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Normando C. Fernandes
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"No more fiction for us: we calculate;

but that we may calculate, we had to make-

fiction first®

Nietzsche

ABSTRACT

Instead of the usual classical spherical model of the elec-
tron, we develop a toroidal charge distribution model. It is shown
that the latter moéel of the electron is not subject to instabili-
ties. The model also applies to'magnetic charges, enabling us to
consider mqghetic monopoles., Some possible connections with other

current topics in theoretical physics are pointed out.




1. INTRODUCTEOM

In this paper we will be interested mainly in developing a
classical medel for the space distributicon of charge and current
of the electron, aiming to find stable configurations, First of
all, using some techniques of gxterior algebra, we show that the
.spherical shape is not a suitable.model for the electron. Instead

of the usual difficulties encountered in the Lorentz model, we

have found. some topological reasons todiscard the spherical model.

The unusual feature of this work is that a simple toroidal charge
config;ration assures stability for a given distribution of charges
and.cﬁrrents! avoidiﬁg the drawbacks of the spherical model.

In. section 2 we présent the mathematical formalism which
is used in tﬁis work. We start from the definition éf domains in
Minkowski space, define forms and integration of fcrms and arrive
at the first set of Maxwell equations in the context of exterior
algebrap

- In section 3, aiming to establish the second set of Maxwell
equatidns,.we start f£rom a symplectic symmetry argument. With the
équations established, we apply them, chobsing suitable boundary
conditidqs. Surface discontinuities are introduced. -

Next, ipn section 4, we study the stability of surface dis-
continuities in the fields and apply the results for a hypotheti-
cal charged'particle which.may be.the'electron. No numerical com-
parisons are made. In section’5 we particularize the above results
for some special sﬁapes. The first example is the spherical one.

A detailed discussicnon the impossibility of having well defined

distributions of charge and current in a spherical model is given
in terms of topological inconsistencies. The spherical model is
digcarded and the toroidal model is introduced, With this choice,
the above difficulties disappear.

In section 6, a semi—quantitative resuit is developed. If
is shown that, fromthe point of Vi@nofmeasuriﬁg electric fields,
the spherical and the toroidal models are alﬁost equivalent. For
some reasonable distance, such as the twiée of the classical elec-
fron radius, the deviation between the two fields is negligible;
Alsc, the total energy of a toroidal electron is estimated and a
"compacted” torus is constfucted.

In section 7, we give scme elementary reascns supporting
the existence of magnetic monopoles. Basically, symmetry arguments
of the Maxwell equations are invoked. The pﬁysics of a toroidal
magnetic monopole becomes identical with that of the electron.

Finally, in section 8 we present a summary of results and

~of possibilities of the toroidal model. A few examples of pos-—

sible connecticns with other fields of theoretical physics are
given. Among these, perhaps the most intéresting example consists
in replacing a vortex model like Olesen-Nielsen's by a. closed

charged torus. Other connections with some related topics like

Nambu strings and the implicatiens on the elemeptafy . particle

.physics are only menticned. They. will be thé subject of forth-

coming papers.



2, INTEGRATION AND FORMS

Since in this note we will be mainly concerned with inte-

gration of forms on Minkowski space M4, let us define our termi-

nology.
L compact 3-dimensional subset @ of the 4-dimensional mani-

4

fold M® can be decomposed into two disjoined components: int @

which has dim=3 and is called interior domain and 38 which has

dim=2 and is the boundary of £ . Both parts are regular domains.

If int f is a simple manifeld, it can be covered by a single
coordinate system. In general, int £ must be covered by an atlas
(wi, Ui)ie T consisting of overlapping coordinate systems, where
@; are applicatioﬁs to R4 and U; are open subsets. The index I
gpecifies the family of coordinate systemsi._ Next we propose to
canstruct the integral j F of an arbitrary differential form F
.over Q. &
Let us suppose that there exists a special coordinate sys-
.tem (@O,UO) so that the restriction of F to ﬁ' vanishes ocutside

¢D'(UO}. Then, of coursé,'we-define the integral

2
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. 3 . . i
where the e, are canorical basis vectors and the art represent

the parametrization.

