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ABSTRACT

The decay properties of nuclear giant maltipole
resonances are discussed within a hybrid model that incorpo-
rates, in a unitary consistent way, both the coherent and
statistical features. It is suggested that the "direct" de-
cay of the GR is described with continuum 1°° ®mPa and the
statistical decay calculated with a modified Hauser-Feshbach
model. The two decay components are not independent owing to
the presence of a mixing parameter that measures the degree
of fragmentatidh of the GR. Application is made to the decay
of the giant monopole resonance in ?'°pb, guggestions are
made concerning the calculation of the mixing parameter using
the statistical properties of the shell model eigenstates at
high excitation energies.

¥ Supported in part by the CNPq and CCInt/USP

November/1986

I. INTRODUCTION

Nuclear giant resenances are collective states-
that sit in the 10-20 Mev excitation energy range. It has
been established that the éxcitation enerqy of the GR goes
like 2”2 and thus the heavier the nucleus, the lower this -
energy is. HNevertheless eveﬁ in nuclei as heavy as *3°%y,this
excitation energy is high enough that one may consider the GR

as embedded in a sea of two-particle two-hole sﬁates.Agamiﬁngly

-these highly ¢ollective ﬁucleat states are fragmented into the

backgrouﬁd of more complicated and thus less ecollective suﬂné,

owing to the coupling induced by the residual interaction.

Whereas the microscopic description of the
structure of the GR is in a rather reasonable shape, the
theoretical description of their decay into the ogen channels
is rudimentary. In principle one may envisage a 2nd RPA in
the continuum treatmept, which would furnish both thé aescape
width ' and the spreading width r¥. However, the procedure
needed in order to actually calculate cross sections or
branching ratios from such theories is not yet fully developed.
What has been done so far in.the literature is to assume
either one of two modes, direct or -statistical and asses then
relative importance by-célculating them'seéarately and

independentelly. : This proaedure—invariably'leads.to several -

debated conclusions.

The purpose of this paper is to develop a hybrid
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theory of the decay of the GR in which both the direct and

statistical decay processes are considered on the same footing.

These two processes are hot completely independent as both
depend on the mixing parameter which is directly related to
the spreading width.. The theo;Y'is general enough to permit
the-ingiuéion“of intermediate prdcesses such as preequilibrium
emiséioﬂ. ,} & o
| The.planroffthe_papér'is as follows. In Section
;iI-wé'reviéw-the direct vs. statistical descrigtion of the
'déc&}’dfzihé GR by presenting several cases. In Section III
we?dévelop'dur hybrid theory and apply it to the neutron de-
cay. of the giant monopole resonance in 2°®Pb. In Section IV
we éiscuss the -calculational aspect of the mixing parameter.
?his.entails describingmthe-statistical properties of the
nuclear shell model eigenstdtes at high excitation energies.
Finally, in Séction V we present our conclusions and indicate

‘possible routes for further developments.

II. DIRECT vs. STATESTICAL DECAY MODES OF THE GR

Most of the recent work on GR decay has concen-
trated on answering the gquestion of how direct or statistical
it is. Invariably in the analysis of data, simplified versions

.of the'"direct" and/or- statistical decay models are used. To

give an example we show in Fig. 1, the neutron spectrum arising
from the decay of the giant monopole resonance in 2°°pb .
(E, =13.5MeV). According to the analysis of Ref. 1), the low
enexrgy part of the spectrum is purely statistical whereas at
E A4 MeV, it is direct. However, this conclusion was
reached via a statistical model calculation which employs a
Fermi gas density of states in *°7Pb are used .in the calcula-
tion, the statistical model explains the whole spectrum. It
seems nqw that GR is in heavy nuclei decay almost entirely

statisticallyz).

