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ABSTRACT

We study a 2+1 dimensional Yang-Mills theory

with a stdtic color-charge density. Time independent

solutions are found whose chromo-electric and chromo-

magnetic fields fluctuate arcund constant values at-
large diétances. Thé-energy density characterizing
these non-abelian configurations is higher than the
cne corresponding to the Coulomb solution, being

constant in the asymptotic region.
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I. INTRODUCTION

Recently there have been many investigations of celor
dielectric models of confinementl_d. This approach gives an
intuitive picture of the QCD wvacuum as a dielectric medium,
arising as a conseguence of-the quantum fluctuations of the
Yang-Mills fielés, whose antiscreening properties give rise to
confinement. The present work has been motivated by the quéstion
of whether classical Yang-Mills fields could also support
antiscreening configurations, which might be 6f importance to
the properties of this'medium.. In the past years there have -~
been several studies of classical Yang-Mills fields with static

sourcess_g. It was shown that for. a wide variety of these

" sources, the corresponding configurations have a screening

character with an energy which is lower than the static Coulomb
energy. A related issue is whether or not there are other’
static solutions, and what is their energy in comparison to the
solutions previously found.

In this paper we consider the static Yang-Mills
theory with a color source density p? .in a two-dimensional
gpace, where the .analysis is comparatively simpler than in the
three~dimensional case. This simplification occurs hecause
with two space dimensions x and y , there is just .one component

of the chromo-magnetic field B% given by:

a _ a _ a abc b ,cC ' '
BT = zaXA.y ayAk + gf P%_Ay (1)




where g denotes the effective coupling constant9 which_has

_1
2 Due to the covariance of the

dimensions of (length)

equations of motion, we can work in a definite gauge which for
. . 10

convenience will be chosen to be a generalized axial gauge

characterized by the condition:

A, A:+A2A; =0 ' _ _ {2)
where A = (A1, A2) denotes an arbitrary bidimensiocnal vector.
In this case we see that because of the antisymmetry of the
structure constants fabc' the last term in {1) vanishes and
the magnetic field reduces tc the same form as in the abelian
case. OFf course, due to the non-linearity of the equations of
@otion, to be discussed in the next section, the fields Ai,y
are genuinely non-abelian. However, we shall show that the
above form of the magnetic field will allow for an important
" simplification in the analysis of the field equations.

In order to find a truly non-abelian'configu:ation
it is essential to have a non-vanishing magnetic field. To see

this consider for instance the gauge condition (2} with A2= 0.

Then, if B? vanishes we obtain from (1) the relation:
a —
ax Ay = 0 (3}

which implies that A? could be at most a function of y only.

However,in the gauge Az =0 we can still perform
an overall gauge transformaticon which is independent of x,
without restricting the physical content of the thecry. We can
thereforg use this freedom to choose without loss of generality
A?r:o , in which case the solution reduces tc the abelian one.
where the configurations are characterized by non-vaniéhing
gauge fields Ag which are parallel tc the source density pa.

The paper is organized-as follows. In section II
we study the corresponding Yang-Mills equations for spherically
symmetric source densities., We have considered more specifically
point-like sources in order to abstract the effects associated
with their‘strength from others related to the actual form of
the sources. These equations reduce, under rather general
cénditions, to a system of coupled_non-linear differential
equations for two functicons of a radial distance variable.
Assuming that the antiscreening éffects are due to a lérge.scale
behavior of the Yang-Mills fieldsq, we impose that at the
origin where the source is located the chromo-electric field has
the same strength as in the abelian case. Using this boundary
condition we derive analytically the asymptotic behavior of the
solution and show that its associéted potential increases
linearly at large distances from the source density. Further
analysis has been accomplished by numerical methdds, describing

the behavicr of the functions in the whole region of variation

of the radial variable. 1In section III we discuss the configurations



of the chromo-electric and chromo-magnetic fields which are
associated with the behavior of the functions previously
described. We shall see that at large distances from the
source, the fields oscillate rapidly around censtant mean
values. The fact that the aﬁerage chromo-electric field is
constant asymptotically contrasts sharply with the abelian case
where the electriclfield vanishes rapidly in this region. This.
behavior indicates a crucial antiscreening property of the
classical Yang-Mills fields., Furthermore, the average chromo-
'magnetic field has in the asymptotic regidn a constant magnitude
which is related to the cne of the mean chromo-electric field.
We show both analytically and qumerically that at large distances
from the source, the energy density increases asymptotically to
a value characterizing the classical Yang-Mills configurations.
FinaLly we briefly discuss the poss;ble significance of these

results.