4

If we choose an inertial frame S on M~ with inertial co-

ordinates (xo,x1,x2,x3), we define a 3-dimensional submanifold £

as a space slice by

-5~

g = '(XE;M‘&']xoxcto] ' _ (2)

Thus, £ consists of all the spatial points at a specific

time t°. wWe say that (x1,x2,x3) are adapted to § . Now let R

be contained in a space slice relative to 5. When integfaﬁing
over O we must observe that the restriction of ax°® (conside;ed
as a form) to § vanishes and the corresponding integrals involve
only the space-components of the integrands. '

In each point of M4

we define a system of unitary vectors
- nr -+ > -, . .
{ Io' 11; 12, 13 } corresponding to the four coordinates. An<1n—

finitesimal displacement of a point'P is given by

ap = mofo + m1f1 + mzf 33 11, (3)

with i = 0,1,2,3 and where w" is the form defined by

ol = alax® + al ax! 4 al ax? + al ax’ (4)

In generalz, Aé = pi and Aé are functions of‘xk and x°.
For brevity we put
| Wt = @ o+ pi ax® _ _ _ _ {5)
corresponding to ;

g = @ o+ pta™i S ()

“In a parametric deseription, when the xk are constant, a

. A . .
point (Q) with displacement given by dﬁ = p1 ax® Ii desgrlbes a
curve C: R ~+ M4 . The totality of these curves constitutes a con-

gruence (C)3. The congruence is defined as having only one curve




paséing through each point. The parameter x® (or t%) fixes the
position of the point on {C). On the other hand, when +? is con-
staﬂﬁ,.és assumed above, the displacement is given by d% = Gi Ei
and this suffices to determine & . Of course, an observer placed
cd:gl can not measure directly the displacements om the normal to
g . .To.ié normal to § .

if we use Cartan's "moving frame" point of view4, we can
take the trajectories of the volume elements of & to which we

* s
ascribe a density .p as forming a confruence defined by the dif-

ferential equations

el e e gt {7
] J 3 J
O o * .
where j =mnp (o= 1,2,3), the v ,p being functions of
x° ,x1 ,xz ,x3 , with o= ml/dxo.

*
We define p by imposing that on &,

Hi o [61 =2 E3.] e

is an absolute invariant integral in the Poiﬁcaré senses. The
square brackets correspond to the exterior product in Cartan's no-
taticen. An elegant proof that p* can be taken as a Jacobi multi-
plier of system (7) and that there exists an ihvariant- from de-
pending on three integrals of (7) is developed in Loiseauﬁ.
An_invariant form [Fj has the exterior derivative equal to
zero, [F]' = 0. But [F]' being zero, by Poincaré's theorem,
there is an infinity of two-forms [A] such that [F]' = [A]l. This

is. equivalent to say that

e - [ w

One particular expression for [A] 156:

2.3

[A] = B1[m w + Bz[m3w1] + BB[m1m2] +

+ Bllwlat] + rPlwiar] + ml[edat] (10

where (B, E) are the components of the electromagnetic field ten-
gor. The usual Maxwell equations are obtained by putting ja =0

(o = 1, 2, 3} and p* = 0. This corresponds to having the scalar

product B3.F =0 and [A] an exact exterior derivative, i.e.,
[A]l = [a]', with [a], a linear form. The next possibility is te
consider ja + 0 andg p* = 0. In this case we must also have
BB =0. as we know, E results perpendicular to E, with its di-

rection given by the intersection of the two spatial hyperplanes

B x° - B°x” + E' = 0 and B1x3 - B3x1 + E2 = 0 (11)

. .
The possibility of having 340 and p + 0 leads to the
following set of Maxwell equations?—9

-+ =+
3B + rot B = 41 -1
c 3t c
"
divB +4m p = 0 (12}
*
divi + 22 = 9

at

It is important tc note that, until now, no physical hypo-
*
thesis has been made on the nature of p . In the seguel we will
) *
develop some models for op and will consider some. physical con-

*
sequences of p + 0.



