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ABSTRACT

The Random Phase Approxiﬁation (RPAf ffeatment'éf
nuclear small amplitude vibrations including particle- hole
continua is handled in terms of previously developed technlques
te treat single-particle rescnances in a reaction thecretical
framework. A hierarchy of interpretable approximations is
derived and a .simple working approximation is proposed which
involves a numerical effort no- larger than that in&olved in

standard, discrete RPA calculations.

1. INTRODUCTION

The random phase approximation (RPA}, :in one or:
another of its numerous guises, is the basic tool involvea*iﬁ'i-
the microscopic descrlptlon of nuglear collectlve ‘excitations
which admit phenomenolcglcal characterlzatlon in terms of small
amplitude vibrations. . Proeminent‘among these are the giant
résonances, invelving a variety of multipolarities and_degreeé
of freedom {e.g. surface, denSity,'épih, isospin}. Exéitation
energies place them typically above particle emmLSSLOn ﬂueﬁxﬂds

requiring eventually a reaction theoretical Eramework'for'théir

" treatment. The inclusion of continuum effects in micrdséopic-

structure calculations has in fact been ihplemented several
times, but always at the expense of considerable numer;cal-
éffort(1’2). -

This paper aims at exploring technigues thch might
allow for reéliable treatment of continuum effeqts in particle-
hole RPA type calculations at low cost. It is-my_purpose to
argue that, on the basis of preVi&usly déveloped toéls to handle
(3-6}

single-particle resonances in complex nuclear reactions

(i.e., including direct, intermedidte and cempound processes),

~reliable approximiation schemas can be'set*up'tﬁéﬁ reduce "thé i’

continuum RPA problem to the level of numerical complexity of -

the more standard, discrete calculations. Following a ‘general

' formulation in section 2, these approximations.are intreduced
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and discussed in section 3. Simple examples to illustrate some
of the novel features in the-calculatione are treated in section
4, but a detailed.numerical stud§ of the approximatione is
deferred to a latter publicaticn.

The schemes developed here can be eventually ‘brought
to bear on a much broader and rlcher descrlptlon af reactlon
processes involving exc1tat;on or formathn of particle-hole
{7}

modes.. Such a description, proposed by Kerman .,Zailows in -

particular for the treatment of sbreadiné widths, eompound
phenomena, fluctuatlon Cross sect;ons, etc, (8 10). T willj
however refraln Irom lnvolvement w1th these more substantlal
problems. here, 1f only to:bring enough- empha51s :on partlcularly
simple ways oi_hand;xng the particle-hole cont:nuum. Further

develepmentS:of the. more general_theory will be. given elsewhere,

2. SCATTERING IN PARTICLE-HOLE SPACE

I will assume throughout this paper'tﬁat everything

which-is: of interest tekes place within a restfieted subSﬁace,
copsieting_of particle-hole excitations, of Fhe entire phase
Space‘of the unclear system under censideration- Denoting as
|0)j.the normalized ground state, I accordingly write relevant

nuclear: states [v). simply as

.4,

1V = [ 4L (1-10oo) By K1y 1oy w016 ) =

= S-&;Jh; Lvyey ) w,lr vy ) - o1

The ¢+, V. are fermion field operators, and-afguments and
integrations are supposed to .include (implicitly) both space
and spin—isospin variables. The defined.kets'|r‘_r') are in

general not orthoncrmal, but convenlently represent the

_particie-hole subspace. The states |v) , or equlvalently thelr

répresentétives u, (r r ) , are to obey the projected statlonary'_

Schrodlnger equatlon

P*:Pr;[Eu(nulrtr‘z)--tf«ra-lleirL)]u,tr:r'z)=O 2.2
H being the nuclear Hamiltonian.

The general problen defined by egs. (2. 1} and (2.2}
can be reduced to the standard RPA level of descrlptlon by
introducing further assumptions and approximations as lelows{_
First, assume that the ground state is annihilated by the

adjoint of the excitation operator appearing in.eq. (2.1), i.e.

