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A guantum eieotrodynamicei-treatment of éoulomb.
| excitation ﬁn teletivistic heavy‘ion'collisione.is:presented.
It is showe_that a subtle interoiéy between guantum and .
telativistic_kihemeticel effects_inéuced by'theznqclear recoil
.due to the"exoitatioh"generates-e quelitatively-different
epredlctlon (1n certa;n klnematlcal condltxons) from the cor-—
:respondxng predlctloq_of convent;onal theorlesd. The present
Eormaliem is applied to the cleaﬁ'fieeioe problem and the _
results seem to. solve the puzzle associated to this orocess

for some time.
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'factorlzed form

I. INTROPUCTION

The'current imagesof'the:Coulomb excitatioﬁ ptoée#é i

is based on a semlclasslcal plcture of a. dlstant colllslon

between two hedvy nuclel. Thls is usually justified by an;memts:fs-‘

based on the smallness of de Broglle wavelength of nuclex, and
the long distance nature. of the . Coulomb 1nteract10n. Ih};

qeneral the exc1tatlon energles 1nvolved in, such processes are

‘small as compared'to~the-1nc1dent'energyf Therefore usualw

descrlptlons of. the Coulomh exc1tat10n mechanlsm xntroduce the

unperturbed Rutherford trajectory (and somet;mes perturbat1ve _*

_correctlons to-1t). In-partlcular thls type of approxlmation

completely neglects rec011 effects &ue to the excxtatxon and -

in thzs case the Coulomb exc1tatlon cross section- has a
{1

—
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where - Pif is the-treneition'probebility betweeh two nﬁéiégi
stetes:(i apd f). There are severel_qqantum treetmentsroféthe-
Coulomb excitation mechanism and,to'ouf knowledéegall of.them'
neglect recoil eEEects due to the ex01tat1on{2).

Althouqh these ideas are very intuitive, appealing

and'give a correct descrlptlon of Coulomb excitation at low

incident ‘energies (B~ several hundfe'd ‘MeV) their straightforward -
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extension to the relativistic domain is dangerous due to the
interplay between quantum and relativistic Kinematical effects:

it has recently been shown(3)

that such effects can guanti-
tatiQély alter the tﬁtal Coulomb exéitation Cross séction and
qualitatively alter the angglar distributioq of Coulomb induced
fission fragmenﬁs as compared to the semiclassic;l_result.
Experiment seems. to indicate that a consistentvdéscription,
should.incorpbrate.thése combined éﬁfects(4).

. From this point of view, the natural formulation
Qf.the.Couloﬁb.excitation problem should be found in Quantum’
Electrqunémicé IQED); ‘ '

7 The purpose of this paper is thé derivation of -
felatiyistic Coulomb -excitation cross section fof.heavy ions
striotly within the framework of Quantum Electrodynamics {QED}.

In section II we derivelthe first-order contribution
to the Coulomb excitation.cfoss sectién and aiscéss'the detaiis
of the interplay between quantum and relativistic kinematical
effects, which giQe rise to the differences pointed out above.
In section IIL Qe investig&te the inclusion of some higher order
correg;ibns_to the c¢ross section. Section IV contains an
qpﬁlﬁéation-df our:EOrmélism to the clean fission problem(4)

and: section V the conclusions,

'Au(x) is the usual electromagnstic field:oper;tor;

IX. QED CALCULATION OF THE COULOMB EXCITATION CROSS SECTION
IN FIRST ORDER

¥I.1. GENERAL FORMULATION

We assume.that the nucleus is described by the four
component nucleon field operator Y(x). The electromagﬁéti;.
interaction of nuclei is then described ﬁy_the Hamiltonian :
density 7 T

C : ' N & 5 Sa D
=P ALY : Co
Hy =Jdreafss

where

=

J}L(O =' te'q’-(x)fﬁ')‘(u-%"")w&) o ' (%i._z)-_'

Y” are the Dirac matrices, 1 the isospin Pauli matrices anq_”

