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ABSTRACT

The Neoether theorem for classical field theories
including gravity and Dirac spinors is presented in a simple,
unified way, following an idea of Jackiw. Classical index

notation is used throughout.

1. INTRODUCTION

The theoreﬁ of Eﬁmy Noether(1) connecting symmetries
and conservation laws is a resﬁlt of great importance and beauty.
In 1972 Roman Jackiw published a gem of a proof(z) of Noether's
theorem which made the whole question transparent as it never
had been before. The neatness of his arguments allowed for an
extension of his results to curved spacetimes which turned out

(3)

to be relatively straightforward , a&s compared to older

approaches. Also, Jackiw's definition of a symmetry led us to

investigate the conserved currents associated with the isometries

of the spacetime, whereas the standard treatments (%) take a
symmetry to be a general coordinate transformation. While we
do get conserved guantities, the standard treatments end up just
with Bianchi identities.

In Ref. (3) we considered tensor fields, excluding
spinors. In this paper we offer a more general formulation, in
terms of tetrads, which allow.for the treatment of both tensors
and Dirac spinofs. 'No new results are presented here. This is

a more systematic and, I believe, clearer treatment of a classical

topic in theoretical physics.

2. THE FLAT CASE

The classical action which.describes our system

{(for the moment restricted to flat spacetime) is written




5 = Jd4xL(¢,3u¢) (1)

L(¢,3u¢) being the Lagrangian densiity, a function of scome
fields ¢ and of their derivatives Bp¢ . To start with, ¢
will be a scalar, in order to reveal most clearly the structure
of the theo?em.

An infinitesimal_transformation of the fields
plx) + 9'Ux) = ¢(x) + 69 (x) (2)

induces an infinitesimal variation &L(x) in the Lagrangian.

The transformation is a symmetry when it can be shown, without

using the equaticns of motion, that
sLix) = auA_L_‘ _ (3)

where AY  is some 4-vector. That is to say, 6L has the form
given in Eq. (3} for all field configurations, not only for

those which are solutions of the eguations of motion.

Example: coordinate translations.

Consider the infinitesimal coordinate transformations

e being an infinitésimal constant 4-vector. It induces on

¢ (x} a transformation- ¢(x) + ¢'{x) = ¢(x) + §¢(x}, to be

computed now.

one has
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Qor
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Finally, as t-:A is a constant,
N .
L = BA(— e L) (10)

which shows that translations are symmetries of the system
described by the Lagrangian (7). This kind of variation, &¢{x) ,

is called the form variation of the field,

Noether's theorem asserts that to each continuous
symmetry there corresponds a current which satisfies a continuity
equation, or, equivalently, .a quantity which is conserved.
Furthermore, it gives an éxplicit expression for that current.
Suppose &¢ is the symmetry transformation. Then there is AV

such that
SL = a A . 3

An independent computation of 6L, now using the equations of

metion will now be done:

_ BLg, . 3L
Ot s S e am gy A an

and the equations of motion are

3L

oL -
T Bu a{au¢} {12)

Using (12} into (11) gives

._5_
g §L = au [ﬁ”"h(aucp} 6¢] . (13)

Subtracting (13) from (3) one gets

. u BL _ - .
an {A - 575;$T G¢}— = 9 . (14)
This is Noether's theorem. The 4-vector

N O u 3L
3 = A e 1) &4 ) (17)
u
is the Noether current associated to the symmetry &¢.

It is a simple matter to see that the conservation

law associated, in this sense, to translations, is

auT“u - 0 _ ' : (16}
where

H 3L U

™V 37§:$T Bv¢ - § vl {17}

is the canonical energy-momenﬁum tensor.

Notice that Qe need not consider, contrary to the
standard treatments, two different Noether theorems, one for
finite Lie groups, and another one for Lie groups with infinitely

many parameters. Our treatment encompasses both cases.