[aw, jajf; (rie )X ) = o (2.3)

~ This assumption allows one to drop the (1 -] {0]) projector

in eqg. (2.1). Furthermore, set the energy scale so that -



-The usual (contlnuum) RPA equatlons now emerge when tHe

1ngred1ents of eq (2. 4) are evaluated in terms of the ‘Hartree- .

 ock ground state as an approx1mat10n Slnce nucleons can be
"romoted to states above nucleon—thresholds, eqs. (2. 2) and:
'1(2 4) constltute in Eact a scatter1ng problem lnv01V1ng in

":”general several ccupled channels, and: must therefore be

;:supplemented by a set- of approprlate scatterlng boundary

i{?condltlons, such as e g. ‘an asymptotlc plane (or Coulomb) wave

i 1n a glven channel o and out901ng {or 1ncomm1ng) waves- 1n

.all.channels; The correspondlng solutions are then denoted as

Hel+ , (e)-
u; (uv )

Typical uses of these states are then as follows.

Flrst, they can be used to construct the RPA approximation to

_the;partlcle—holenresponse functioen as{11)

-Gl [, *cwrﬂv}“f Gyo e

' leavxng a re51dual state {f},

in wh1ch a partlcle-hole mode lS dlrectly ex01ted by 1nelast1c'

:scatterlng of some probe :af (e g. 1nelast1c eLaﬁ:xm axﬁterlng)_",'

process 15 dealt w1th 1n term of the Born approx1matlon (gmsﬂdy
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with .appropriately distorted waves), the transition amplitude

) corfespgndingfto:(2;7):is??)':-

[

T, = <VO7[M_, (0> e

,-Wheréi-Maa, is a onejbodyfoperator:acting3on~ 10} ‘which

depgpdé'on the,naﬁqiéxbfﬂfhé'pafticulai direct,interaction which

'haé takéh-plqce. The assumptions: made above on: the structure of

_thefékciﬁed staté.—l\ﬁi_ are-cgrtainlg_tooustringént if a pﬁﬂisfic
desc;ipﬁiqn:oé the squeﬁtiéiﬂdeéaf of collective éxéitatidns
bésea;ongparticlevhole excitatigns%is sqgght?#.és was noted,
this_shértcomming,can be §Iiﬁinatgd:byia;ldwing. for théf
participatioﬁ-of.othefVdeé;ses:of;freedom‘in.the reactiop

‘ theq:etical7formﬁlatipn;,yThﬁsnWillfnot'be pursued. here. .

3, RESONANCE-HOLE STATES PLUS- BACKGROUND: - -~

Rather than tackiing directly, once again, the
: problgm_Qf{findinéﬂsqlutibns'to eq. (2.4) in terms of some

(1) (2)

' techniqﬁé_;- or representation » I will in this section

first analyse the physics involved there in terms -of a number
of coupled but distinct processes, in the expectation that

..the relevant part of the.partiélefhoie amplitude u(r1 r2) .for:

egs. (2.5) or_(2.8)-canabe'sdbsfantially circumscribed.. The

.8.

way to get hold of these processes.is first to split the
particle-hole phase-space {spanned by the state vectors lr1r2))

in two orthogonal parts according to
iryr)= Z |_}~)z)a.}‘ 1} + ?ir,r,_) =
iU S

= Rint) + plur): (311
where R and p are orihogopal-projection bpe:atois, 50 tﬁat,
in particular, p[Ap) = 0-. The main content of the &ézm@bsition  -
(3.1) then hinges on_thefspecificiation_bf'the di?crete set of:
state vectors |Au) spanniﬁé'the_ R subspace, -This is doﬁe aé.
follows. o . “
Previous experiehce with the calcqlation of transition
amplitudes for rcomplex _nuclee_u; rea_ictions_ invc-)lvir:;g the p.a.lr-ticipationi
of single particle resonances has demonstrated that the létgef
can be profitably énalysed in.terms of a normalizéd étate{ which
contains the essential behavior of the resonant wavefunction
inside the nucleus, coupled fo a;continuous-spectrum of.single
particle scattering eigenstates whicﬁ will be referred to as .
the background. These are séattefing solutiens of thé one-body
Schrddinger equétion projected qnta the orthogonal subspace to