Now let us consider the process A+B;+.A'+g*'-via-
Coulomb interaction. The lowest order coentribution to this
process comes from the Feynman diagram shown.in Fig. 1 and the

corresponding S-matrix element is given by(SJ

SA+B -;A'tB‘ = A‘x A‘\' (A'l f;. \ J P (x)‘A--, 2 A)'D{_;(x- 7)(3.:'?; \ 3;(—7311‘:_;% (T1:3) :

where |A;PA} stands for the nuclear staté vector of nucleus
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Y .-wi.i:h total momentum PA.DF(x;y) stands for t:.he Feynman _ N Nr (2) .‘.—._ ’ e | -
':'.propaga't'or for the electromagnetic field, <B.'P31J)*(ynbj?e‘>-:' i <B'PB \JV[‘\ "'(?571‘]\%'31353 {I1.6)
: In-general it is a rather difficult and aelicate ‘ E

..pro.ble.'rl.\ to define the nuc}.eaf matrix element (A' 'P‘ |‘ju(x)|A-P ) W.‘Lth the help of the Founer decomposxtion of the’ propagator
:covariantl.y, when momenta are relativistic. Thls is due to the D (x -y}

'extended nature of the nucleus and one cannot s1mply separate -..u:_‘_(x-y)

: BT TP AT T ' C C -

the center ot mass motien from the internal response of the D (x"}ﬂ - _C_—_‘-__S_‘*JA% 4 a2 : {£1.7)
. . . F oo (2n z _ 1 .

system. Fortunately for the Coulomb scattering process we may Q(' 1€ T

~assume that the momentum transfer AP = P'-P is always

_ we- get
“non-relativistic. In such a case the Lorentz -invariance of the. - - E
- B ) . _ B ' ' v, L etlat 4 A L o ster O -
theory can be exploited to express the currént matrix elements o ArBpny & (_ZW)“'SAXSAY d.c_n' A-y(?h)/\ (By) Ltq'(x ?) '
'_in' eq.:(II.3) in terms of well eatablish_e‘d non~-relativistic ' ' : ﬁ‘z - g
ﬁucl'eai: _p'hysics terminolegy in the following way: Let I\.(PA} * T '
SR | o .- o <A*P r\m |AR s TN R :
 be the Lorentz transformation rqat?r'l.x from the rest frame of A AR ﬁ><ﬁ \\\G_YI\ -‘(PE'.)Y]IB'{-?&> (T1.8)

" to the-sYstem moving with momentum 2% Then

ol . o - =____'-_ cf- Av(P“" ) A q’A A ’ . o -
II. : Ty ":l' A v i =

, <A-Pa\m>olm By- NS (m<A BIPA cmx][A By Y (&) S F- S < Aleeala; sy

' _ where, _for -c.ax'_amp_l,e,..-

j‘l‘l 2 <=B P \J)"(TE)lB 1"5 (11,9}

S Pys AN (BE, _ ' (1S _ . .
e ' . : : In this expression, nuclear. matrlx elements are defmed in the
S = ' : . £ e systenis where momenta P are non- relﬂthlSth.
‘From n.c.aw.'.on the notation XC stands. for the value of X in e ereml: Y
the rest frame of C We have also o Now 1et us separate the nuclear center of mass

motionh in the matrix element
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.IA=J'<§ X o= <A i P2\ KaEH )\A S {11.10). .

In terms of coordinate. representation, we have

I, &4 T‘" 5 ST
A . W e <;ﬁ\ 'P “l" _*f;ﬁ‘>
z; _ o
6‘[: 8(“"*“’()(\."_,'_'-"\(‘“‘_\ A'5$A> o IIam
. : '

where” ve hiave used the fact that the current density is a local

.ope:atéerorthat_it can be-exp:essed'as

= Jf‘(i‘) - e Z: K);‘) 8(\-‘:_‘ &'c\ : (11.124)

in flrst quantlzed form.. : ZA; i;-the_prdton number of the
nucleus, Ir 15.the posztioﬁ operatof'for i;thvhuqleon énd
Y%i) is the usual Pirac's ¥y matrices for i-th nucleon
spinor wavefunction, .