Another case of interest to us here is the fission

3)

decay of actinide nuclei”’.In particular it has been suggested
that the giant guadrupole resonance in this mass region
fissions predominantly directly. This is in contrast to the
giant éipole resonance which seems to fission statistically.
There -are however several méasurements baseﬁ on electron
scattering which were found to contradict the above conclusion

concerning the GQR4)

+Again, we have here an example of using
gualitative theory to reach quantitative conclusions. To
make our point clear we show in Fig. 2, the calculation of
the fission decay probability, Pf(EA) for the giant monopole;
5)

dipole and quadrupole rescnances . In the calculation,VWe

have used realistic level densities and transition nucleus
levels. The dotted curve shows the result for PE(EA)

obtained with the schematic model of Huizenga and Vaﬁdenbosqhﬁh

which seems to be the one widely used in the analysis.
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.In our calculation of PE(EA), we have used the
expression ' ' '

(EA) = ——— o T£CEN
f;(eﬂ)'-+ r:;c:za).—r F;,cem

(1)

o

with o and TT representing the neutron and v widths, respec-
"'tively, and Tf(EA) evaluated within the incomplete damping

model of Back et alz?;which uses the following

[Meeny = [N + — 8 ]
f ( Q| > ABS. N,t} -+ NB 2}

‘In the above expression the first term accounts for the flux
which passges directly throuhg the two fission barriers while
“the second accounts for the fraction of the flux which is
frapped in the intermediate well before passing through the
second barrier. For details of the calculation, see Ref. 5}.
When compared with the schematic model of H-V, our calculation
' represents a great improvement. -In ‘fact besides being
insensitive to A, the H-V expression requires a lowering of
the fission barrier by as much as 50% in order to come close

‘to our calculation.

The point we would like to make concerhing the
~fission decay mode of the GR is that there is a clear room
for both direct and statistical processes. In fact; if ‘we

take the data of Ref. 4) at valﬁe; one sees clearly that at -

- Beene et al.

photon ehergiesgnﬁﬂéﬂ than the fission barrier, the giant
quadrupole resonance in ?%°U, could accomodate up- to. about

40% direct decay. Several authors would contesf'this;eqmcuﬂly
in view of several recent hadron induced excitation measure—
ment of the GR and GMR which geem to ‘indicate about 90% divect ™
fission decay . Ve sﬁall not dwell here on the debate which
is still going on concerning the fission mode. BAll the facts
do seem to indicate that a consistent description of the
fission decay of the GR in the actinide must involve both the

direct and statistical decay modes.

Several other examples can be cited which show
the need for a mﬁre genera) description of the decay of £he
GR. Quite recently the GQR neutrén decay in ?%Zr was némmnnd
andahas.ﬁound, écgo;ding ta tﬁe analysis of.Ref;B), to exhibii
about 20% direct.décay probabilitﬁ.. Once again, the .
statistical analysis made in Ref. é) employed several rough
approximations, which may render the above conclusion gues-

tionahble.

The first attempt to analyse QR decay with both
étatistiba1 and direct“deqay modes has been recently made by
9). These”authoréﬁdiscuéseé”fhe Y-deéaj of the
giant quadrupole resonance in 2004, with thé‘following

expression for the dgqay.p;obébilityl...
Px(”'): Rr CE2) -+ Par (E2) BNEY
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where E?{E2} is the direct y-decay probability given by
. » - | S Lo ‘ PR
P-Dz.——r-;-i—— : R € 3
¥ 7 :
. r _

with-r: referring to the Y—partiel eSCape_wigth of the reso-
nance and Yl its.average total width,  The statistical on
ccmpounq:Qeqey_propebility;”dencted;by-Pﬁ_was-ca;culated

similerly;as

The result Df the calculatlon of Ref. . 9) indhxﬁed

$;: Slmllar concluslons were reached by Ref. 10)

w1th a more reflned calculatlon of P Thus, in this partunﬂar
Vdecay channel the statlstlcel and dlrect decay modes contrlbute
ahout_equallyf o B o . .

