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ABSTRACT -

.'We constfuct.an~orthogonal-and conplete set of .
solutions (in the sense of the Random Phase Appréximation) to
-the linearized Viasov equatidn for an infinite, homogeneocus
many—fermionlsysten. Classical analogues of the RPA guasi-
boson operators are obtained and compéred to their quantun
mechanical counterparts written in a classi;al phase-space
representationa The'initial.valug problem of determining the
subsequent time evolution of a given disturbancerof the (stable)

equilibrium distribution is discussed.

I. INTRODUCTION

This paper reporté on an inveétigation of the-small

amplltude statlonary solutions of the classical Vlasov equatlon.'

for an 1nf1n1te system of particles’ obeylng Fermi- Dlrac
statlstlcs. We also indicate how the results can—be.extended.
to the richer framework pronided by the full Wigner transfofm—

of the selfconsistent mean-field: approx1matlon{1).

As is well
known, the Vlasowv equatlon-can in fact be nnderétood as the

lowest order abproximation (in powers of T} to the quantum

mean-field dynamlcs or, equlvalently, as the long wavelength

(2)

11m1t famlilar from: the Landau theory of Ferml lxqulds - Qur.

interest ‘in such matters Stems from the fact that Such statlonary
solutions appear, . in- partlcular, as. nuclear matter counterpartsﬂ_'

of the familiatr discrete v1bratlonal excitation mo&es of flnlte

nuc1e1 as described in terms of the random phase approxzmatzon
(RPA) This fact has been explored e. g by Jenn1ngs and
Jackson in a study of nuclear v1bratlons and thelr 1mpllcat10ns

(3}

for the nuclear residual lnteractlon Besxdes thls, a .

careful study of the structure of the statlonary solutlons can

shed light ‘on the ba51cally_d15per51ve damplng_mechanlsm known-~

as Landau damping, also-not.just,in.tne-casé;bf the infinite :
system, but for finite, collective many fermion systéms such
as the atomic nuclei as well.

Stationary wave solutions of the Vlasov eguation

b e e
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were studied long time ago by van Kempen(é) in the context of

plasma physics. We show that . the ﬁodes invoiyed in his method
of solution coincide; except for normalizetion, with infinite
system RPA modes.: Taking advantge: of this fact, we shall follow
his wcrk closely rn.ordereto treat the completeness problem gbr
the set of statlonary solutions-in a constructlve fashlon.: In
partlcular, all results can be worked ‘out, analytlcally rn the
case of the degenerate Ferml gas, for whlch the equllrbrlum B

dlstrlbutlon reduces to a momentum step Eunctron Though not

analytlcal due to ‘the' occurrence of 1ntegrals lnvolvrng finite
temperature FEKML dlstrlbutlons, the flnlte temperature case is

'1n fact conceptually 51mpler, 1n the sense that, unlike in the

degenerate case, no specxal treatment 15 requlred for zero-sound

modes.: The treatment ngen by van Kampen can actually be
dlrectly applled to this case. . We.therefore concentrate our;
dlSCUSSlon malnly on: the degenerate Ferm1 gas.r_’

: E In what follows, sect;onS‘II, III and"iv dealrwith.
the Vlasov equation.. 'In“the'firetrof tﬁeée tne'stationary
modes, glven in terms of: ass0c1ated canonxcal generators, are
obtalned _and ln-the second-the1r ortogonallty and completeness
propertles are expllc1t1y worked out in complete analogy Wlth
famllrar RPA results{S). Sectlon IV is devoted to ‘the lnltlal
value problem irn which the 1n1t1a1 dlstortlon of the Fermi

system descrlbed by .the: Vlasov equation is speczfled This is

solved followzng closely the: procedure of ref. {(4) for the

degenerate case, in. which the role of the zero sound modes is
discuseed. Finally, section V deals with the extension of
these results for the case of the fully quentel, linearized
mean-field dynamics and section VI is deuoted to final comments