(3,4)

the selected normalized state The energy dependence of

the corresponding phase-shifts- is smooth, in thé sense of

lacking the resonant behayibr; and the amplitude of the
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asgociated radial wavefunctions in the internal region is
strongly reducea.  This3at once suggests that, for the problem
at ‘hand, the discrete states |*u) be chesen as the resonance-

hole states

W) [ Ia* (|¢|o><ol)w ) i) %.) dr(rz)lo>

where v (r) stands for a 51ngle partlcle occupled state in’
l]O) and - (r ) are.normalized 51ngle—part1c1e states cor-

respondlng to bound unoccupled 51ngle~partlcle states or to

States contalnlng the essentlal ‘Lehavior of the ‘relevant- Slngle—

'partlcle resonances 1n51de the nucleus in the same sense as
above. Wlth thlS ch01ce, glven the fact that relevant two body
matrlx elements w111 necessarlly contaln ‘hole states and will
thereforg be‘sen51r1ve to the bghaylor oﬁ ‘u(rlrz} “inside the:
nucleﬁé; 6hé3ﬁé§xéx§ec£ ﬁhér cbnrributions relatéd tb;ﬁhe ﬁ
coﬁponenr (Qeeféq' bBITi)'be.of.minpr‘impértance wﬁen'evahzﬂﬁQQ
(2 5) o (2 8) . ‘
In order to streamllne.the.notatlon I now rewrlte

(2 2) 51mp1y as

[E H]\v> 0

- (3.3)

and, using’ [W) = R|v) +p|v), cast it in.the form of the

coupled equations{

(3.2}

IS o
[E,- ‘Hm]‘. RIv> = H oy b 107
[Eu’. Hw] plvd = 'HPP‘ R1v>

(3.4)°

Formal sclutions of the second equation are

poe 5 o R
v pp ' '

which, éubstituted back in the_firét eGuation, yield

[E - HRR‘ HRP T HrR- Rivy = H, ¥, >, Gue)
v . E}TQPF ] | RP L R :

‘ : S T L o :
The state . |Xc} is a scattering solution of

with the subscript ¢ denoting the inc¢ident channel. Since

eq. (3.6) involwves the complex-efféctive hamiltonian

SQ“ = HRR‘*‘H

R

RP 'H}SR‘: " ' (33}

in the discrete resonance—hole'subépaée,'the component Rﬂ»_
can be written in terms of the biorthogonal”$et_of states .

~ e {12)
!Rn>,' |Rn) satisfying .
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[e HeplIRO=0 5 [el-F IR0,

.4 <:Ei;liizh_> = S;nd

(3.9)

SRS

Riv> = &

which, together with eqg. (3.5), completes_fhe formal solution
of eg. {3.3). | |

The physical éonten£,0£ éheAvafiousApigceg of thié
solution can now be énalysed as.follows. _Fifst,“the background
continuﬁm componentrrsz) ‘corresponds in géﬁe:a;r;o the
pquected coupled channels problem (3.7)1 -The éhgnﬂeis cor=
respond.fo fhervarious.allowed‘hoi;_statés'éssociéted with an’
unbound particle. Thatrcémponént will thﬁé_in'géneral contain
all of the allowed hole sﬁaﬁes._ To the extent that the unbound
particle does ﬁo£ significantly ieak into the huclear volume;
the dominant hole will be the one associated with the incident
channel, and ignoripg:channelbcoupling may be useful as an
approiimatién (see fig. 1). The secdnd term-of eg. (3.5}, on
the other hand, can be viéwed as a. virtual leakage to the
background continuum of the flux tfapped in resonance-hole’
subspaqe (c£. ref.{6}}. This term contains, in particular; the

coupling HpR _betweenithe rescnance-hole space and the

L12.

background continuum. Aé indicated in the Various possible
contributions shown in.fig. 2, this coupling takes place eithe;
through a (dominant) cne-bedy {"mean field™) mechanism(s) or
through a particle-hele (two-bedy) interaction. Finally,  the
interaction between the resopance—hole anq the background
continqum subspaces also gives rise to the complex, energy
depenﬁent effective interaction within the resbnance—hole
subsbace appearing in the second term on the right hand side of
ed. (3.8}, This term can be analysed.in terms of the severél
contributions shown in fig. 3, which‘involve diverse uxﬂxibﬁﬁhxm
of oné—body or two-body couplings, and_elastié scattering or.

channet coupling contributions within the p-space.