- Eq. {3) ., thqugttreeeonable from a quaiitative
point of view euffers from an inconsietancy,'nameiy since the
GR is fragmented into the compound nucleus background states,
a remant of the former must appear in P (E2) This can be'
eas;ly seen from 51mple unltarlty argument. The miseinQ'
1ngredients 1n (3) lS a ml_lng parameter whlch measures the
degree of GR fraqmentatlon. In: the next sectlon Wwe derive
an’ improved version of (3), consistent w1th the- requlrement'.

of unitarity. Before actually deing this, we first discuss

-brlefly the mlcroscopic descrlptlon of the GR W1thin the 2"

nd.

RPA.  This discu891on will serve in’ justlfylng our treatment ”
st N

of the GR decay through a combinatlon of 3 RPA in ‘the.
continuum, which supplies basicelly PD, and the Hauser—Fedﬂka'
theory for p°  the mixing-patramete¥ alluded to eerlier;couples

these two pieces.

III. HYBRID *DIRECT* + HAUSER-FESHRACH MODEL FOR THE DECAY OF

THE NUCLEAR RPA

_ In this section we develop the hybrid moael for the.
decay of the GR already e-ncunced‘ earlier. Before ectua_lly |
doing this we present first a briefsdiscussicn cf the RPA |
description of the GR. .Within_this theory, the nﬁclear
collective_etates are constructed as coherent superposition
of 1p-1h configurations, coupled to both the continuum and
the more complex 2p-2h subspace. The excitation cperator
that creates the GR by opereting on the vacuum state is
accordingly compesed of both 1p-th and 2p-2h pieces. 1In
practice, it is advantegeoue to project ocut the_2972h‘suquce.

and work in the restricted 1p-1h space.

Employzng the usual 11nearlzat10n procedure :r on

the equatlon of motion, one can show that the equatlon that

determines the exc1tatlon:a@p11tudes, have the follow1ng
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Structuré11)

f%ll (€) Egu X /X
. ::GN ol (6)
ol
~-B -A (6 b4 Y
1] 1
where X and ¥ are the RPA amplitudes that enter in -the definition
5é the ip-1h excitation operator. The RPA-looking matrix is
different from the conventional one owing to the excitétiOn
energy-dependence of Ay {E}, which arises from the coupling

to the 2p-2Zh suf:si)acé. In fact the explicit form of A

demonstrates clearly this fact

. 0 * o
/qaft'g) =7/4" *:;E: /%12 (gh-*/zif) /qgfi | 7
‘ 2,2 .
wheré‘ﬁlz‘_is the usual 1p~ih submatrix.

Clearly ‘A, (E) contains poles at Eﬁ = B35, which
represent the fragmentation of the GR strength over the 2p-2h
background. One usually averages out these singularities by
‘inserting an appropriate constant imaginary term in the de-
nominator of the second term. This results in a smooth
lgtréngth distribution whose width, when  the coupling to

;open channels is switched off, is just:the'daﬁping widtﬁ of

“the GR.

In realiStic'calculatibhs, the solution of Eq. (6)

' poses severe problems, owing to the Vvery large density of .
states of the 2p-2h configurations, especizlly in heavy

nuclei. To give an example we show in Fig. 3, the

.9,

caléﬁhﬁed‘ZpaZh“dehsity of 2t étates'inszzr} in- the: energy
region around the GOR (E* ~ 14 MeV). -Clearly py+ could

reach a million. ThiS'aspecﬁ nafufally calls for a statisti-
cal treatment of the 2p—2h'$ubspace; ag is done in statisti— 7

cal nuclear reactions involving the compound nucleus.