and conclusions,

IT. STATIONARY SMALL AMPLITUDE SOLUTIONS OF THE VLASOV EQUATION
AND THEIR GENERATORS

We consider 1n1t1ally the mean— f1eld dynamlcs of

_ the phase space dlstrlbutlon function f(x D, t) as given by

tte Viasov equation
'3_(3_( 4:).+{(3(\:pt] -Q.(y p)}

(rr.n

where,the second term stenée'for_the-usual Poisson bracket

{{e&} 'zﬁ.v_\‘ﬂ_@ '9_£

‘“l
Rylss

and assume that the potential energy part of -h results from
density averaging a two- and three—body.momentum independent'

effective interaction, i.e.
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For 51mpllclty, we shall also omit expllclt reference to
intrinsic degrees of freedom- such as spln and lSOSpln.
Even though an-arbrtrary functlon of h: (subject

to an approprlate 5e1fcon51stency condltlon) is. a statlonary

solution of-eq (II. 1), we restrxct ourselves to tﬁﬂmlat1onally “;

1nvar1ant statronary solutlons of- the form .

PO e N R T
_ 'QO(TP’ ).{-:. [1 + MP{(G‘-)")/h;{- S-] ’ : - ¢ II3) '

‘where kB is the Boltzmann constant, the chemlcal potentlal

.h belng flxed by

L’Lrt)?’g [P) Y

this being the—eqﬁilibrium density. In general we have
0z f1§;§,t)§ 1, and’'the stationary seolution (II.3) at T=0
satisfies the pure state condition f?= £. It is worth noting

at this point that the dynamical stability condition for f

ELL) < ECF],

0

6.

.where E[f}] is the total_mean ensrgy aSsocieted’with;the;disé

trzbutlon Eunctlon £, and wherekrﬁ is canonically related to-

£ {see eq. (II.4) below) is fulfi':].-le-d_by"eq-.'(]fi_..‘i}-."' .

0 -
: In order do deal with small amplitude fluctuations
of the distributlon function about Eo . we distort the equi}.ibrim

dzstrlbutlon through 1nf1n1tesrmal canonlcal transformatlons.

-generated by (real) cla551ca1 observables S(x,p,t}

ﬁ(m 4= %CP) v LG, ),

%&mﬂ;{&§l "l@t'

‘;'Wheﬁraealrno with stationary.e2c1tat10ns-of Lnflnlte%Matter~

- Cwith translatlonal invariance 1t is actually more: convenlent to
\”FDurler analyse both the space and tlme dependence of the :
';generators, and to 1ntroduce sharp frequency components S (k p}

VIJW1th good wavenumber % through

-1

(- iUz.x wt,) L
Note 'th'at; un'l-i.ke‘- S{;;Eft, ; t'hé-’ .Sm-.(i,-f))" ere i.n' 'éehera]:_'cornp_le.x- '

Quantities. _They are-required.to-satisfy thefréelity conoitlon
L T (T o |
) S '(‘lf-.-F ) = Su U:'.P) . - {1I.6%
B °¥! : AR o

50 that,'in-fact;'the.Fourier_compohent -smji.ﬁ) correspouds

to {e.g.) the positive frequency.pdrt of. a real generator which

-must include also a negative frequeﬁcyicounterpart. . These
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correspond thus to the creation and annihilation parts of the
hermitean generator- asseociated with particle-hole fluctﬁations
of the stable grouna state of standard time-dependent derivations
of the RPA.

Direct substitution of egs. (II.4) and (II.5) in

q. {II.1) yields. in a straightforward way

(11.7)

Having in mind sitgations.in:which_theereSidual‘inte:actidﬁ:f
between-fermions.is-of short range; toéethef with the 1dng S
wavelength llmlt we have assumed contact two~ and three body

potentlals in eq. (II 2)"

v aSER) ; we bSEINEEFY),

Furthermore, we\idfroduced—for convenience the dimensional

constant p;;“= §2mg)7%2: s0 that; g .is expressed in energy

units -as

=Ps= +‘o
7 G 02,

BEq. {II.7) shows that the generators S (k,p) are only
-af )
determined: for values of B 'such that k . —=—— does not

. o o ap _
yanish, and- that k enters as a parameter. - This implies, in

.8.

particular, P=Pp for the degenerate Ferm1 gas " Subject to

this condition, the d;mens;onless solut10n5 of eq. (II 7) have

{4}

been written by van Xampen in dlstrxbutlon form,-as

SR E| g MRS G

the function Alw,k) beiné subject to;the'subsidiary condition

ﬂ;__{uS(ﬂp)é[’. | e
I

~which also defines a particular normalization of the solutions.
This condition, given the form (1I.8) of © 8 (i,E) . actually

] determines A(w,?). in all cases where the integral (II, 9) over

the &-function part of eq. .(1I.8) does not vanish, In such

cases, stationary- solutions exist for a continuum of values of

X and w . When this integral vanishes, on the other hand,

eq. {I1.9) appears as-a dispersion equation. connecting % and w.