3.1, APPROXIMATION SCHEME

On the basis of the preceding analysis a simple
approximaticon to the evaluation of eqgs. (2.5} or (2.8) suggests
itseif, to which a number of corrections can furthermore be

devised and calculated if neseded. For definiteness, I will

refer to eq. (2.5) in what follows,

The approximaiioh consis;s, first, in neglecting
the background component (3,5) when e#aluating the transition
amplitudes (O|¢+(r2)¢(r1)|v(c)+>; This is based on the fact
that the amplitude associated with -the background particle is

small inside the nucleus. Second, when obtaining the resonance-
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hele ainpii_tﬁdes- IR, . |ﬁn> -(sée eq. (3.10)), the first
contribution in fig..3 should dominate, and constitutes the
minimal addition to the dynamiéal ingredients contained in the
HRR term of eg. (3.8). This contribution, in fact, takes into
account the (cne-body) éoupling of thé fesonance to the back-
ground continuuﬁ, giving rise to the dominant contribution to
the particle escape width.

It is perhaps.worthwhilé to eniarge somewhat on

this last point. The second term on the rlght of ag. (3.8)

admits. the spectral representatxon

RH HQ, Zale' QHW@))(X(QJHFZ
E,'H?P . © - E'-e

where the coﬁtinuum eigenstateé of'.pr ‘are delta funetion
normalized in energy. This expre551on, Whlch 1nvolves all the
contributions illustrated. in fig. 3, can be splltt into a
hermitean pﬁrt,.given és the singuléf integral evéluated witﬁ
~the principal. value éreSCription at € =B ,and maantb%mnﬁteén

delta-function pért

S RHI @K E(HR -

Ignoring both channel coupling effects built into |xz> and

. §article—hole interactions.in HRp this éxpressibﬁ reduces

o

in fact to fhe single-particle escape width ofrﬁﬁe resonant
particle for the appropriaﬁe_value of the energy E.. This is
clearly an energy 'dependent gquantity as usuél in this apprcach,
Sut it is also such that its energy dependence is slow on thé;

(4-6}

energy scale of the width itself In-this way, retaining

just the first contribution in fig. 3 ammounts to effectively'

feplacing teal by complex particle-hole energies in the_qtherﬁise

discrete nuclear structure problem formulated in egs. (3.9}). Tﬁe
imaginarf parts are then just the single—éarticle resoﬁance
aescape widths. . .

In terms of the sd;utions of tbis p;ébleﬁ-the‘basic

approximation consists thus in writing

<o|L[/crt)L|/£r,)| VLN Z (O\erz)‘l’(fe)lllu)(R |4 ¥(E)>

E-€,

(3. 11)

This contains the transition densities associated with the

complex ‘states |R > weighted with (complex) pole amplitudes.

The matrix elements (ﬁn|H|XZ(E)> {are themselves related to
the escape amplitudes of the complex nnplear structure
eigenstates; Within the adobted_approximations,.they involvé
jﬁst the first contribution shown in .fig. 2 and-thus, éiven
the result of che structure calculation,-rgduce to linear
combinations of the various resonance-hole -width amplitudes.

Finally, it is worth strgssihg-that_thé'techniqués




.15,

to actually evaluate the céntinuum amplitudes involved here have
been used before in different though related contexts. They
involve nothing but simple modificaticns of standard potential
scattering calculations for given-partial waves and are reviewed
for completeness. in the Appendix. Processes like those involved
in higher contributions shown in figs. 2 and 3 havé also been
evaluated before, so that an-actUAl check of their quantitative
importance is within reach., The nuclear structure problem, as A
formulated in eg. (3;9), on fheﬂother hand, involves noc more

than a complex extention of real, but-already non-hermitean,

RPA calculations in a discrete particle-hole space.

4. COMPLEX PARTICLE(RESONANCE)HOLE MODES

’ ”Restfihting'ohege;f to the basic appioximation'
discussed in-section 3.t implies hévihg'E0?$blve the complex
eigenvalue pfoblem_of eq. (3.9), in which the complex, energy-.’

depépdent-part'of'the effective hamiltonian :?ﬁii {eg. (3.8}}

R
is approximated by just the first contribution shown in fig.a.
The further reducticn. of this problem.tO'thé standard RPA form
is straightforward. Since the relevant phase-space is discrete,

it is convenient to represent it in terms of thne discrete set

of states |aB)} defined as

[xp).z-(4_s'o><oi)a§apio> S e

16,

. + .
where [0 is the ground-state, and the a,. a, are fermion
creaticn and annihilation operators associated with the relevant

bound or normalized resonance orbitals o, Thus (cf. eq. {(2.1))
' >, tn) B
‘E’M_>: (5 R.d.{)‘ 'MF)E("—“)><0‘) w 0>- (4.2)
“ .

A similar expansion can of course be written for adjoint states
IR ).