Since §A‘ is non-relativistic, the nuclear wave-

function can be factorized as

‘ B o =it -plR
<ll’j__-..1rﬁ, \'A’3;5;>-_'-.-:{_-_.% AN S )

where . ‘ . : {V_\ <!-‘L.” ch \A>
&; = ff‘.:""‘“R e o (II.13)

.8.

. NA _
is the intrinsic coordinate of i-th nucleon, ( Z -ii =01},
=1

[} is the intrinsic nuclear state, and -V is the normalization

volume. & is the nuclear center of mass coordinate

R: i w; C o ' . (-_ii_.l_al.)"
so that .

Now using the identity-

Me c3 o (o L8
T SA v = 84 RIT 1 dm S(r- N 2=

. S pma
L=] I
3 _TT‘ éB ™ S . S o o
;SJ R "”J 513(%; ?L) | sy
and the completeness for thg,nucléar intrinsic.stqte_

=1

-E—i Sdsg" N (Z g, )\2‘ g"<><'-z’-°'"gwc\_._=. i, (-11..1'5)_._”_: _

we.find that Eq. {(II.11) takes the form

1= 3\ _(2"”4 Sox %) F?(éTTQ - Canm



where

P 4 w: ‘FE |
F (%A)=£:SA§<EA\£ 1 JT"(E)\Amv (I1.18)

and jufi) has the same form as before eq. {(I11.12),

Z4
Y=< ) S0 8G-E)

=1

but here it represents the intrinsic current operator. 1In eq.
(I1.18), we have identified |B) = |Ags> and |A&') = |E§> to
specify the initial nuclear ground state and final excited

state, respectively,

The S-matrix, eq. {II-9) can now be written as

4’ 4 ' t
e:S%?é} E; (?k+¥g;'¥;-?§) 53'51A535 Fj (9§B)

(B-RJeie F

AtB->pArg

NS (=R F(3.) | (11.20)

The.differential cross section is then given by

. A ‘
%:)J 4(o<z,\za)f¢l E:FEQ‘ n(ELY n(ED)

(5) % AR M

MLM'BM'AMB'-L- ,)\5{-,_(\[;‘ M’p‘,l”\.a) \K—;//\FA\Z (I1.21)

AL

where ' n{E*} ‘denotes the level density of the nuclei, @ is -
the fine structure constant, M' is the final state mass. . The -

four-momentum transfer g 1is written as
9[= (PA P o o(rr.22)

Also

n _ . : S - .
N (x, y.2)= J(x—y—z)(xw v2)x-yralxey=2) o anen

and@ ¢S is the total center of mass energf-of'thersﬁéfém;f.-
Since we consider small moﬁentuﬁ:transféré'we can .’

safely neglect the excitation energy dependeﬁce-ithﬁe ingégfand

of eq. {II.21} exéept-for g- and =E”s,_where:thi$-dégéndénéef

is crucial. Thus

a6 2/ M, M . \
C\TZ) = 4 (_Q_BMAEA- c'lE‘; ‘n(&‘ )?\(EB] F’MF\(H 24)
oM VS _ q_ .
This is the general expre551on for the’ flrst order
relativistic Coulomb excitation cross sectlon Wlthln the QED
formalism, Note that eq. (I1.24) contains'onlyvconvehtional

nuclear miatrix elements.




A1,

11.2. PURE PROJECTILE EXCITATION - QUANTAL AND KINEMATICAL EFFECTS

If the target nucleus remains in its ground state.
one . can. safely neglect the vector components of FBu{qB] since
they,g:e-of order %, v being the nucleon velocity inside the
nucleus. With this approximation and using an explicit expression