II. FIELD EQUATIONS AND SPHERICALLY SYMMETRIC SOLUTTIONS

Let us first recall the Yang-Mills equations with

static sources:

- e
) = 7 éuo p {(4.a}

(D F
uouv

where p=0, 1, 2 with the covariant derivative Dﬁa and the

field tensor Fsv being given respectively by:

Dea - 3 sea + gfeac AC (4.b)
B W

P2 = 3 % - a a2 & g£P%aPa% | (4.c)
v o w7 T w v

Consistency of these eguations requires the right-hand side to
be covariantly conserved, which in the present circumstance

implies that:
(3)

The spherical symmetry will be realized in a non-
abelian fashion, where explicit radial symmetry is absent in the
expressicn of the gauge potentials'AS', but any rotational non-
invariance can be compensated by a gauge transformaﬁion11. In
this way, any physical quantity constructed from the potentials
AS will have a manifest radial symmetry, since in this case no
compensating gauge transformations are possible. The above
conditions constitute a set of functional equations for the
determination of the functional form of the gauge potentials.

T§ this end we will specify the gauge condition in {(2) by -

choosing A1==x and A2==y which is particularly convenient

12
for cur purposes :

2% + ¢y = o . L8
X ¥




Considering for simplicity the gauge group SU(Z),
it is straightfeorward to.solve these functional equaticns, These
imply that the most general radial formula will involve four

functions which can be parametrized as follows:

a ST~ X%
A7 = —E——— T(r) for a=1,2 (7.a}
r ) : :
. Ea. X . .
As = _éi%riﬂ S(r) for a =3 : (7.b)
r

a i :
AO = — B(r) for a=1,2 {7.c)
3 . o ' .
AO = V(r) - . - for a =3 . (7.d}

Furthermore, in discussing spherical symmetry the source.

density pa_ can be described as:

X o :

7? Alr) for a=1,2 {8.a)
. .
p =

alr} _ for a =3 (8.b)

With these parametrizations, the static Yang-Mills

equations (4) become equivalent to the following set:

. 8.
2.2
¥4 _1 gl £ -G + g TV {9.a)
r 2
r
T —%T‘ = —ngv - g‘_zrzTUz (9.h)
2 2, .2 .
w2 _ gtu(r+sT) _ gUs _
Ut - S5 U = 5 = wh (3.c)
r r
s" - 18 = ~g%u?s + gru? (9.4)
while the consistency condition (5) becomes:
c{r)U(r) - A{r)Vi{r) = 0 . (10)

Since the ébove-general system of coupled hon-linegr'
differential eguations is very complicated, we will specialize
to the more transparent physical situation where pa points in the
third direction of the internal space. Thus with A =0, the
condition (10) reguires U to vanish for an arbitrarily extended
source density. Furthermore, equation {9.c) will be then
identically satisfied, while {(9.d) implies that S becomes a
free-field function. 8ince from (7.b) § is related to the gauge
potential Af , its decoupling from all other functions is a direct

consequence of the property previously discussed in connection



;9.

witﬁ the gauge condition (2), when all non-linear couplings
involving sabcjgzﬂg vanish. Af oﬁly contributes to the
magnetic field B3 and since it is a free field gauge potential,
it must satisfy the same boundary conditions as in the abelian
case, In our case, when only a static source distribution is
present, these conditions imply that the magnetic field should
vanish and hence we can set without loss of generality S5=20.