e,

When the congruence defined by (7) corresponds to trajec-
. . .
tories of p , it is easy to show that this choice corresponds to

0.

ap*/at

3. A SYMMETRY OF THE ELECTROMAGNETIC FIELD

We can give a symplectic interpretation to the form [F}
defined by E and B corrésponding to the density p* and to the
current density 3 . First of all we write down the Maxwell egqua-
tions. Next, we establish the well knoWnrprope:tythatthere exist

only the two invariants

(B/e)? + B2 ana (B/c.B)? o {13)

Now, it can eaéily be shown that if we consjder the anti-
symmetric matrix F. which cb:;esponds to the form. EF]_.as.a-rqta-_
tion, only two null straight lines remain fixed. These. lines: de-
pend.oniy_on the above field invariants. But these two iﬁva:iants

also remain unghanggd:by the_ttansformations

B, Be) s (Fre,B) (14)
B

or (B,%0c) > (-B/c,B) C(15)
The first transformation is:a_trivial~oqe; Tt corresponds

to a single axiS_exghapge. Thewsecqnd_transfprmatipn is. very im-

portant. TFrom a symplectiq_pqint;of‘vigw,it_qgn_be_written; in. a

6-dimensional space:

- % o C-1)f B .. L :
R B | o (18}
3 ) 1 0. ' '

It is:st;aightfo;wa;drto:w;itghthe pew,inya;iant_qum? [a}l:
corresponding to (-—ﬁ/c ,§). The,Magwel;“equqtiqns;derive@uirom
{H] correspond to.a new‘cur;enﬁjdensityti" different from. 3} and

) *
to a new charge density p different. from o . Explicitly, these
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equations are

N
4 ———BE o+ rotﬁ = an
c at : c
div B - 4mp = 0 (173
. dp
9P _
div 1 + o

The solutions of the complete set of Maxwell equations are
obtained as usual, defining the potentials (K,i') and (V,V'). De-
fining the dependence of 1 ana § on the space and the boundary
conditions, the solutions are written in terms of retarded po-
tentials10. The symmetry exhibited in the derivation of the Max-
_well equafions for the fields and particles is very peculiar. It
;lso applies to the two quantities (p, pf), showing that at the
ciassical level it is completely impossible to distingqish between
electric and magnetic charges. We will make use of'this property
later: '

It is well known1% that when £, H or D, B have discon-
tinuities on passing through some two-dimensional movirg manifold
g in £, the Maxwell equations can be written: .

X

A3 L 1 3kt e A

— T (0 x 6B Ap — (n. sB)
A , . (18)
1 [ - + : _ # >
= = = (B x 8B) bp = —— (B.oE)

Where T is the exterior normal, §E = ﬁe - Ei and 6H = ﬁe - ﬁi’

with the suffixes e and i1 denoting exterior and intericr regions
of ¢. From these equaticns we see that there will always be a

‘magnetic density if Gﬁ is not tangent to ¢ .  We alsc see that

_'|'|_

if we consider a continucus medium like a conductor or a dielec-—
tric, supposing that its exterior surface is a discontinuity sur;
face, the discontinuity can be supressed at the expenses cf adding
some electric and magnetic currents to its surface. Of cburse,
the values of these currents are given by the above Maxwell egua-—
tions. In general, these currents Al and dﬁ are not tangent
to o. In the following section we will apply this reasoning to
the case of a clqsed surface embedded in £: in particular, to the

electren surface.
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4. EQUILIBRIUM OF A LAYER OF CURRENTS: THE ELECTRON

'In this section we follow the detailed calculation for the

charge disfribution on the electron surface as given by Loiseau(ﬁg

{11)

" In'his first theory , Lorentz proposed the charge of the

electron as distributed over a certain space, say over the whole

voliame -occupied by the electron, and considered the volume density

_és a continuous function of the coordinates, sc that the charged

@aiticle has no sharp boundary. Indeed, it is surrounded by a thin
1ayer in which the density gradually sinks from the value within

the electron to zero. But this hypothesis was not sufficient to

'éliminate the infinite electron self-energy and the consequent

electron dissociation.
‘After the theory of relativity, several theories of the elec~
tron have been formulated. Dirac has amended the situation with

his hypothesis of the point electron. But the infinity has survived

-at the classical level.