The subsequent steps are identical to those involved
in the reduction of eq. (2.2) to the form (2.4): require that

the ground-state |0) is annihilated by the adjoint B, of the

excitation opefator B; defined in eq. (4.2}; set the energy

scale so that H|0) =0. This yields

% {eu<o|[a‘g,ad,a;ﬂg] ey -

. - {ol[agad?[ykeyé;aﬁ]]lw} R’(;]E =0

which is to be evalwated by using the Hartree-Fock ground state
as an approximation to |0).'

Appart from the complex, energy dependent part of

quR, eg. (4.3) can be cast into the usual RPA form

(4.4)

e, GRM= €GRY L GHG R
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{n} stands for the column vector formed with %he

componants -R;g) and

where R

8*\'—" yg _(e eP) xy Pg 3 o | (4.:,16__-)

‘and

Maps = <1

;Here Py denotes the occupation rumber (T:or G):eésoeiatediwifh
the orbital o ,'5& -is the corresnonding- Hartiee—Focknlike-
-31ngle partlcle energy and the bracket is the antlsymmetrlzed

.twc—body matrix- element of the reSLdual two~body force To the
approximation proposed herer the- remalnlng ‘term of 3; jusﬁ»
~adds- energy dependent shlfts and’ escape W1dths (for unbound
.states) to the real 51ng1e-part1cle energies Ea . Tne seructu;e'
of eq. {4.4), and in particular the diegonal'charedter-of E;}

. (4.8}, remains therefore.unchangeé=exéept for the now
complexn(non—hermiteani‘nature of E:. Furthermere, the'smootn
energy dependence wh;ch comes fron:coupling'to the‘backgronnd .
cohtinuum (p—egéée) can be neglected.within energy intervals of
the corder of ﬁhé widﬁhs, so that eq. (4.4) eventually amounts
to a standard, discrete RPA probiem with complex,single—partiéle

energies. Taking into account that the matrices G and 8

Grg'@;ﬁ :_(FPdP")gﬂ,SFS - | '."(_.4-.'5)'

-~(n)

hermiticity of G and M,

states ﬁ(n).

X W-N‘.(“.),.
GE%GTQ- T

8.

are solutions of

4.1. SIMPLE ANALYTICAL EXAMPLES -

Rz

sz

'analytlcal solutlons of egs;

“(4.4) becomes in this case’

commute (they are simultaneously diagonal), together with the

e R L GMGR™

62 €, +<Z!Iv|i2)

- ("H [G'il’z_'.}-

'Ry,
Rt

the edjoint preblem defining,the

(4.4) and (4.8); .The'Smelest'

casé is that 1nvolv1ng one 51ngle resonancewhole pair, for

<zz| £“r{1 1 ->.

".-_e 1-61 (iZIvizc)

so that the complex eigenvalues are given as

. Some salient features of the complex modes R{ )

r

‘are usefully 111ustrated in 51tuatlons 1nvolv1ng matrlces

. of small &1men91ona11ty, whlch allow ‘in partlcular for 51mple

. Wthh the RPA matrlces -are EwWo- by TWO matrlces (flg 4) Eqg. .-,

Ry,

Ras

JRCEI

1t
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€y = £ (0= 181" . | (4.9)

Appart from normalization the corresponding eigenvectors are

¢
2 _ | , RJ’ _ Ao 1BF _
B

1z

(4.10)

and
) B c R.T =

.Q’?':i PESTTC . (4.11)

The adjoint problem, on the other_hand,'reads_

_ & R R
wfRe\ [0 "B ) [T
€\R,, |~ B -5 [\ Ry

24

which leads to the complex-conjugate of eg. (4.%) and

' ~ ' %2 20 %
R{H—f . R(ﬂ: N7 =B -y

{2 T ’ 24 B r

(4.12)

RO B . R 1

(7 = - 2i ’ (4,13}
o0 Wfo*z—if»iz,

These eigenvectors explicitely satisfy the orthogonality

relations, eg. (3.9). As for normalization, one finds

.20,

. 7' L i ' z
RO = Ao (o™ 18171 KRRy = ‘———E;*—“z
| B2 ({5181 49)

which are in general complex guantities. This implies that the

normalization condition {3.9} constrains the relative phasing
(z) . S eir)

of {R'™") and the corresponding adjoint vectors [R*™7 . 1In

order to make contact with the usual RPA results (real n),

write the adjoint vectors as

[E(i)> — G' ln(i)> , .