3. THE CURVED CASE

An infinitesimal coordinate transformation in curved

spacetime,

xH - X eV (x) {18)

induces onh a scalar field ¢(x) the same form variation we have

met before,

o (x) = -€'34 . (19)

Let us compute the form variation induced on the

metric tensor g''(x) . From

U [y
g MWy = B B g0y (20)
3x X

which characterizes it as a second corder tensor field, it

follows, for the infinitesimal transformations ({(18), that
g*Vix") s g"Vim) o+ FgY o Ve (21)
and, by Taylor expansion around xu,

gluv{xl) = g.ll-l\)(x) - EAaAgUV(X) ’ . (22)

Using both, one arrives at

.8,

sg™ix) = -& 5, g% + MY 4 a¥gH {(23)
or, equivalently,
shVix) = gWPV 4 ogVid (24)

Vector fields Eu(x) which satisfy Ggpv = 0, that is, which
generate transformations {18) which do not change the form of
the metric field, are called Killing fields. Therefore, a
Killing field is characterized hy
Eu:v + EV;U - 0 . (25)

A transformation of type (18} with £Y(x} Killing, is called.
an isometry of the spacetime. Observers connected by such a
transformation observe identical metric relationships in space-—
time, and hence the same gravitational field.

We have still to determine the form variation of a
Dirac spinor. This is a somewhat harder task. To do that, we

start now a detour, in the course of which we will obtain the

Dirac eguation in the presence of a gravitational field.

4, THE DIRAC EQUATION

In order to study Dirac spinors we introduce, as

usual, tetrads, that is, local reference frames attached to
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each point of spacetime. . They are formed by vectors- eﬁ(x),
the latin index specifying the particular vector, while the
greek index specifies a component of that vector., For details
we refer the reader to Refs. (5) and (6), which we follow rather
closely.

Consider a tetrad rotation

eMx) = B e (26)

e () = zab(x)e“b(x) 27)

with the defining property

orha e,vb _ na vh

Mah = e ne . (28)

.p being the metric tensor of Minkowski spacetime. From this

it follows that

£ zad S (29)
and
zad A (30)

'The matrices Zab,

representations of the Lorentz group. The Dirac spinors are

therefore, are finite-dimensional

therefore required to transform, under tetrad rotations, as

.10,
$'(x) = LY (x) - S (31)

with L defined, as in the flat case, by
YL o= 2%y ' _ (32)

the Ya being the usual (constant) Dirac matrices. Now, the
Dirac equation will certainly contain the term auw , which,
however, does not transform as a spinor. In fact, from Eg. (31)

one has that

3 ¥ = Lix) 3 9L

u$ (x} Hw+ u P i{x)
whereas we would like to have something like

D;w'(x) = L{x} Du¢(x) . {33)
S0, the hard part of the task of extending the Dirac eguation
to curved spacetimes is that of discovering the "covariant
derivative" Dy. This is masterly explained in Ref. (7) »
Section 3-17.. It turns out that the birac Lagrangian density
in flat spacetime, o . '

L) = -1 w“vol}“ Gra, am| v 34)

must be modified to
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L) = -2 vy Er"“ea“ (x) ) D+ ml b=, (35)
with

D, = 2 - i - oabr L : (36)

.dab - ?2; |:Ya . Yb] _ S . . (37}

Yaue T % eublzaka (ec\) auebA T ebv avec}\) *

A v A v A v A v
* eycley ?Aea ~ %a aleb—)__ eples A e - %c alea]'

(38)
The action is, then,
5 = [ d4x e(x) L(x) ' : (39)
where
o) = et ofx) = =8 . (40)

By construction this action is invariant under both

ooordinate transformations and tetrad rotations, and

. ab . i
JLo= 3, - Fu

i
L (3 - ¥ maub 5] u

" c. B (41)

The Dirac eguation is obtained from (32), and reads

e D -mivx) = 0 . {42)
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5. FORM VARIATION OF DIRAC SPINORS AND TETRADS

Under coordinate transformations, spinors transform

the same way as scalars, namely,
Prix')y = P (x) . (43)