Eor'.A(?A-tPB)
,_A'(PA___:’,PB-)' = 7 ) ‘ {IL.25)

where B and y are the usual Lorentz factors corresponding to

the laboratory 1n016ent energy, we get

R RACAR (e}g\\an\ B

It is found to be convenient to split Fﬁ(@A) into

the_longitudinal;andutxansverse.contributions.as

(%A) F“ (C-th') + f(?},\\ : _ iII.gn

e (e W E ‘
- X—f(%:jégﬁ"_ REACAICNTE VIR I

.12,

i L_'_Ef A 7
. PT:(‘%—Q =‘PE e T %_ -2y (E_"NA\)<E:| J'(g)‘ Ag)

with ﬁ(ﬁ&) being a projection.operator in the directibn of

-

_EA, and . &, the unit vector in 2 direction, . The

Z
first component of Fg(aA). FE{EAL can be cast_in;o ;he-fqrm{

z _ A 13 ..%
FH (%) - Ca Gy SAE 2 W <
Vgl | N

i\:::\ 2 VE -~

\ gfm j\\ qs>

1

<.¢§_\f y_\._rs;.gs} o

15 (E E.. | c%\.§ » B ’ (11301
\ & E( “§ L):o,, .<Eﬂ\_f(§>-l.kqs7g o
am ul ]

where we have used the contlnulty equatlon after . lntegratlng by

.parts in last step of eq. {I1.30). stng thls result,:the_c:ossff'

section for pure projectile excitatioen reads,

3%) 4(x 2, 23)(%&:%) SAE n(EA?\r:}\ F—'.

W

C’:ﬁ-ﬂ\(II 333

where

", = (- F“‘"‘tj"{lg S<\§<E \f(?)lA )e

| ﬂ e E |
"Fﬁ‘é;_-533<a\3L(s)tAqs> T oA,
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The kinematical factor q4 in eq. (II.31) is a

function of the excitation energy,
4 2 z Z
Qhere-'

(II.34)

.8E=-—_':q_6_‘E*
' Vs

and

8% - 2 Eg SE

The expression (II.33) is valid in general, equations

(£1.34) and (II.35) are valid for small excitation énergies

only. On the other hand

\q_f \z (L-) EX + 2R(Pa+SR)(4-<0s®) (11.36)
A= — ' .

i- EE*G/@AA

with

= har— {IT.37)
T En w0 R

- where 'BBYB' deﬁotes de Lorentz factor of target nucleus B

P My Es ® {T.35)

~ since forward scatterlngrls domlnant., Thus the factorlzat1on

S

i the CM system.

In the limit of no excitation

and it is simple to check that one recovers the well known

Rutherford cross section from- -eq. (II 31)
It is worthwhile to- dxscuss at thls 901nt some .

essential dlfferences with the: 5em1c1a551ca1 expressxons for

the Coulomb excitation mechanism at relat1v1stlc emergles(f}(Z)

a) Even in the cases where. excltatlons are: uantantr-

one can still recover the factorized sem1c1a551ca1 expre551on

" from eq. -{II,31) provided

L- 056 ?‘) 28\(\3&*‘8?) - —frl(-PA ) o ;.'{II..;;S‘_)'.

In nonrelativ;stlc Coulomb exc;tatlon processes thls a
condltlon is easily satisfied, since most of the contrlbutlon
to the cross sectlon will come from fxnlte deflection: angles.g

However, in the relat1v1stlc 11m1t thls w111 not be the case

assumption is not valid. In barticﬁlarzforjEOrwa;dudngleo,which
satisfy the condition .
' *

.44 v .““E_ PR S S aray
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the semiclassical expression for the cross section completely
breaks down.

apart from the analytical expression for the cross
section within QED, a very important point in our guantum
treatment, resides in its prediction that the collective nuclear
excitation should be quite.different from those expected from
~ semiclassical ;heérieé iﬁ thisrkinematical réqion. For forward
angles, {Eq. (I1.39)), the momentum transfer seen by the nucleus

A is almost parallel to fhe incident beam axis,

4-”43'- ' ' B (II.40)
-q[h; g &7 \q‘h\ '
since g = P_.B << iqA| {see Fig, 2.a). In this case the

contribution to the cross section will come from the first term

on the r.h.s. of Eq. (IL.32}, which contains the nuclear transition -

operator ST

e |
. Jé i:(f).g?h L S (II.41)

Tpis;pperato;_obviously'causes,the éhérgé polé:ization to be
pqrallelfﬁo_ﬁhJ. Since _@A is‘paral}el to the~§eam.dinx%imn
we_conclude_ﬁhat‘the chargeJPOIarﬁzation of nuclear final
:gtétes are popuiﬁfed.én the lQngitﬁdinal direction for forward
angleé‘.