The statistical treatment alluded to above is
based on the théorgtiéal developement-of:multistep'GQNQOUnd
processes aiscussed by Friedméﬁ'et 51;12): In this
aéproach,'the non-difect';eaqtioh:léadihg from dhannél'q'to '

is determined by summing the individual prdﬁébiiiéiéé'fqr a1l

processes which begin with c%ahd’endnwithrC"where-aﬁsxxxﬁﬁiﬁ

of compdund classe is visited,aldng-the'way,as:the-system,
evolves'along_various routes. Ihlthe ¢age ‘discussed. here,we
take ¢ to the giante-resqnance_qﬁd ¢' any .open final chaﬁnel;_
It might sound a bit peculiar to cail.the:CR the-éntrance
channel, but considering the time delay aspect of the

problem, namely order of magnitudes longer time required for
the formation and decay of the 2p-2h, 3p-3h, stages than that
for the formation and eventual "direct" decay of thé GR, we

believe our procedure is quite reasonably, closely rglated

to the time delay is the density of states involved (see

earlier discussion . of -the density”pf-statés.pf7297Zh_c6nf;gu—
rations) .
Our ideas above can be summarized in Fig. 4. The

GR considered as a “direct"_channél'féééé_flﬁx td'thq:gp#zh
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subspace which ig coupled both to the exit channels, through

the-transmission,cdsfficients il'c' and”the_3p-3h.space.' The"
- ’ r -

. 3p-3h..subspace itselfl is-coupled,tc_the exit channels
{througﬁ‘ti;c.)”and to: the next complicated configu;ation,and
so'on." The flux: fed. from the GR. therefore percolate thrcugh
the Sifferent'sﬁages, aiioﬁing always cuuplings in both
dlrectxcns, (up and down, as exempleled by the thick arrows)
notw;thstanding the ratios 2%3* belng,always very large (i
refs:s.to no part;cles_snﬁ_holes} snd acccfQingly favoring

. the gcwnwccugling.

. What is. shown.in Fig. 4.. can be translated into
'mathematics using classical statistical arguments as was

) shown din Refs 12} and 43)

. To proceed, it~is - ‘convenient to introduce a set
of geﬁeralizéd transmission coefficients, Tn,c' which
rcpresént the probability for getting from channel ¢ to the
sﬁbspace of np-nh.  This includesjboth direct coupling
c s—%;np—nh'as wsll as indirect coupling through. (n-1)p~{n-1}h,
ﬁhZ);p(naz}h etc. subspaces. Let us also define downward
brsnching ratiosruAﬁ'(n < m} which measure therinternsl
coupi}hg betwéen mp-mhand np-nh both- directly through the
cthef'subspaces; From phmzwescan also define. the- inclusive

dcwnward.mixing psrameses of the np—nh_subspace

At

The flux which arrlves at the nprnh subspace and’

stops there is then glven by T~ T T The second

n,e  n,c n¥
factor is just the depletion of the flux at n due to the

coupling downward to more complex stages.

The crcsSpsection which describes the transition
from the GR to the f£ind channel c¢', can then be written down

in a generalized Hauser-Feshbach form

o2 6y BB
;EZJ-T;IC” :

e _
The factor £1—n 4) indicate how much of the flux

Wthh entered the np-nh subspace from the ¢ "survives” the
downward leakage. At this point we must remember that we
have treated the GR,sc far,as the entrance channel. Of
course the GR has to ke populated from the real entrance
channel (y,u, etc.}. ThusIWe have to give a special
interpretation for the transmission coefficisnt Tn,GR‘ To
reach the GR from the entrance chapnel, one uses an average

transmissi C ici - iven ' e ; @
sion coefficient Te,GR given by 27 FGR PR with rGR

dencting the partial width of GR and.pGR is of the order of

1 Mev_*. _‘The structure of Tn et is constructed as follows.
- . 1B CO ‘ .

We introduce transmission coefficients, t. ot Which describe

n,

Vdi;ect coupling of cf;and np-nh subspace. Then

N s ‘ -
_-r;*c.-’ :..'r"’_c, +Z —.,:n,_c.l /l‘hn . : .“0)‘
s m=i ' . L S o
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' The second factor, L T ot : describes the
indirect couplings between ¢’ and n through the (n-1}p-(n-1)h,
{(n-2)p~(n~1}h etc. and though the GR. For simplicity, we take

only the 2p-2h sobspace. Then
= A ' ' (11)
Tier = Freo 4 Taper

As far as T1'e is concerned, owing to the fact that
. : :