Here, we mean to show that the Maxwell equations, supplemented
with the terms corresponding to magnetic densities of charge and
current, can supply a hint to solve at least the infinite self-

energy problem. These supplementary terms could be responsibie

for the appearance of Poincare's negative pressure, leading thus
E g

to an eguilibrium cenfiguration.
Let us take 30 as the boundary surface of the electron. The

exterior applied field is null. The only field wvalues to be

:considered, namely ﬁe' ﬁe' Te and ﬁe are to be created by the

S=13-

electron itself. In the external region to -3fl, we have ﬁé= 0 Zéhd
ﬁe'# 0. We have also ie // B to 3af. The Maxwell equations ¢an' be
read as
i) external region to 3f
. _ _ -+ _ + _

rot ﬁe- 0, div E= 0, =0, I =0, 3= 0 {19)
ii) interior region (int R}

rot #.;= 0, aiv H;= 0, B;= 0, T,=0, ;= 0 {20)
These eguations mean that ﬁe and ﬁi are. conservatives.

On 32 we have ﬁ; - &%= 0 and Hi + @§H= 0. Of course, R . =0,

The charges and currents con 3 are given by

+
LT A L (B xH ), 6o = ! (ﬁ.'ﬁe)
c 4w 4%
87 Sp*= 0
i -y .
c (217}
Since the electron is strictly electric:
-
STaq 1 B . E do=e (22)
4T
and defining the potential V:
E o v {ay on an {23}
=] an Laﬁ . .
The equilibrium condition on 3% is [ﬁe[ = iﬁi];

The current density 61 and the field ﬁi are tangent to 3R

and &1 _l_ﬁi. applying a w/2 rotation around B , we get

5§ F p=|§i| IR

r |81 ]= cép
c a7 4T 47 (24}
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The most remarkable fact about these equations is that the
speed-éézresponding to-the currents on 38 is egual to ¢. Also, we
conciude that T and B are orthogonal vectors lying on the envelopes
of the orthogonal congruence of curves Ci and C2 on 3.

To solve completely the problem, we must calculate the density
p on 30. It is clear that when passing through 30 the potential V
is.continuous with normal derivative discontinuous. In a point M

on 38 we have

BY ] - - amptm)= 2 S, p(p) S95Y dg (25)
o je . T pM P
thus'
oMy 1 p(p) €95 ¥ do = 9
T T I 3e L Ty P (26)

where B is the interior normal to 39, ¥ is the angle between 7 and

&+
I

oM which is the distance vector PM.

Expression (26) is a homogeneous Fredholm equation which has

{12}

a unigue solution apart .from a multiplicative. constant factor.
The solution is obtained if the total charge is given:
= {27)
e ffgg Sp(P) dop
The boundary 3% can be parametrized by two families of ortho-
gonal curves C1 and C2, tangent to the unitary vectors f1 and Tz

1

point M are

3'is parallel to R. Thus, the infinitesimal displacements of the

an = w1 T1 on C1 (28)

= 2
aM = w Tz on <, o (29)

But,_mE T] and,uF Tz are integrabletz)

— 15w

w1= v1 dx1 and w2= v2 dxz, with (v1, vz) functions of (xl;xz).

Along C., the current is constant= cép. Consequently, the current

2
is orthogonal to the lines of eqguideansity of the electric charge

of C, on 30 and is tangent to their orthogonal trajactories C1.C2

2

are electric eguipotential lines.

Thus, W, (o= Hy= andp (M) and . (30)
and
aw = 4 6p w? (31)
Integrating, we get
W= 4ﬂj¢2“2 6pdx2= &7 6p(M) + constant (32) -
With x1= constant, this results in
§5(M)= f_.v? §p ax’ + constant/in (33)
Finally,
- SplP) cos ¢ -
(W; } 5= constant + Iy p dop,
PQ
) ar/ry - =
constant + fjég V*Ei———— 8(P) dop =
constant — ffaa _4(1/xr) $p(P) doy
’ ac (34)

where b is the exterior normal, Q is a point on 3% and ¢ 1is the
angle between the normal and the vector PQ. For charges of opposite
sign, the normals are reversed, giving rise to positively or

negatively charges on 3Q.
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5. THE ELECTRON SHAPE: SPHERE OR TORUS ?