On the other hand, in-the-semiclassical approximation

.16,

where recoil effects due to nuclear excitation are neglected,

we always have
G & %o R T

for forward angles {see Fig. 2.b), naﬁely QA_ is pgrpend;cula;:”.
te the incident beam direction, Therefore,,thé Semiclassica;
treatment leads to the conclusion that the final chargén
polarization state is transversal, contrary to our p:esenﬁ,

result,

b} In the semiclassical approéches.é giv@isaﬂ¢erim§
angle corresponds to a Qell defined valﬁe for'thé_momentum- |
transfer. In this way the scattering_aﬁjle limits. the exciﬁnjén
energy which will be available. On the other hand our quantum
treatment shows that the scattering angle'%peciﬁiés only the.
traﬁéverse component of the momentumrt;anéfer and even f&r.zeroi

scattering angle high excitations are kinemqtically allowed.

© IIi. DISCUSSION OF SOME HIGHER ORDER CORRECTIONS‘_

Yn heavy ion -reactions Coulomb diﬁiqttion,eﬁfects ﬂ
are known to be important, Usually thesge effecéé ére.treatedTJIH'
by DWBA (Distorted Wave Born Approximation] where the.two.

nuclei are treated non relativistically and recoil effects
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negleceed. In order to treat this problem covariantly one has
to sum up all higher order contributions arising from the
exchange of interhal photons (see Fig. 3). One of the well
suited approaches ﬁo.this proﬁlem withie QED is the eikonal
epproximation in quantum field theory‘developed by M; Levy anq
J. Sucﬁerte). They study phe Feynman amplitude M{s,t) de%xibhm

the scattering of two'spin-o elementary particles, a and b,

interacting by the exchange of spin-0 mesons. They show that if

Mn(s,t) (the contribution to M(s,t) arising from all n-th

order Feynman diagrams in which exactly n mesons are exchanged

between a and b} is ertten in an approprlately symmetrlzed
way, and if the terms 1n-any a or b particle propagator which
are quadfatic in the interpal momenta are dropped, the resulting
expression for. the amplitude_may be carried ocut in ¢losed form.
To adapt their formulation to the-nucleus—nqcleus Coulomb
excitation processes, we ﬁave to introduce, instead‘of the
spin=-0 particle propagator AF(p)  the nuclear bropagator

"G(p) for the intrinsic nueIEar state. ' For a nucleus whose
total four momentum is p, the intrinsic nuclear propagator

can be expressed as

G(?) = - -
VP - Hrie |

in its rest frame. Hy is the nuclear Hamiltonian aoperator

218

(including fhe rest méss). ﬁe also define the vertex operators
Fu(q) which take the nuclear transitions ineo'account\ To

simplify our derivation here we consider only one step excitation,
where the nuclear excitation takes place at onceé in one of the

vertices. In addition, we assume that

% | = — CL : '
<E ‘IF}_L (%)lE*> f- <AG$\‘F}LLC{')\AG|$> -- (-111.2')
Let SA+B;rA'+B' be the scattering amblitude corfesponaingito
the sum of all diagrams of the form indicated in Fig. 3 'Ueiﬁg
the same technlque as in Section II to express nuclear matrlx
elements non- relatlvxstlcally, and after separatlng the nuclear

CM motion, we can write

A+Es —(271') g (P H’b 1:',i ?B)m ,- (-111..3.).
m : 2;_,_ Ma (111.47:
=2 Sfr ( 2D, (k ))(Z"fr) 8“(% zk)

(kA))ﬂ (&Q (8- j_ m\

Z TT(—&.F'}"J (kb'))T« (_.«.G| (P zk]J (III.S)
> J'
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where k ,kn denote the momenta of exchanged photons in

P
the order of emission along the world line of nucleus A and
the nuclear excitation is supposed to occur at ; = r.DF(ki}

stands for the photon p;opagator

(ITT.6)

ks 4

D_(k)= —2—

. F {4+ A€

as before, The_factbr Fu (E?j is the Fourier transform of
i

the nucleéar current, as defined by

— ke .