If we use eg. (I1.3), with T#0, for fo , eq.
(IT.%9) is such that the integral over the.s—function part of
Sm(E,E) never vanishes. The degenerate case (T =0), on tﬁe

other hand, is special in the sense that the subsidiary

condition gives
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where s kp is the usual Landau variable.. When 1s| > 1
this. becomes the familiar Landau dlsperSlon equatlon
- T . R .
¥ 45’0"" s . -t (1T.11)

445 Zﬁku%-

which will have solutions lsp| >1 (éeko.soundf“fot' g=>0
(repulsive residual‘interaction) LTI 11) w1ll also have'
solutions for ‘g<Q (attractlve residual- mteractmn), but-

in this case |[s| <1, thus lmplylng XteDF.

IIT. SCALAR PRODUCT, ORTHOGONALITY AND COMPLETENESS RELATIONS
. THE DEGENERATE: CASE

Tt is useful at this point to explore the correspondence

of the - Sé(?}ﬁ) (w>0)} with the'creatibn part of the RPA modes-
V& P&}

In the lattef-case, orthogonality-relations can be'proved in
{6) '

+ ™,
B ='Z[>< ey

" P&

terms of .the scalar product

(Bm,b_“):TfLSL[fon ]B l} T&{PD[ ]5 (III.1)

“and .

.10.

We intreduce, therefore, for the problem in hand a scalar product

which is the classical counterpart of'eq. (III,1), namely_

(Sﬁwl SKW) = 52 ¥ ){5 % d¥ E. e
- (mk)® -
where’ the spatlal dependence of . the generators is exp(iﬁ{%};',l o

érw,-_mz kv g @3

Eq. (III 2) can be evaluated analytlcally ina stralghtforward

fashion for the solutlons (II. 3) 1n the case of the degenerater

Fermx gas. In the partlcular case g >0 i whzch 1nc1udes zero-t.Ie~'

“sound modes with Jszf_>l , We-flnd
l (Sﬁ_w I Sﬁlwf ) = H(S)‘l%}l S“’-“Ll) S (f-—'.J'MJI ) . (III333

<

S, Sur VI N W €TINS crrnam)
(_ s liw%) = NL5,) EJZ\ S([L ki )Swiw; | sy

where the subscript =z denotes zero-sound varues, and the ' .-

normalization factors N and NZ are given by

pls) = Zth.'{) isy _k_ T Lﬁ-—) )\Z(Llw) {III.4a)
{2wk) : :
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Eqs. (Iii.3a) and (IiI.3b) show expiicit;y in .this case that
negative freguency geﬁérators have negative norﬁ,_a familiar
result from the -RPA which 5tem$.ffomuthe sﬁabiliff of: the
equilibfium ‘mean;fiel& distributiob, _They also, show that
zero. frequency modes have .zero noxm .

In a 51mllar way, a formal path: towards a complete—'

ness relation for the solutionS>(II.B)'can be. found by explqring'

: . . : : L .
their correspondencq‘wlthtdxscrgggtgyA_mngSi:Bny_Bn. To this

effect, on the basis of . the complgﬁeness :elaFLon f6r normalized

modes(7?

where a, B are. single-particle labels, we are led to

k(2 %3[‘,{1'?)\6(«») Auw (zmsc )w )

(III.G)

i 'I;’.w')

where again the ﬁgﬁ are. properly normalized. This expression
W : .

can in fact be formally derived from the orthogonality relations

(III.3) multiplying them on th'leftfby_ §ﬁ 2 and integrating
P ; @

fo
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over k¥ and w. Due to the involved k and o dependence of.
the normalization factors (III.4) it _ is however not possible
to check explicitely eq, (IIIL.6)} even in the casé of the
degenerate Fermi gas.