' The classical picture of an electron is a negatively charged

small sphere. The charge -is uniformly distributéd throughout the

sphere. The current function is easily calculated by assuming a

polar coordirate system and selecting an arbitrary system of
orthogonal curves C1 and C2i As stated in section 3,0m:3—dﬂmmskmal
Subset Q is é regular domain. When the domain int & is a simple
manifold, it can be govered by a single coordinate system. Also,by
Cartan's lemma, 32 is a regular Z—Qimensional domain without
bodndary: 338 = 0. But this is not the case for a spherical electron.
The sphere is a compact topological space, since it 1is a bounded

closed subset of R>. It is impossible to cover the sphere with 'a

" single coordinate system since SZE 3R is not a simpie manifold.

In terms of the curves C1 and C2, this topological condition

implies in a seriocus drawback. ¢, and C, are defined sc that at

" all points op 3% the fields E; and fi; are uniform. We can not have

any singularity. 1f, for instance, we take as current lines the

orthogonal circles to a diameter PP'} the field ﬁi which is tangent

to the meridian through M, will not be determined at the .poles PP'. This
. fact shows the impessibility of having a layer of spherical currents

in eguilibrium.

The spherical distribution, is subject to a second difficulty.

"Téking a closed curve y on 38R, y will divide 3 into two distinct

domains D, and D2. If vy is taken as a line of magnetic field C2,

the current flowing from D1 to D2 can not return to D]. If v is

L 17—

not cleosed, getting thus a uniform field ﬁi’ it must have two
limit points. The orthogonal trajectories must be closed: " this
iﬁplies that the limit points are points of .indeterminacy of the
current.

We conclude that it is impossible to have a uniform spherical

layer of electric currents in equilibrium, with a stationary moticn

‘on it. Our spherical medel of the electron, although. differing

drastically from the Lorentz model in two aspects: existence of a
layer of discontinuity aréd moving charges, also is unstable.

Let us now dwell on anéther model which 1is not subject to
such instabilities. Our surface of revolution will be taken as
that of the torus S1 X ST. In this case, the instabilities noted
above disappear. Our torus will have axis 0z and eguator plane
(0x, Oy}. A point Q on.the torus has semi-polar coordinates:  a=
azimuth ¢f the plane Q 0z, & distance from Q to 0z, z= elevation.

By symmetry, the equicﬁarge lines are parallel on the ortho-
gonal planes to 0z. The carrent lines are the meridians. This cur-
rent distribution, although in a quite distinct context, resembles

the vortex description of a type IT superconductor(TB}

. Returning
to our forms defined in section 2, the infinitesimal displacement
of a point Q can be written as

3= ar %, + 4 da K, +dz K= ol Ry 40’ R, ¢ 0 Ry (35)
where (ﬁ1, ﬁz, ﬁB) are orthogonal unit vectors. With these nota-

tions, the Eoisson equation for the potential hecomes

AW Iy a2
- & + ..E. .._3..‘91 +_1___3_?1 + ] =0
882 £ 3L 22 aal az? {36)

7
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with W (=)= 0 and W= constant in the external region. On the torus,
if we take da in the positive sensgse of Kz, we get ror the current
u flowing through an element w2= %L do of a parallel eof radius §&

{length= 27w %)

IR gda=. dTM _ (37)
278 2T8

with M taken on the parallel. We see that

pM - u amM constant : ) (38)
2m
On the other hand, the gradient of W is
Cgrad W _ EL 1 3W 2 W3 i
= Bl Ky —— 25 Kot
T e & g 3 (39)

Combining this result with the corresponding value of.pM, we
get the following value for- the field strength_Hi on the boundary
an: '