If, however, one assigns to them the form variation

of scalars,

Syix) = —EABN p (44)

the problem arises that &¢(x) is not a spinor (it has incorrect
properties of transformations under tetrad rotations}. The

solution is, however, simple:
A
dp = - ¢ DA\LI . (45)
This is a spinor, and has, for instance, the property that
- X —
sy = -89 G,

as it should, ¢ being a scalar.
The form variation of tetrads follow from that of
the metric tensor by using the relation

uv ay ebv

g = l']ab @ . ) [46)
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the form variation of guu is

14
This gives
g vav = 0 .
sgHV = n e e 4 Vs L (a7 or
. EU:V " Evru = 0
" Now, under the infinitesimal coordinate transformation .
if the transformation is
LA A by
x = x + & (x) .
L P L T

It is easy to. sée that an’éq@ivélent%condition is

v A
LA N AR T A AR A Ny S 1§
ax T - '
‘ : : - - = e, fxThe” x) o . ’ (51)
which, using (46), reads : - ax : * ’ B : S R
g {éaﬂ §ePY 4 &PV Sea#} - S ~ (See Ref. (5), §116.8 for a proof.. For inf%nltesimal transfor-
S ‘mation this gives Eg. (25)}. In a tetrad formulation the most
- - néb-{-ﬁh(akeau)ebv - Ekeauakebv . ea”ebABAgv . _ _ - convenient way to characterize an isometry is
. g3V GbA ), g”} (49} . o S de"T(x) = 0, . S
‘wherefrom it follows that R :.whiqh;leads}-through use-of ‘5Q)fﬂf§f*;
. - o . Mo AW ANl o
se® = -3 e s ePha eV {50) o - - s et en g et <0 e 6
. . : i nfi ., N t : mat i .-
In Section 3 we characterized an isometry by the ’ which is (51) for in 1n1te§1mal ransforma rons

property
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6. SYMMETRIES IN CURVED SPACETIME

We consider here two Lagrangian densities which are
general enough to cover most cases, the Klein-Gordon and the

Dirac Lagrangians,

L. = 1 as n’ e (54)
ke - 3z 2439 -7
and

' R T S T T

LD = —5‘1’ Y E’ea {x) (-_{) Du+1'fl ¥ (55)

to which non-derivative interaction terms may be added at will.

Starting with the scalar case, the invariant action
s = J atx /75 Ltg" 0.0, 6)

reéponds to variations of the fields as follows

| e 3L L
88 = ’d X './‘_g{aqs 8 + 3 0, 6) _au.é“b} *

1] .4 uv

+ 5 J d x f—g Tuv Sg . . {56)
For the last piece consult, for instance, Ref. (5). Tuv is
the symmetric energy-momentum tensor. For solutions of the

- - v ' . .
equations of motion, H ;v = 0, as a consequence of invariance

.16,

under general coordinate transformations. Using Egs. (19) and

(24) one has

4 AfslL 3l
6S=Jd}{l/—_g{-f; [B_¢BA¢+WBABU¢J -

Gguv .

(57)

uv

LPIRTI S T oL 1 4
_E(ag+ag)—a(au¢)a)\¢}+2de/"‘§T

If E'(x) is a Killing field, then &g"Y = 0, or

A A
so that (57) becomes
_ 4 AfolL al 1 nv AL
65 = - Jd X V=g & 35 0 + ———a(aum 3A3u¢ + 3 49 Md_a(&x“q;) av¢:]

which, for Lagrangians whose derivative terms coincide with

Klein~Goxrdon's, is

85 = —jdllx/:—éEj}‘a}\L . (58)

that is,



B (I3 Eh = 0, (59)
so that (58) may be rewritten as
4 A
§8 = d'x EA(— V=g £ L} . (60)

In Section 2 we defined a symmetry in the case of
flat spacetime. The extension to a curved spacetime is simple.