Furthermore, there is an important remark to be
made in connection with eq. (III.6), and which applies also to

the corresponding equation for the usual, discrete RPA modes;

‘as it is evident from their derivation, these formai relatlons

must be understood as applyxng within the subspace spanned by’

the statlonary modes themselves. This means arbltrary particle-

_ hdle modes in the case of the usual RPA and agbitréry acéeptable_j

infinitesimal generaﬁors-in the céntext of the linearized Vlasoy
équétion. In the_degénerate case, in particular,.acceptable
genefators'are ohly given. at thg Fermi sﬁrfacg, E = ppﬁ_ (seé
eq.iII.?)). " This feature arises, fermally, as an_artifact:of
the classical approximétién to the dynamicg.tdgether with the
particular form of the equilibrium distribution for ﬂuadegenérate: o
fermions: Tt can be_understood and jusfifiéd, pﬁysi&ally, in:
terms of thé long wavelength approximation, which requires
infinitesimélly small wavevectors k. ‘The typical magnitude

of k + which plays the role of a. momentum transfer, measures in
fact the breadth of the active momentum shell, which harsors
the relevant possiblé particle-hole éxcitations, which fpf the

degenerate system is centered at the Fermi mdmentum.
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IV. VAN RAMPEN'S CONSTRUCTIVE APPROACH TO COMPLETENESS

The preceding results reveal explicitly the identity’

(exoept for normalization} of the van Kampen modes (II.E} to

RPA modes of the olassical, small,amplftude Qynamrcs of extended
many-fermicn systemsr In‘partiéularhreqs, (iII.i) arid (ILI.86)
constitute the main tools involved in app;icahions:of the RPA,
As examples, we can use these reléﬁions to-oonstrﬁct.lEneer
respoense funcrions as Green's functions of rhe aynamical
equation (II.7) and construct sum’ rules assoc1ated thh ngen

{6 -

tran51tlon operators to the statlonary modes It is

nevertheless instructive and also useful-to lmplement the
expansion procedure adopted by vsnﬁKahpenta)“in connection
.with Permi sysrems. -As was mentioned in”the introﬁuction,”this
rs entirely trivialrfor eqpiiihriﬁm'distributions._fb with
finite T- (see eq {II. 3}}, whioh Fulfill the'assumption ofh'
“being everywhere dlfferent from zero(4}{ In what follows, we
therefore restrlct ourselves once again-to a brier discussion
af the 1nterest1ng special case of degenerate Permi systems
with g>0. .

~Following ref. (4}, we consider the:initial value
problem for an inifially given distortion of the degenerate
_equilibrium distribution.  This is-exbressed in tErms of -an

infinitesimal generator 'G(ﬁ,E) specified at the surface of

‘the Fermi’ sphere, §==pF§. The problem consists then in

inﬁegration domain extends therefore frcm .ch to 1

.14,

cbtaining the expansion of G in terms of the staticnary modes

S (ﬁ,ﬁ) , . {11.8) ., There 15 of course no loss of generallty

in con51der1ng in detall just a 51ngle Fourier component

G(k,p)elk‘x of the given generator} for which the required

. expansion reads

ey e (TS 3 Topd .
Gl 7 )= _S'As GU"’S)SW(E‘P)F PP (Iv.1)
.Note thah the wavevector X ‘enters oniy as a’fiﬁea parameter;

so that we are allowed to define the expansxon coeEficients

G(k,s) by us;ng the Landau varlable s dlrectly as 1n&gnﬁuon

variable. For a repulslve reSLdual Lnteractlon, g >0, the

¢ appart

from contributions of the zero-sound modés which have [sz|'>i'.
In what-follows we shall work under the assumption that these
particular contributions have alrea&y heen'exrraCted from
G(ﬁ,ﬁ},' sorthdt we'are left just with the integral over rhe
continucus range of values of s.