2p W.= 2ua + constant

2 T L Wo=0 _ oL 40) .

Obviously, at a point Q belonging to int @, ﬁiwill be ortho-

"gonal to'the meridian plane QOz. On 8@

c an - 4mg 21 (41)

For the charge " distribution on 38 when the exterior field

is null, we get

2w EM _ o . ) (42)

—-19-

For the electric field
e’ R '3 : {43}

The total electric charge is
-+
e= [fog w9
27 L (44)
To calculate doM we change the coordinate system. On 32 we use as
coordinate lines the meridians and the parallels. With this
procedure, care must be taken to avoid having the inner radius of
the torus greater than the outer radius. This possibility, although
interesting, could lead to serious topelegical difficulties for
our purposes. The meridiah equations are.&;-f(s) and z= z{s), with
s taken as an arc element on the closed me;id;an. The surface

elament oh 38 is % do ds. Thus:

e= ub ffaé de ds = S [;}

21 i (45}
with S0 equal to the perimeter of the meridian.

From the charge density

5= e a4+ constant . S - (46}

o)
M
27 SO
we deduce
2e e -+ - - i
Hi# ————, 8p = ———— Iil= 8p, . |E| = k]
SOEM ) 2 SOR . IR SOE (47)

and
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W, = & + constant . ) “f48}

At the exterior of the torus we get:

L e ' do d4s
e s STaa e
- 4TS Tp0 ' - ‘ (49)

" With this eguation our problem is completely solved with

“several interesting physical properties to be uncovered in the
model. Thus, -a surface of revolution 88 of closed meridian section
can be provide a simple example of a layer with electric (or

' magnetic) gurrents'in equilibrium. At the external region there is

an electric field. This layer canr represent an electron.

“2i-

6. THE EXTERNAL ELECTRIC FIELD: COMPARISON BETWEEN THE TOROIDAL

ELECTRON AND THE POINT ELECTRON

Unlike the early theories involving spherical symmetry, here

we calculate the external electric field of a toroidal electron.

The electric potential at a peint Q external to aq is -

e 27 S ds
Yo" o s é’da é -r—p_ {50)
o _ PQ S
if we take Q on the circular meridian with center A
VQ: _ éz 2% J,21r du;'d¢é_
4 o o Tpg _ . (s1)

with ¢ being the angle (ay, AP).
Let us call R= 0Q, R'= OP and y the angle {(OF, 0Q).
With this notation '

: o S _
! - ! o 2R? cos Y R'Y 21-3
r R ‘R R S e2)

PQ

We alsoc assume R > Ré,fwith Rb,being'the_greatest possible

value of R'. Developing J/tpé ='1/r,;&e'gét

1 1 R (r)? o1 S
—— ® b e COS Y b Le— (3 cosT YTt S
r R R R -2 -
1 ¥ L R ) o .
- 1+ l X](COS v ) +,u_. X2 {cosy} + ...

where the X, are Legendre polynomials. Substituting into the’

integral, we get
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e o 1. 1,2 . -
' R)E » i c £ =0 .
VQ= - e2 12“ fzﬂ dd de 1+ R cost s ) 1 (3 cos?y - 194...)= where [ is the corresponding value of y ([ z, 0Q) For a
41 0O ¢ R R - RT 2. - S circular meridian (circular torus) we have
=fy (2ede : o ' A= 2 (2a% + 3% , c= 2 (2a% + b
A o T L (54} 4 2
Performing the integration and
2 2 2
: 1 d . . - -
v -yt S2de 1o glipy I 8o cosy - ve - .28 (Al o k7)) (3 cosT [ - 1) .. (60)
Q@ o 270 3 ‘
R R ' R 8 R
o 2 1,2 : : : .
-"—= [f&p (3 cos - 1) (R do + ... -(55) 2 3 5 :
3 f{é e S . 3 R (2a” - b%) (3 cos® [ - 1) .
R B r?