With these important simplifications, the complex

system (9) greatly reduces to the following one involving only

two functions V{(r} and T(xr):

1d s . o2y
T ar (xV'-= T + g :;;

{(11.a)

TV ' ' {11.b)

2l
e
[}
I
LQM
- ]
[\5)

When the non-abelian coupling ¢ vanishes this
system.essentially describes, as expected, the_abelian situation
which migh£ be characterized by the potential Vir} and the
source density olr) . Tt will be cqﬁvenient henceforth to
measure all distances in units of length given by é_z, so that
we will set g=1 with all quantities being dimensionless,

We will now consider more specifically the case of
a peoint like scource density localized at the origin with

olr

) o= 91¥fl-, where Q represenfs the magnitude of the

chromo-electric ¢harge. As described in the Introduction, we

impose the boundary condition that in the neighbourhood of the

.10,

ocrigin the electric field is essentially the same as in the

abelian case. This requires that:

Virs0) = an(%) and T{r-0) =0 . . (12)

With these boundary conditions it is straightforward to solve

iteratively at small distances the non-linear system given by

(11). with g=1, we obtain up to corrections of order r6
the following behavior:
1 Bg = 1 1 .
Vir) = Qbia{;) + ~Ei [Q La{z) - 5] . (.73_.a)

It

T(r) = o r? {i - = _[stanz(-r) - Loento) « %]} (13.b)

where By is a constant which will turn out to repreéenﬁ the
magnitude of the magnetic field at the origin. .

Let us turn now to the detérmination of fﬁe asymtbtic
properties of the solution at iarge distances f;dm the source
density. In this case, up to corrections of order r_z, it can
be verified that the dominant behaéior of the éystem (11} is

described by the functions:

Vir) = Kr : © U (14.a)

[}

T(r}

2
V2 cos(?f—] : : S (14.b)

where K denotes a constant which will be related in the next

section to the values of Q and B0 . Here it is important to
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notice.that the.potential V(r) grows linearly with the distance,
behavior which will prove to be crucial for the antiscreening
properties of the Yang-Mills fields in the asymptotic region.
Although we cannot solve the non-linear system of
coupled equations (11) for the whole range of the radial _
parameter r , it is possible to unde;stand qualitatively some
of the important features éf the exact soluticen. To this end
we remark, with the help of eguation {11.a), that when V'
increases with the distance V must be positive, whereas when
rv*t decreases V must become a negative function. These
features are illustrated in Figure 1, which has been obtained
numerically corresponding to the initial ;et Q=1, BU= 1.2.
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Fig. 1. - Profiles of the functions 'V and rV' for =1 and B0=1.2.
These show that already at moderate values of r, the potential V

has almost reached its asymptotically linear behavior.

On the other hand if rV' increases so as to reach
a zero at r=£, this point will correspond to a minimum of
the potential V(r) which will be positive in this case. These

characteristics are shown in Figure 2, for the sett Q=1 and
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Fig. 2 - The numerical sclution for the functions V and rV' corresponding
to g=1 and BO==9.2. The linear profile of the potential V(r)
is manifest already at r=4.

Which one of the behaviors illustrated in these

figures is actually realized depends critically on the possﬂﬁlit&
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of V' to vanish. As can be seen by integrating {1%t.&), this

condition requires that the following relaticn must hold:
- £
2
0 = J IVar . (15)

This equation can be satisfied provided the function T increases

sufficiently rapidly, which requires from {13.b) that BD be
cr
0 -

numerically eq. (15) for a variety of values Q and found that

greater than a critical value B We have investigated

gr*~5 . Our numerical analysis has alsc confirmed the oscillatory

B
behavior of. T given by {(14.h), with an amplitude of order )

in the asymptotic regiocn.

IXI. ELECTROMAGNETIC YANG-MILLS FIELDS AND ENERGY RELATIONS

We will now consider.the behavior of physical
relevant quantities, like the chromo—élecfric and chromo-magnetic
energy densities. To this end we note that the éhromo—electric
field Ef =(DiA0}a yields, with the help of equation (7}, the

following expression for the electric energy density:

(16)

Furthermore, using (1) and (7), the magnetic energy density

will be given by:

B = p?B% = . ' o0

We see from (13) that at short distances the behavior of these

quantities is described by:
B = (w2 = ot - (18.a)
B = B _ | (18.b)

i.e. the electric enefgy density is, according to our boundary

conditions, like in the abelian case, while B0 represents

the magnitude of the magnetic field at the origin.