~C‘couples.directly only to the GR; we have

{12)
"/“ GR, c

If we ignore all other subspaces, the factor
{1'Ph+) is then absent and we have for the 2p-2h contributions

to the ¢ + ¢ ¢ross section

Ou(ap.zh): A Cape (Typit e Tp 1) (13)
cet ;zE:fc_” C'tiqCﬂ -ﬁytlf€gkucb'

Besides the above cross section there is the

"direct"” GR cross section which from Eq. {9),can be written as

_OJ(G.R) _ ( /u) eEc Ter, e’ (14}
ce’ Ztez,c'f

The generalization of the above eguations to

include (3p-3h}, (4p-4h) subspaces, is straight-forward and

can be easily accomplished with a repeated use of Eg.(9).

13,

should mention here that the -sum of Eqs. {13) and H4) satisfies
the general unitarity requlrement as lona as the entrance
channel transm1551on coeff1c1ent in Eq (13)resembles exactly

the exit channel one, in the sense that

3 os, = ('fe,ra,,c + '/t';;c). | 15

c?

The sum of Egs.{13) and {14) is the principal result. .
of this section. The resulting equation expresses the cross .
section as a sum of a "direct" term and a compound,term.. So-

far analysis of data have performed assuming. for occ. elther

‘one of the two. terms, depending on- ‘the: part of the spectrum .

studied. A more consistentjapproach,?however, should start, =

with our Egs. U3)_ami u4)~wiﬂ1the;aim-of.extracting;the~value-

of yu.. This procedure has ‘been- followed prev1ously ‘inconnaction

-with isospin mixing in nuclear. compound reactlons, namely ‘the

case of -analog resonances coupled to the IOWer—lsospln back-

ground14'

«- The parameter W extracted in this case measures
the degree of nonconservation ofjisospin due to Coulomb’mixing

of the upper and: lower isospin=statés;"

In the case studzed here, " should measure thelK'

degree of GR fragmentatlon 1nto the more complex compound N

'nucleus conflguratlons.' The unamblguous extractlon of u,

_however ig: dlrectly tled to the a pr10r1 knowledge ‘of 12

and - tg.' The former can' be calculated u51ng a sultable RPA'

description of the coherent-1p-1h excitation in the region

14,




of high excitation energles (contlnuum RPA) The compound
”transmlsSLOn cueﬁflcuxms can be evaluated u51ng the optlcal
model ' We;should stress that the Hauser-Feshbach evaluatlon
bf:fhéTSéeeﬁdeerﬁiih Eé (2) is npt valld ow1ng to the _
presence of the unknowﬁ parameter r. If such a calculatlon

‘were to-be performed, ong ends up evaluatiﬁg < urD, whose

flnterpretatlons in terms of optzcal potentlals 13, to” say the

least, amblguous.

IV. APPLICATIONS
In orderuto_demonsfxate_ﬁhe usefulness of our

theory weap#esent.in Fig..1 .a calculation of the decay proba-

~bility, of the monopole giant resonance in 29%ph, excited

. :through the {e,al) reactzon15). ‘ThiSnprobability is nothing

' ;but c ./r._‘fromrour Egs-,UB)end—Hé). - Two values: of u were

cgps;de;ed,.u;1.and_u50.5.‘_Theﬂdirect pieee of  the decay

was .estimated using the result of F.T. Kuchnir et 31.16’17)

8)

and de’ Haro et_al.j _+ Whereas the statistical piece was

calculated in accordance, thh Eq. (13) u51ng for the TC" the

: Haueer—Feshhach model as recently employed by Dlas et al.z)

Clearly for the u= 1 case a renormallzatlon of the statistical
'calculatlon of Ref 2) has to be made in. order to account
' for the 1ndlrect“ CN decay exempllfled by (u 1] .. whose

_value was taken to be Zn P wlth °p ar1Mev

_D

-15.