Since the origin A is at the center of gravity:

1 where a and b are the outer and the inner radii, respectively.
fj. R cosy dog = 0
e . The field B is. on the meridian plane. Its component normal to

Then : ) ) ' R= 0Q is easily calculated by taking the derivative with respect
e 3 Los2 v -1 =1y 2q0+ . (56) o [ of the potential Vv
VQ ff 60 | . 2 2.
. ® 3 230 . 3 _ 3 2a” - b . 2 :
. EN— - —_a —'—'—4'—'——-'— sS1ln r ) {61 )
) : 8 - - R
The corresponding field is: U
: ) The tangent of the angle between the field % and 0Q is
. e 3 » . 3 . . . . .
Egs o+ — I de e cqs2 y =1l @hag ... {57) : 5 - 2
22 »? a0 5 - . ’ tan €0 - 3 (2a b%) sin 2 [
) : 2 -_ 2. .
8 R® [1 -2 —33—5——9—_(3 cos? [- 1)
N : . L. . : 8 R o : (62)
By cheoosing a meridian symmetric in relation to the plane QOz='0 :
and calling ) ) Taking into account all calculated terms, the external electric
2 2 2 : ’ field of a toroidal electron can be written as
a= [ &(p) (2 + y°) ao , c= ff 3pa“ ao (58) : .
: an aq- : e 3. 5 2 i
) ) E= — {1 ~ —— —— (2a° - b°) sin 2 o (63}
_ we get _ . : _ Rr? 16 R?

E= -2_.CS-4 = cos? i——1— + 1—6..(._..) - {59)
: 2 : 2 R
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'_It is easily seen that for 1/R << an arbitrary small number
which can be, for instance, the inverse of the classical radius of
the electron, it becomes hard te distinguish experimentally (only
measuring the field) the toroidal electreon from a peint electron
located at the origin. The greatest deviation for the field is
found when [ = 7/4:

B= —S 1 - 2 1 2a? - v¥) (64)
R? 16 r2 _

If a = b, this equation results

e . 3 b2
E= 1 = —— —
2 2

R 16 R

{65}

For b + 0, we have again the point electron.

For b= 30/2, where Ro'is the classical electron radius(10),
the field measurea at a distance, ;ay R= ZRO, the deviation of the
observed field from that of the point electron amounts to less

.than 1%. .

Tﬁe centre of grawvity can be taken at rest. We note that
choosing this particular reference frame, the electron energy

. mye can be written

2 1.

moe’= — fff (% + B dr (66)
8m &

In the internal region ﬁia 0

2 1 2
moc = e—— j’ff H%dTt . {67)
am 43
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But the electron surface is a circular torus. We assume its
section as having radiuvs r at a distance a from the origin.. Thus,

since lﬁii= 2e/8y %

2 e? 1 - ¢y1 - r/a
myct = .
2a r?/a? (68}

According to electrodynamics, the electron would have to have -
an infinite self-energy since the potential = e/R of its field
becomes infinite at the point R=0. But the occurrence of the
physically meaningless infinite self-energy of the elementary par
ticle is related to the fact that such a particle must be conside
red as pointlike. Thus, when we go to sufficiently small distances
we get internal contradictions. Formula (68) shows that, at least
formally, the electromagnetic self-energy of the toroidal particle
can be equated to the rest energy Mg c2 without any serious diver
gence.

if, on the other hand, we consider a gpherical electron as
possessing a certain radius RO, thenlits self—potential energy
would be of order ez/RO. Thus, from

e2/R0 - mocz.
we get

Ry ~ ez/mocz.

This ratio determines the limit of applicability of electrodynamics
(10)

to the classical electron

Now, formula (68) can be written as
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o c2 1 1 1 - /7 v 7. A POSSIBLE CLASSICAL MAGNETIC MONOPOLE
- I -
2 2 .
e R Za b4 . . . . o
0 : In section 3 we have shown that it is possible to pass from

: one set ot Maxwell equations to the other, only by applving the.
where x= r/a. Let us find the two parameters of the torus, r and

transformation (ﬁ, ﬁ) = (~ﬁ, £). In our torcidal medel this 1is
a, with the obvious condition RG: a + r. This amounts tc say that