Turning now to the behavior of B2 and B® at
large distances, we find with the help of (14} that in this

region we have:

=
1

K2{2-+cos(Kr2)]_ o R ©{19.a)
82 = k%[1 - cos(kr?)] : : (19.b)

We see that these densities fluctuate arcund
constant values, in such a way that the average magnitude of

2., . . . 2
E is twice as big as the corresponding mean value of B :

®) = 2% = 2% . (20}
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- We recall that from {14.a), K represents the slope
of the potential V(r) in the asymptotic region. BAs we have
seen, for BO< Bgr K is a négative guantity, whereas for
B, >Bgr it becomes positive. ?urthermore, inasmuch as |K|
is related to the energy densities, it should be a gauge
independent quantity which characterizes the Yang-Mills
configurations. We have studied its behavior as a function

of Q- and B, and the result is presented in Figure 3.

2(”3 - T T 1 T - T I 1
150 |-

|K| 100}

50

Fig, 3 - Profiles of the function K| for ©=0.5,0.7,7.0 and 1.5 . These
cr :
BT =

curves display a critical point around Y 5.

.16,

We can see a cusp-like behavior which is characteristic of
phenomena with critical points, and that typical values of
[Kl are rather large.

The period of oscillation of the electric and
magnetic energy densities, which from (19} is of order (|K]rfﬁ,
is therefore very small in the asymptotic region. Furthermore,
these oscillations cancel out when the total chromo-electro-

magnetic energy density is considered in this region:

fhg = (E2+B?)as = 3K (?1)
Further progress has been achieved by a numerical evaluation

of the total density as a function of radial distance. Tﬁe
results have been displayed in Fiqgure 4, which shows that

at values of r =~ 30, the energy density has almost_;eached

its asymptotic value predicted by equation (21).

Except for the extremely rapid oscillations
discussed above, the profile of the chromo-electric energy
density is very similar. From (18.a) and (20) we can. see
that whereas E2 has a Coulombic nature at the origin, its
average value in the asymptotic region is constant. We
believe that this behavicr reflects a large-scale antiscreening

phenomenon of classical Yang-Mills fields.
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Fig. 4 - Behavior of the total energy density. The full line corresponds to

Q=1 and 80:9.2 . The broken line is associated with Q=0.5,
B0= 0.5 and has been augmented for clarity by a scale of 104.

Since e is constant in the asymptotic region,

we can estimate from (21) that the total energy will be of orderr

K2r2 at large distances r . We can éctually evaluate exactly

the corresponding part due to the magnetic energy, by considering

the energy-mementum tensor:

)
= o

) a a
uv HY YV 4 “aB

F

B {(22)

.18,

which is not conserved owing to the presence of the external

source density 0%

. a _a
Bu Guv = mp Ebv - 023)
Using the properties of © and integrating by

uv

parts we obtain by a series of transformations that

2w

2 a a ;
1 BY axd = 7| dzd . ED - dr XL 8. 24
J y J ly p xj 3 J (pxlx:E i3 (24}

0

_where the last expression on the fight—hand side corresponds to

a surface term. Using our boundary conditions at the origin
together with the parametrization (7}, it is straightforwérd
to show with the help of {16} and (17) that the total magnetic

energy M within a radius r is given by:
M(r) = .7 {QZ - 2wen? « P P+ [T'(r)]_z}. (25)

In the abelian case, when T=0, we see from (18.a)
that the magnetic energy vanishes, as expected. On the other
hand, using the relations (14} which describe the asymptotic

behavior of the non-abelian configurations we obtain:

Mlr) = = [QZ + Kzrz] ) (26)
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The fact that the total energy becomes infinite as
¥ grows indefinitely implies that a classical color charge
cannot exist isolated in a medium with the characteristics
described above. Crucial to this explanation is the possibility
of an antiscreening behavior.of the classical Yané—Mills fields
at large distances. . This phenomenbn suggests in a natural way
the further consideration of the important case corresponding
to a dipole distribution with vanishing net color charge. We

hope to report on this issue in a future communication.
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