SMCON Ao E<hale | DM hed
. > th.‘z‘ :

FPI(E;): N;. (B)JAE <’_qu_\_e'.'_. \]“—(S)\ o, '(III:F.E‘S)

(
u

%) —RA .
r (kr) given by

and F

LA
L9 ‘.-

o, - & % r

" where A(A} 1is the lLorentz transformation matrix from the rest
from - of A to the observational system. The function GA(k)

_co:;esponds to thezggpectation»vglué of G(k) {in_eq; (IIX. 1)
in the appropriate intermediate nuclear state.of:the indicatéd_

nucleus. The summation Z is to be performed over all distinct
’ D T . - E“l'_" Lo
"diagrams .in which the momenta _k1,.f.,, kn_.may be absorbed

.20.

along the world line of b. The primed variables refer to
suitable permutations of the corrgsponding momenta.

It turns out to.be convenient to use the energy-
momentum conservation §-function in order .to eliminate tﬁe r—th ..
momenta kr at ghe r—thrvertex, yhere the»nuclear excitation
takes élace; In this case, the products of nuclea; pfqm@ators.
will be written és .

Nt L T A o
AR SR IR CENCIS M BITIY

(=1

oy ) , - A _ R
. * A n-L : E
.
SLE SR KBS e
=Y b L‘L } . . _ - : -
A typical member in the first group of factofs can be written as

CHICICETN TR |

L S
: : A
r——‘—'—‘(PA_ K)z- HN'*'"‘_Q \ Cif: -. 

L . o N ' b\h

. : - ) > . (ITT,11)
N ACTNE Mo Kt i€
where we have used ;he.eiKQnal approximationls) and
=My o o - {III.12)

A typical member in'the second group of'faciors éah bé:wfittenw'

as -
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HEAC S ¥ i 1 r¥p et
&l =<E\ \e™>. : u¢ )
. 1 ; . u = U{x,P,,-P' ,
.(PA“'K)Z - HN'I‘\G | . 2 A B o .
' ‘ u, = Ulx, R, Pp)
= - ' Lo __._ﬂ'.ﬁ___ (III.13}) U, = Ulx, -Py , -B}}
i 2 — L ; " _
\/;A‘w“Kz—Z}?.:K - M rie K K+ie
 'where we have used and
Cery [EER 06 P 7)) ese [k MMy B ENEPED & (rar.1s
Bo= M (2I1.14) R AT\s T L sl e (III.19)

@) (PREiCPReig (ke

From this point on it is a straightforward matter In this form, the studied higher order corrections

to follow the steps in the derivation of the scattering are contained in the factor eX (eq. (IXII.15)) and ccrfesppnd'

amplitude given in {6} to get to a properly symmetrized DWBA phase.. It is relétively simple.

s T, ) . to show, again following the steps of ref. (65'(sectiéﬁ é} fghat
_ « P ) o R - e : S
'YYL = A X 2 . D) e (III.15) : the eikonal phase can be expressed in the static limit as a™
‘ convolution inteéral ofrthe nu¢lear charge densitieé"withfﬁhe-
- - : Coulomb potential, If we neglect the finite size of the charge
where R . . . ’
_.ka o distribution, we obtain ) .
| fo  EXLYFMGE, (T L |
DW= |y = M ( A) °) (IIX.16) 2 — s :
| (27) k?4ig ' K — — + . de,
Y € . . / llr+'w_.g] fw-wx) )
and - . '
' (U s U+ Usw | = o lim [\“\g.\- TR PR é’(inw.')g;rz"l: .
_ LTV 3 ¥ 4) (III.17) _ o '