G beihg given by eq. {4.5}.-'Reférring directly to the-eigen—

vector components, one finds that, for real n,
(+ (t)
RS -+ RS

so that, in this case
o~ ' 1
igtt)>: :L-GIR( }>

The minus sign corresponds to the familiar "negative norm" of
the negative energy state, but can alsco be interpreted in terms
of the appropriate relative phasing of [R(t)} and of fﬁ(i))
in - this case.

Given the p;operly normalized and phased complex



.21,

eigenstates it is straightforward to write the sought appréxi- _ The

mation e.g. to the response function, eqg. {2.5), by using egs.

{3.10) and (3.11). Tote

each of the tweo terms in

that, for the particular case in hand,

‘eq. (2.5) will in turn contain four

.92,

térms as originated from a. double sum over complex modes.

) Furthermore,-cross terms in this double sum will depend

crucially on the relative phasing of the édjoiﬁt pairs of states,
A second. exampie which can be tfivially worked out

_is that which involves two particle (resonance)-hole states,

backward matrix elements being neglectéd, g0 that the RPA

reduces to the Tamm-Dancoff Approximation. In this case one

is led to a secular determinant of the form

=0

Z

_ﬁ\* . .ll__e

with A1 and.. A2 complex, in general,  This leads to the

complex eigenvalues

ei' = —l-z [A'i-l'ﬁzi ﬁrﬁ'z)z-l'lliAlz :I

and to the (non-normalized) eigenvectors

ger "
Ri=1t e
Q- -1 . R;: = A .

17 4 6_“‘A[

adjoint-ﬁectors can bé_iikewise found as
: o A F
~ : M4 *_
RTi: { : R‘z £ €y A,
. . f\..
.rl:-i_,, 4 .- R A

i

Again orthogonality properties can be explicitely chécked and’

- normalization implies correct relative phasing of adjeint pairs,

The limiting case of real A and- A is entirely transparent.'

1 2

5. CONCLUSION

I-héve proposed an-appfaach.tsnthértreatment ;f ;
small amplitude ﬁibrations‘éécurripg'above particle emission_
thfesholds in terms of therRPA.wﬁich allows for a bierarchy
of meanihgfull approximations. The simplest approximation
involves a computaticnal effért eqﬁivélént-ﬁo tﬂaﬁ in a standard,
discrete RPA calculation. It can be checked not on;y by
comparing results with the ﬁore expensive calculations but also
internally, through the evaluation of correcticns. Several of
the corrections which have been mentioned invelve in fact also
a vefy modest numerical effort.

A detailed stud? of the approximations was excluded
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from the scope of this work, in which only simple, analytical
illustrations of the features of complex RPA modes, and their
implications for the structure of the approximate response
function, were touched upon.

Finally, the general reaction-theoretical framework
which served as starting point can be further explored, especially
in the sense of making explicit the contributiens of higher

configurations.

I acknowledge a discussion with Arthur Kerman in
which, among fancier fopics, he communicated to me -his thoughts
on "more mundane subjects" such as projection technigues
leading to the RPA and BCS approximations; One of these is

the basic technique involved in the present formulation.

.24,

APPENDIX - CALCULATIONS INVOLVING THE PROJECTED BACKGROUND
CONTINUUM

This appendix summarizes, for completeness, scme
useful techniques for the numerical calculation of quantities
involving the projected background centinuum. For simpiicity,
channel coupling effects will be ignored except for the remark
followingleq. (A.6). 1In Eéct, much of the appeal of the present
formulation as a computaticnal tool would be dissipated should
a full-fledged treatment of channel coupling prove essential;

_ The first problem to bg discussed is the solution
of eq. (3.7}(3'4). Here the projector- p will be explicitely‘

inmplemented as

-5
il

{ . % [, ><uy [

where the ]un) constitute an orthonormal set of single~particle
states spanning the resonance staﬁes. To the extent that
channel coupling is ignored, the hole state is passive and
eq, {3.7) is a one-body problem. Denéting as ' H the effective
one-body hamiltonian (kinetic energy plus mean one-body potential

eq. (3.7) reads

{E (1 %iuﬁ)cuni) -Hd(1—ZJ[uk><uJ)]{}¢>:o

(A1)
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with the subsigiary condition that [¥) is in p-space, i.e.,

o QJ§|X> =0 -for alz n. Thus eq. (A.1) reduces to

EE -r{]W«> = ;'l‘l{._.,&)o.cw o : (A._Z.i'

;with an = (u |E]k> 'Arformai soiutibn of (A. 2) (thh outg01ng

‘wave scatterlng boundary condltlons for deflnlteness) is

+

Ww>lm>+*_im>«

" where lxé} is a solution of (A.2) with the'”agﬁ=0 .- From .