An infinitesimal transformation of the fields

x) + ¢'{x) = ¢{x) + 8¢ (x)
Px) o+ PR = P{x) + SY(x) (61)
Vi) o+ g*m = Vi) o+ g™V

is a symmetry if the induced variation &8 can be written,

without the use of the eguations of motion, as

88 = J dqx BuAu [

where A" is some vector density. We immediately see from
Eq. (60} that all Killing fields of the metric guv generate
gsymmetries of the action S, provided that L is a scalar
based on the Klein-Gordon Lagraﬁgian.

We now extend this result to include Lagrangians

based on the Dirac Lagrangian.
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The action is now written

g = [d4x'e(x)f.(¢(x).w+(x).DuIP(X” (62)

and its response to variations of all fields is
§s = | a% e{x){a—"-— spt + A osy . 2L 4p w} (63)
apt oy 3,y) "w

where we ignored variations of eau(x), because they will vanish
for isometries, the transformations we are invéstigating.(bnsﬂkn

the scalar density
AL syt aL at } '
{8w+ ST (x) + 37 S ix) + 3(Du¢} GDulp(x) e {x) (64)

where $9Y(x), 8v(x) and ﬁDuw(x) are form variations, given

by N

s = -&'pu
o' = -8t o,n*
G(Duw) = Duﬁw (for isometries} .

Te simplify our computation, recall that spinors
transform in a linear homogenecus way under both coordinate

changes and tetrad rotations. Hence, if two spinors coincide
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for a particular choice of coordinates and tetrads, they coincide
in general. Now, it is possible to choose coordinates and tetrads
in such a way thaﬁ, locally, maub =0 . With this choice, {64)
reads (except for an irrelevant divergence)

¥

alaL + 3L aL 5L A
{~E Ea_ WA e 3131_.;“] EEICRTI AL }e"‘"

But .
a

i+ 0 _p_a
§T§;$T H¥ = FWYe Y QY

so that

% v8,8" = 39 Y0y e vela & (66)
and, . because E% is Killing,
e ! a;l‘sA - e}
which, qsed in (66), gives rise to
;;Sﬁ-,- alu{aua)‘ - Lyty0y2 auwa"'ﬁe;‘
£ aaeLa“_aAe;l E (67)

Therefore, (65} is written

.20,

AoJ3l + 9L 3L alL i
- {___ Y b e B P 4 e 3,0 U o+ 3, e } e {x)
3w+ A 3 A B(Buw) AR aeau A a
. (68)
or, finally,
3 .
—e(x)i 3, L (63}
But, from the Killing equations,
A
BA(e £y o= 0
which is Eg. (59). Then,
88 = J a*x 2, (- eg™ L) (70)

showing that also for Lagrangians of the Dirac type, all
infinitesimal isometries are symmetries of the action.

We could also have invoked the following general
argument: all Lagrangian densities are scalars, so that their

form variations are those of a scalar,

Therefore, if &' is Killing,

58 = J a'x e x) -8" 5 1)
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and
e e = 0,

s0 that
85 = Jd4x b~ & L),

which is the same as Eq. (70).

7. NOETHER'S THEOREM

We now add to the action the gravitational contri-

bution. Let it read

S=[d4x@{—7—61?{R+L} (71)"

where k is Newton's constant. The Lagrangian density ! may
now be a scalar composed of spinors. This case had been excluded
from Ref. (3), so that we concentrate, here, on its study.

The symmetric energy-momentum tensor correspending

to Dirac's action (Eg. {35)) reads
1= a t
T o —_— -
"y Uy 5T (eua BU + evaau)w
11 +_a_bc 1
—gz VY 9V 3 (eua “hyve * euawbuc) * v L (72)

22,0

and is obtained by computing ﬁhe functicnal derivative of the
"matter" action with respect to eua'

To compute the Noether currents we must now obtain
two expressions for the form variation of S5 (Bg. (71)), arnd

then subtract them.