VAR —- 0O

S"gi\m& -

with L ' : 7 ll : \.n\g" \r_w;.“s—-‘?(""w)g:ffz.\]

S=¢
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which contains a divergent term as (¢ + w , However the

max

. . ; ixix})
eikonal function X enters in the matrix element as e X

so that the constanﬁ divergent factor can be dropped since it
does not affect the final form of the cross section. Thus the

effective eikonal function in-the static limit reads

j}hc IZ'EEEE ) . . :
X —=e A8 [Ln 5-‘"2(6%)_‘__ Ln cog'(%?—)— ?-L“QP‘" -
ho L _ o :
which is exactly the.prqperly.symmetrized-DWBA phase factorj7),
where 6] and_,ez. are} respectively, angles between I and
P and I apd P'. In this limit and for small seattering
angles this DWBA-type,correction;to‘ﬁhe cross. section is known

to be very small.

IV. APPLICATION; THE CLEAN FISSION PROBLEM

The.Coulomb induced Fisaion represents‘a well'sﬁited
problem to test our results, In fact, recent Studies‘of rela-
tivistic (1 Geﬁ/ﬁ) Uranium beams. shows a beautiful eiample of -
such a process(S).'
700 mb of the total cross section {averaged. over the emulsion
components) correqunds to the so called clean fission events

in which only two heavy fragments are'observed, Recent calcu-.

lations using-the conventional semiclassical theories under-

‘These experiments reveal that approximately
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estimate the experimental cross sgction by a factor of seven.
Howeﬁer. the most intriguing fact with respeét to £hese data is-
the angular distribu;ion of'tﬁe.fission fragments, which
exhitibts a peak at gzero degree in the Uranium rest fErame. This
also cannot be reproduced by the available.theoriesga).

In order to evéluate the total cross Sectioﬁ Eﬁr the
cleén fission events we assume that the projecﬁile gxcitatioﬁ
mechaniém is a collective dipole or quadrupole transition.
Furthermore we assume the target to remain in its éroundrstate._

In this case the excitation energy is of the order of 10 MeV

and if the scattering angle is small, the second term on the -

‘r.h.s. of eq. (II.32) can be safely neglected. The basig

1n"gredier;t i the evolution' of eq. {I1.32) is then thé'transition :
density ~ . _ ;
Bl e@0ALS = <o\ el Agey -

_ A F gﬂLﬂ) Gs \‘D Ha \ as? _ (Iv.1)

: B -3 o i
| @ p (g Aee>

where |0} and [Q correspond to the dipole and_quadrupole
state respectively. It is well known that the macroscopic
{(9)

Tassie's model gives reasonable estimates of these quantities,

and we shall use it in what fellows, We get

ol e(galAy < g%& V@ e W2 s
E

Z 2
' “%grn

2
N, o f P [RARMFE ) ERY] s
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-where Ny is a normalization constant determined by the sum

dp_
rule for low momentum transfers, Also de derivative 'EEQ is
approximated by a gaussian centered at the nuclear radius R

A

and has a width a , Analogously we have

- q, 1
<®‘\P(%AHAGS> N { Jz(%"z \“““‘(‘R)(gra—kahs.(‘%r‘ﬂ*

+€f’h ( ):;m(qf,"Qo-\- 2(? )ms(‘;l_A’Rnl | .fIV.'s',.

Now, a word about the angular integration is-in‘ofdef: The so
called fission events are experimentally characterized bé_tﬁe
apparent lack éf target Fecoil (erlfragmentation)- Thig ;an'be
verified by checking the coplanarity of the fissioning'fragmenps
eith”the incoming beam, -HoWever,'in fhe mose favourable
experimental conditions this check eannbt rﬁle,out tfansyerse
momentum tranefers < IOOIMeV/c-. The'transverse momentum
transfer- is related_fo the scattering by

-AX =1 Qbse“h = L (q"r v«au) - (I'v._é} _

Finally, integrating eqg. (II.31) up to emax we get
. 2 . 2 -
TPeoT(xHZ) & 2 B(ey(Male Y °
Ea? 1{2 \ A—B
A \Is .