It is obvlous from the flgure that the GMR in

2°3Pb does not accomodate appreciable direct piece since -the

mixing parameter seems to be close to 1, in complete agreement

with the conclusions of Refs. 5;6). ~The example desc;ibed

'above_should convey the principal message of our work: by

comparing to a-less prejudiced expression for the decay proba-
bility of the GR (neither_entirely direct nor entirely compound)

one should be.able to extract the impertant mixing parameter u.

At this point | . we make an- attempt. at a.gemerali-

zation of Eq. (13). to incorporate  the contribution arisihg. frdm
pre-equilibrium emission. This i% easily accompllshed us;ng
the nested doorway approach of Ref. 10). The 1mportant.new :
features,are that the cross section is now composed of three -
distinct pieces, and the mixing parameter'p-is divided inte;
three terms. Namely . , .
o = g8 - ~ )/u P e ‘*2“'?3
cel ‘Cc.'. z ! JZ,U _-1_/{,&3'
: cv 1 et
ke /")”f A sl
. M, c~+£“/ O]

with
' ' ' D
CGE.) T ’ E _ -
O, = (— “"/“ )TX Z“"—,; | (17)

cw

In the above p; measures the mixing of GR with the 2p-2h

-



states, ‘ pg'feférs to the mixing of the 2p~2h with ‘the
compound nuclear states and u' refers to the mixing of the GR'
@irectly with the compound states; which may be set egual to
zero for all practical purposes. The transmission coefficient
related to the GR (ip-1h}, the pre-equilibrium stage (2p-2h)
and the compound stage are called TD; rP and TC, respectively.
Tt is important to note here that unitarity is stiiifmeéeﬁmﬁ .
both in Eg. (9) in the sense that by summing over the final

channels ¢', we obtain

— D : (18)
20, = T o
c! 7' .
irrespective of the detailed nature of the decay.

Very precise and detailed measurements are reguired
to test the above generalization of our theory. However
before testing the generalization, a more thorough test of the
simple, two-term expression is required in order to extract
the mixing parameter p, If this parameter is foupd strongly
dependent on energy, then intermediate, pre-equilibrium
processes, must be taken into account through our generalized
expression, Eg. (36).. Work is presently in progiess to test
the above ideas.. In the next section we disﬁués the calcula-
tional aspect of u with the aid.of the statistical features .

of the nuclear shell model at high excitation energy.

V. THE GIANT RESCHANCE MIXING PARAMETER AND THE STATISTICAL
PROPERTIES OF THE NUCLEAR SHELL MODEL

The GR mixing parameter, p, introduced earlier, -

¢an be expressed as

b ‘ R . -
fETE L™

where Tt is the damping width of the GR.arising from.the:
coupling between the 12—1h_andﬁ2p—2£ sgbspacg,:angrfmis fhe
escape:hidthﬂtO'thezdpeh_cpéﬁﬁéis.1*Siﬁdélr#zdéhﬁﬁeatéiéuiééed '
from continuum RPA (namely Pb),ZWE‘nééa here to“aiééuss the
evaluation of T+ which is connectsd Wwith' statistios:
'Thé:simpleSt possiblédéxpréséibﬁ fér rt ié'Féfﬁi;s
Goldén:Rﬁlé's, o R . o -

v o= -‘WZ }<Gk!'\/‘_@.;p-zh)i>_lz“

(20

z 2m [KeRlVIGrST" S e

» grn.lk
In writing the second expression for T above we

have assumed that a representative avérage matrix element

‘squared is a reasonableé approximation for ‘the “r&tic ‘of the =~

i-sum in the first expression ‘over the derisity of the 2p2h’
states.  The calculation of ' (20) ‘6r (21)“can bé greatly

simplified if statisticddl treatment is’found appliéable in

.18.