By varying all fields we have

_ 4 A _1 1 uv
85 = { a x /E{_ TETE (Rw zgwR) + 3 Tw} gt o+

+ [ atx e {x) glal L (733

and, for EA Killing,
85 = Jd‘*xal(_eaﬂ) , B2

the same as Eq. (74). No use has been made of the equations of
motion.
A second expression for 68 is obtained in the

following way:

_ 4 1 1 1 HY
8 = J d*x v-g {- Tenk (Rpu 3 guvR] + 5 TUU dg +
4 ol + ol ol
+ J da'x E(X){:EET s+ 2w 6? + 375;@7 auaw}— (75)

where Gguv ' 6¢+ , 89 are the form variations corresponding




.23,
to a XKilling EA. Using now the equations ¢f motion
1 -
Riv = 7 9y R.._ 8wk Tv (76)
3L+ = 0 (77)
ah
and
aL 1 aL B
we get, from (75},
_ 4 al
85 = J d x au {e ——_3(3]_[‘41) BIJJ} {79)
or, more explicitly,
§s = ( a%x 3 {e — w)} (80)
N u a(ayw) A 4

where use was made of Eg. (45). Subtracting (80) from (74),

one arrives at

4 A 3L K
[dxau{e&; [3.(3-—UUJ]__DA¢—6?\L]}:D ' {81)

that is,

A oL N
BU{SE [a—ra-;-w—}n;\lp—(s;\f]} = 0 ¥ . (82)

.24,

which are Neoether's conservation laws. The term inside brackets
is a gerneralization, to curved spacetimes, of the canonical

energy-momentum tensor of Dirac fields. It is not symmetric.

Let us denote it by GuA. Then
uxy '
au {e £, 8 } = 0 (83)
or
au{egA([e“Me"”] " [e“-e“])} =0 (84)
which is
ui caHA L
au{eElT }+ au{ng\A }_.0 (85) .
where TuA is the symmetric energy-momentum tensor of Eg. (72},
and

L (86)
Now, the first term of Eq. (85) eguals.
HA _ T HA _
e(EAT )”1 = e(«‘;)\”_1 ™) = 0 . (87)

as EA.H is antisymmetric (EK is Rilling!), and T”l is

symmetric (recall that TMA_“ = Q). Then Eg. (85) gives

V
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(88)

az
=
®
e
=
+3
=
P
[
I
[=1

and
5 {e&lAn}‘} -0 . (89)

For scalars one cbtains only Eg. (88), as, in this
case, AupL =0 . Eg. (88) are the Noetherian conservation laws;
Eg. (89) are identities which, though occasionally useful, have
no particular significance. The simplest example is related

to translations in Minkowski spacetime. One has

with constant eV . So, the Neetherian consexvation law gives

auT‘“‘ = 0 |,

as it should. As, accordingly to Egq. (72),

A1 1 a1l nLA
T = {— 5 P x)y I (eaD

ALM A
! rel oM v - g L}

whereas

. - A
L %\U(x) Yal}a”DA-ea Dl’jw(x) o

1

and as, in Minkowski spacetime, ey

can be chosen as 6:

.26,

one has
by — .
. 1) {y“a* - YAB“}WX) )
and the identity (89) gives
cH {E(x) (et o yra¥y w(x)} =0 ,

which can independently ke shown to hold,
Next in simplicity come Lorentz transformations in-

Minkowski spacetime. They correspond to

A Ao

£ {x) = W, X ;
with Wig = =Wy s and give rise to the Noetherian conservation
laws

3, {x" oA LA T”"} = 0

as well as to the identities
- i - 1 ' o
8;_; {wm (x,Y, =& 7,090 - $(x)y ("uax'xaav”’} = ¢ ,

which come from Eg. (8%9).
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8. CONCLUSIONS

By using tetrads we included fermions in our treat-
ment of Noether's theorem without undue complication of the
formalism. Noether's conservation laws (Eg. (83)) were
rewritten as Eq. (88) because of the symmetry of the energy-
momentum tensor, which is inherited from the Ricci tensor
through Einstein's equations (Eg., (76)). More general couplings
of spin to gravity lead to Ricci tensors that are no loager

(7) {8), for instance). Our

symmetric (Einstein-Cartan theories
treatment is easily extended to these situations, and then
Eq. (83), involving the natural generalization of the canonical

energy-momentum tensor, is the final result.
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