-2

.&

L

S‘l . L e z
K{ v +€(4-x)

1-8x

l\)L(?'A—R.J +3 ( ) Sin (ﬁ,{R,‘) \

(IV.5}

.26. o :
and

9 aw(«z&)

4;&5(52)( Matte Yo
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4

N [ L 21 - .
N+ SG) s _ REAETY A) + ?A-Ra( )k):.(‘}akﬂ

with

B(E1) = 66.4 £m®
B(E2) = 2.54x10% fm®
Yasp T TH

A

and .TL ie-the 1aboratory klnetlc energy of the projectlle;.

The total cross section for clean flss1on events 1nL
emulsion is given by an average of eq. (IV.S) and-(IV.G) ove:
the various target nuclel multlplled by a fission bfanching

ratio which is assumed to be 0.25 in this exc1tat10n energy

range. In Fig, 4 we plot the calculated total cross section

- For

of the events in the emulsion as a functien-of ET
. . . . max
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values of ET up ta 60 Mev/c,:the total cross section- is

lncreased by Zaﬁactor of 3 at least as compared to the cor-
responding values-xn ref. (3 ). Note-the saturatlon of the
calculated contribution at qT ~ GO-MeV/c .'After this value
the main contribution comes fro;xthe second term. -ﬁe'have .not
estlmated its contrxbutlon to the total Cross sectxon however

This*is one of the reasons.: why our estimate 15 certaxnly

conservatlve., Besldes, aven’ Eor small q
"max-

(forward angle-:

scatterxng} hlgh nuclear excltatlon:other than:these Dlpole and e

"Quadrupole states may well contrlbute to thlS f1531on mechanlsm,;

e.g., the photon absorptlon by a- correlated pa;r of nucleons

and. so on,. Therefore we belleve that the Coulomb exc1tatlon

process 1srresponslble for the largest part of the total cross_

section of clean flss1on events.ij 7

As for the f15510n Eragments angular dlstrlbutlon,t
we have pblnted out in sectloanI that‘the forward angle~‘
scatterlng (correspondlng to: ﬁinlte nuclear excxtatlon) always
-polarlzes the'. f1nal state 1n 1ongitudinel dlrectlon. ThlS
explains naturally the forward peaked angular dlstrlbutlon of -
7E1s51on‘fragments._ When the scatterlng angle becomes relatlvelp
.largejthe main'contr;botlonito the,angula; distribution comes

from the second  term of eq; (I1.32) and in this case also the

'polarisation will be in longitudinal direction since the transverse

compohent of the current induces nuclear polarization perpendicular

to a#, henceforth~parallel to’ the beam:direction._

.28,

V. CONCLUSIONS

We have developed a quantum electrodynamicalr

approach to relativistic Coulomb eKCLtatlon in heavy 1on

'»collisions. Due. to the small momentum transfers 1nvolved 1n

-thlS process 1t is possible to derlve covariant express;ons“

for Cross sectlons in closed form whlch contaln usual non

"relat1v1st1c nuclear physlcs matrlx elements . Our approach.

_represents not only a formakl derlvatlon of the tradltlonal

_avallable results, but reveals new phys;cal aspects of such

processes as a subtle consequence-of the’ 1ntezplay between

quantum and relativistic kinematical effects. = In fact one of

- the ESsential differences-between.conventional treatments'of

Coulomb excitation and the present .one resldes in_the. predlct;ons
forfthe‘polarlzatlon of_f;nel states._ ThlB can be aqerumxmally
checked hy the study'of,the angulat dLstrlbutlon_of Coulomb
induced Elsslonrffagments{ .ét thls-moment there'ate-only few -
e#perimental results availatle and_tney-seem'to'oonfirm onfl.
predictions. o |

‘ Since the longltudlnal polarlzatlon will be enhanced'
Eor high exc1tatlon energy states ang Eorward angles the ldeal

experiment to test our results would be aiﬁ:ect measurement of

charge polarization states in such conditions,
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