(A.3)_one-gets:

| <‘uu-r'f>' <, %, >+Z<u1 — i .>a( ._

R _ _ B
w ! T (ALd)

which' shows that, for general @, 's, the overlaps (un|x_} are
linear functions. of the’ an's. " The procedure to be followad in

e - ST :
order to obtain the correct |[¥ ) . is thus:

a)'Solve_eq.(AJZ} setting all a, =0 to get
|Xg>. Form overlaps of this with each iun$ to get the A_,

. (AaL4).

(B3

'subroutlne TARCO

.26,

b} Solve eq.(A;Z)"setting one of the e =1 {other

mnt5ISet to zero). The overlaps with the fup will now

“determine the B . eq.TA.4J.

nn"
¢) The approprlate a, 'sq glven as. -.z1f (enlﬂlx)_,Vsﬁ

are now. solutlons oL the llnear system 1 . : - }
| Z B + A ST sy

The deslred functlon ix ) will be a iinear combination ‘of the
solutlons obtalned 1n step kﬂ withvthefcoeffieients_founé-

_from (A 5)

Thls procedure is.a stralghtforward exten51on to

manynstetes |u );'of ﬂr& programmed for‘a:51ngle resonance in . -

(13P, which has been used 1n refs._(s) and {6)

'It should be stressed that - the solutlon of the lnhomogeneous

. one- bcdy equatlon (A 2) is’ 1n no way more 1nvolved or. tlme—

consumlng than the solutlon of the correspondlng homogeneous

equatlon;,and-also;that the,escape W1dthsamplitudes,.(u'|H|x Yoo
‘are’ dlrectly obtained as solutions:of the lznear system {A.5),
without any further numerlcal 1ntegratlons. The correspondlng

- single-particie w1dths-are just

L ' 12
Mo 2w [ I HIeT> |

(A.6)

where the states |X+> "have been §-function normaiized in energy.
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With simple extensiﬁn-of-this procedure it is also
possible to estimafe ampiitudes in&olvth two—bodf coupling to
resonance-hole states (third contribution form the left in fig.
2} as well as to estimate channel coupliné effects through the
evaluation of two-step contributions.. In the former case the

equation to be solved is(S)

[E-RAlIE>=Lilusp v 19>

where the -Sn again are chosen to guarantee that |£) 1lies in

p-space, i.e., éﬂJ€> =0, aqd the genuine source term fay is
e i
16> = ZP;.lw(p& 1 Lp' >

where p'  and h' stand for the resonance and hole states
within R-space, h' is the final hole state and ¢ is the
(antisymmetrized) two-body potential. When eg. (A.7) is solved

with pure outygoing wave boundary conditions, it ylelds in fact

i gl
ety = L Hpelp>
© 7 ETH -
te
{cf. eqg. (3.5)).
Likewise, two-step channel coupling'amplitudes can
be estimated by solving again an inhomogeneous equation of the

"form (A.7) in which the source -term is obtained from the action of

the two-body force on.a continuum-hole state (see second contribution, fig. 1)
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FIGURE CAPTIONS

Fig. 1 - Particle hole scattering within the background subspace.

Fig. 2 -

Fig, 3 -

Fig. 4 -

The first contribution involves elastic scattering of
the partiecle in the presence of a spectator hole, and

the second indicates channel coupling processes,

Virtual background space component emanating from the
resohance—hole component, The first two contributions
involve one-body coupling between resonance-hole and
background spaces, the last. two involve two-body
coupling. The seécond and fourth contributions contain

channel coupling effects.

Contributions to the effectiﬁe'resonance—hole inter-
actiqn, second term on the right hand side of eg. (3.8).
The middle part of each contribution involves one of
the possibilities of propagation in p-space, and
coupling to thé resonance-hole spaée goes elither
through one- or two-body processes. Symbols are as

in figs. 1 and 2.

Simplest two-level system. The upper state is in the

continuum, so that 62 is complex.
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