the sense that the amplltudes aJ i assoc1ated w1th the basis

vector I]? which is used to construct the nuclear state |2pH2h>i

Care:: random. .Namely the ensemble average. -

JrL 3L o } .31'- ! ; 22)

The .average square matrix element of Eg. (21) then .

bBecomes

<eelV 12p-10> T ---1-2145-,-; }f"}(_@c/w 7> (%

. Thus. it is. 1mportant to verify the probabillty

dlstrxbutlon of: the. amplltudes aJ it Within the_theory of

random.matrlces, this d;strlbutlonuis-gaussian (Porter-Thomas};—

namely:

. o . 62 3 .. 7 .
Pllag ) =R eg[-m 12507 ] e
where §':|e;:I ll?,=.1,'and N'ié tﬁe dimension of the basis.

19), we have checked the

- In a preliminary: study
" abave. by pé_rfgmi_ng a realistic shell model calculation in s-d

nucie‘i-..; We. have. ta{ken-.(éd').*-(“-ua) Qith-a baséis size N = 517.
. The. result of .our: calculatlon for jz.= 1/2% ﬁlth the

Wlldenthal xnteraction .do not follow Eg, {24). .This however

'§qgswnq;wexglpde‘thg;pqsslblllpg of ‘constructing.an empirical

‘19. -

distribution for the aj'i‘ This is being carried out fox

r .
several nuclei for the purpose of establishing systematics.
With this;'the caleulation of r* and y; the mixing_parameter;

can be done easily.

VI. CONCLUSIONS

In this papex the decay properties of nuclear. giant

resonances are discussed within a hybrid model that combines

~ both the direct component and the statistical, compound

component in a unitarity consistent way. The mixing parameter
which measures the éegree of fragmentation of the GR with the
background configurationé-appeaks as a natural link between the
direct piece and compouhd piece of the deca& probabhility. It
is suggested that the analysis of the data is made in conjunction: 
with an RPA — type calculation of the direct piece and a
modified Hauser—Feshb#ch calculatiqn of the sﬁatistical plece,
with the finai aim being the extraction oﬁ the mixing parame-
ter. ' .

Finally it_is.sugggstéd‘that the theoretical
calculﬁtion of the mixing-parameter'is simplified greatly with
the use of the.staEiStidal'properties of the nuclear shell

mpdel eigenstates at high excitation energy.
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FIGURE CAPTIONS

Figure 1.

The histogram is the measured neutron decay spectrum
from the EO giant resonance in *°®pb (réf.?)._ The
two curves shown by the full line (u=1) and dashed
line (u=0.5) are the predicted spectrum using )
equation 6 taking into account the resolution of the
experiment (500 keV}. Each of the 141 neutron groups
is represented by a Gaussian with FWHM = 500 keV
{see Ref. 51;_Gi-fox_more_details); Both spectra

_ {us1 and u=0.5) are normalized to the number of

neutrons in the interval between 3-4 MeV. -The exci-

_tation energy of the residual nucleus *°’Pb, is

_depicted by Ex:(upperxabscissa}. See text for more

Figure 2.

Figure 3.

Figure 4.

details’

Calguiated fission probabilities of the GMR (dashed
dotted*gufqe{, GDR (dashed curve) and GQR (£ull

. curve): . See text for details. Also shown is-the

egpériméntal data for the CDR fission decay. The
dotted curve represents the results of Pf(EA)

. (equal for all r's) obtained from the approximate

Vandenbosch-Huizenga expression. From Ref. 5).

Calculated level density of 27 states in °%Zr within
the single particle shell model.

A schematic.diagram showing the reaction. coupling
scheme. ' '

.23,
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