrodinger version

of the A ~integrand

'

Eq. { 7 ), is near-dominated

in the whole A — interval,

As a final remark, the mpdified Glauber
expression for 4<12‘ lT‘lT?;) developed above should bhe a more
aaequate large angle high-energy approxigation. Which one
of the two representations, Eg. (13) or Eg. (15) is more
convenient can only be setteled through a détailed numerical

comparison, which will be carried out soon.
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