 Substitution of eq. {11.8) - in eq.r(IV;T).yields

AT e [xe(k.'ﬁ-’ﬁu@ ”‘S_-?,%[:;-i"@(‘*."*)

- (IV.2)

where A is determined by the'subsidiaryrcondition {I1.9} which

reads (cf. eq.‘(II.105}




.15,

2
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As in ref. (4), the principal value integrals in egs. (IV.2) and

(1v.3) are handled with the help of the relation -

(IV.4)

@SM Fix) __LEF(s) i {F (s)_F(s)]

Xx—5

where F (s) are the inverse Fourler transforms oE the 9051t1ve N

and negahxve frequency parts of F., respectzvely,hs? that
Fis) = F 6+ '_-F__{s'{)

and, F beihg a_rgé; fuhcﬁionj{c%;'eq,_(;é;g);;i

-Ih partichl%r? for _Figi.=;x;éa;%;[%}s we geil 7

-_FJ_(Q-=.%:.@(4=-IISI)I+;?—;:‘_—:(Z+SQM !ll_—é I ) . I(IV.G)-

Wlth these tools eqs._(IV 2) and (IV 3) can be. formally sclved
by flrst ellmlnatxng A between them, then using eqs {IV.4)
and (IV.5) and separately equating positive and negative

. frequency inverse transforms on both sides of_the-resuiting

(IV.5)

.16,

equation, This procedure yields

G (B 5k)= - Kep (G, 8) FGD)],
- ! 2T sty 2

(Iv.7)

where ?,”F+ are defined as in eg. {(IV.6). This solution can

in fact be sustained provided its denominator does not vanish

in the expected analyticity domain of G In the case g, >0

that concerns us here, dangerous po;nts would occur where the

‘real part of the denominator vanishes, its imaginary part being

- also zero, i.e.,, for |s|>1:

_E;:_ (.2-+ £:1L4(

4rtlm% Zx

l+$|

These dangerous points are therefore just at those values of
the Landau parameter which correspond to the zero-sound modes,
and are therefore eliminated by the assumed projection of these

modes cut from the initial condition generator G(ﬁ,ﬁ}« Eq.

- {IV.7), added to the appropriate zero-sound components, gives

thus the solutien to the preblem of expanding that generator,

The time evolution of the given initial distortion

of the_equilibfium distribufioh_can now be directly constructed
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by taking into account the exponential time-dependent factors .
of the stationary modes. Non—stétionarity will result from
rphase-mixing phencmena, and will hinge basically on the frequency
distribution inherent to the initial distortion. In particular,
initial distortions associated solely to the zero-sound for

g>0 anéd with given wavenumber will have a sharp frequency

distribution and show no damping in this case.

" V. LINEARIZED QUANTUM MEAN-FIELD DYNAMICS

The Vlasov eguation (iI.]} can be seen as the
lowest (zero) order truncation, in powers of %, of the Wigner
transform of the quantal time-dependent meaﬁ—field‘dynamics(1).
Under the same general assumptions which led to eq. (II.7), bﬁt
kéeping all powers of H when taking the Wigner transform of

the guantum commutator we obtain

{(ﬂ )53 ¢ ([0Gel)- LG8 @ 08

z

F

b(rpad)- £t =0

x_—t‘: PHZ) - TR = (v.1)
which immediately reduces to fhe former équation in the long

wavelength limit. 1In eqg. (V.1} the tranéferred momentum k

18

still enters as a paraméter; but ihe sh}fted equi;ibrium
distributions duly allow for anractive momentum shell of finite
breadth given in terms of ¥ in the dégenerate case. The
explicit relation (I1I.4) betweep the generators_ S and thg_
correspoending fluctuatibn densities f. ,-on the other'hané,

1

now appear as

L) o |[TRGE) LG S@he drde

(v.2)
which is just the familiar quantum commutator relation cast in_
Wigner form,

The solutjons Sm(ﬂ,ﬁ} of eq. (V.1) are still

written in the form (II.8). The subsidiary éondition {II.9}

now reads, however

| . - 5 l- Lo t
g[_go(puig)—(.u( t?—. ]S(E " _L A
b
For the special case of the degenerate system, this integral

can be explicitely worked out yielding (cf. ref. (8})

‘ (5-%) Jls+4)
(o T (s T e ML (WPTCNY 0 Bhaaai 3.
{ L%I: z.):l 1__(5_%) 213[ ] {—Cs-«-!f)
Pe
20 oy

i

- kI(«a,S)

(V.4)




.19,

where s is the Landau parameter, -y = %E and the integral
. , - Pp
I{y,s) over the §-function part of ' S is

Il\g,s)f_-al—* [W(..sz,__h\as;%s)_-_.@p.(_slr.?-.u_&_g_g) 1

which reduces- to s@;(1-|s]i when y-+0 infgenerai,_it is”

an odd, contlnuoue, pleeeWLSe smooth functlon of s‘ for qlven

¥ ;. as. shown sdlemat:.cally ir figss Now t-_he y-dependence..

of I(y,s) lmplles:thet-the\epectiem.of”stationary modes can .
no- longer- be determ;ned lndependently of the momentum transfer.
kK, as in. the classxcalncase._ In fact the: domaln of the vy,s
plane where I(y,s]#0 is shown for the-degenerate fermion
system as the hatched arearof'figl'v.3 . This domain replaces,

in the quantum_case,fthe eorresponding classical domain which

is.the -1<s<.1  stripe parellel?tp the 'y "axis; and piEtures'

the spectrum.of,staﬁionery:moﬁeegfexcept for additional pessible
ones, in. regions whefe i;-o;: aépearing as. solutions of the.
dispersion equatlon whlch then results from eq. (V.3}. )

The overfIOW1ng of the band of stationary solutions
beyond the classical strlpe,_reachxng values of -s and y for
whichnthe'consistency-cendition (V.4)ewiil require A=0 will,
in fact, be responsible for 51tuat10ns in whlch Landau damped
zero-scund medes (with g >0} do occur, as Eound-from,athffamnp
analysis in ref, {1}, fThe inte;pketation of the damping found

in this case involves again nothing but the phase mixzing of a

.20,

superposition of stafionary solutions with different fregueacies,

as stated in ref. (4).

V. CONCLUSIONS AND FURTHER REMARKS

We nave shown  that a eet of etationery iinear modes
ﬁf egcitation satisfyingnertnogonality and\compieteness feletione.
ef the Eorh characteristic_of.tne.raneom phaee aéprbximation:can‘
be constructed. for infinite, homogeneous manyrfermion'systems"_ 3
even when one considers just the classxcal (Vlasov) llmlt of
the euantum mean-field dynamics. The spectrum of exc1tatlons
in the case of fhe classical equatlon of motlon dlffers from
the gquantum spectrum in that its dependence on the.momentum of
the excitation enters only through the Landau parameter H:

s = mw/ka ' whlle separate dependence on k occurs_ln Fne
gquantum case. The cla551cal,results agree:wzthkthe qnantnm-:
results in the long wavelength 11m1t. .

The statlonary modes satlsfyxng RPA- llke eﬂjmxmmallty
and completenees relatlons c01nc1de, except for normallzatlon,
with modes considered long ago by van Kampen(4). His approach
to the completeness pfoblen, con51st1ng in obtaining a solution
of the 51ngular integral equation defining. the expan51on
coefficients of & given initial disturbance of the eguilibrium

dis;ribution, can also be implemented even for the degenerate
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Fermi system, prcvlded due:tféaéﬁént.is glven to éossible
contributions of zero-scund modes. .

The time evolution oﬁ_fhe assumed initial disturbance
will then evolve subject to.the phasé-mixing pans#% inherent
to its expahsion in the_stationéry modés. Th@s, ffequenéy
distributiohs which are net' absclutely éharﬁ will give rise Eo
dispersive damping. phenomena ({Landau damping). Given the
correspondence of the staticnary modes with the usualihPA modéé
.of finite nuclei, a clear analogrc;n Beluniqhély identified,
in the lattef context, to .the Landauldéﬁplng: iﬁfcbnsists ofr
an external excitation process whfch prdﬂﬁcés, iﬁ=the finite
nuclear system, a doorway state whlch flts w1th1n the partlcle—
hole space of RPA exc1tat10ns, but which overlaps with several

RPA modes having dlfferent frequenc1es. The damping resulting

therefrom is of course just part of the spreadlng width of the

partlcular doorway which was fed by the external excitation

mechanism.

.22,
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