. equivalent to studying a current layer where §e= 0 in the external .
a= r= R,/2.
0

i region and H.= 0 at the internal region, §1 gets tangent to 38
In all meridian planes, each circular meridian of radius RD/Z i

. . . . L. and B orthogonal to 3Q. Taking into account these restrictions,
has the origin as a common point with the opposite meridian. .We e

we arrive at
_ _ , B, B + _
__a sphere of radius Rg.. : . $p'= ——m— =0 ' §i=0 {69}
ST T - : én

can say that we have "compacted” the torus. to have it centained in

The layer becomes of pure-magnetic origin. For the potentials,
Maxwell's equations are reduced to

= grad Vv and Ti= grad W - (70)
with corfesponding expressions at the external region

aAv= 0 and AW=0.

On il we have §B= - ﬁi and &h= ﬁe' With those oonventionsp

~ . we see that (H, ﬁ, 3) can be taken as an orthogonal inﬁérse framé

of reference. We pass from the direction of ﬁi to that of 3 by a
negative rotatioen.

It is easy to see that on 3R the eguilibrium condition.reaﬂis

in gﬁegz - iﬁil2 =0 and N =_|Ei| . (71)
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The global set of eguations to be fulfiled on the boundary 3

will be
%, . [ﬁe] i dw
6_): - ¢ —1 §p* = - — = - —— e
1 an 4 47 dn (72)
and, finally
» d We s N o
Ey= ——— I s7l=c ao (73)

da
We will define the potential corresponding to a single layer

of density 8p* by
d w

=]
.

dn

do (74)

st
an "Ta0

To be more specific, we say that the lines of the electric
field are lines of eqguidensity p*= constant and the current lines
are their orthdgonal trajectories.

The other results are identical with the electric case, with
the conditions of exchanging W and V and changing the sign of the
charge. .

These -are the conditions to be satisfied by the charge
distribuﬁions to arrive at the Kottler-Loiseau classical model for

the electron (or magnetic monopole).
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8. CONCLUSIONS

Throughout this work we have assumed classical physics,.i;é;}_
electromagnetism. We have attempted to give a someﬁhat qualitative
picture of work in wich people have been engaged, concerning the
implications of describing the classical distributions in terms 6f
some geometrical symmetries. We have been encouraged in this work -
by the possibility that such a set of models give a natural explanation
oﬁ the stébility of some elementary systems, such as the electron,

Our work has been eatirely based on the interchangeability of the fields E
and U with the corresp.nding passage frum the elec£ric density p to the magnetic
density b*. In section 2 we have preferred to use some symplectic
geometrical arguments instead of the usual Riemann interpretation
of a function of complex variables, Our intention was to show
clearly the role played by the Maxwell invariants. Besides this,
the exterior caleculus employed in matrix notation strongly
suggests the symplectic interpretation.

The question as to whether the spherical electron or the
toroidal electroﬁ is the more fundamental model can be formulated
in a different way. From the peint o§ vieﬁ of stability the
spherical electron must be rejected. Our spherical electron differs
from Lorentz electron essentially by having electric currents on
the surface, moving at the speed of light. Thus, it could be
argued that a surface discontinuity replacing a massive distribution
must overcome‘the self-energy divergence trouble. Roughly speaking,

this occurs. But another drawback, of & pure geometrical-to-
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pological origin arises: it becomes impossible to specify the
charges and currents at all peints on the surface. This last
difficulty has led us to adopt the torcidal electren of Loiseau.
This model has very interesting properties: topoleogically, the
domain int (S1 X S1) is homeomorphic with the group SL{ 2, R).
This group is single connected, causing thus the connectedness of
the torus. A single coordinate system covers the domain Q. With
the current flow lines lying in planes containing the axis Oz ‘of
the torus, the torus becomes equivalent to an infinite solenoid
wrapped round Oz withrthe ends Jjoined together. Consequently, we
have a trapped flux in the interior of the torus. At the exterior
region, no magnetic effect can be detected. Nevertheless, a large
magnetic energy can be stored within the toroidal electron. This
can also be seen when the inner radius of the torus becomes zero.

There is a divergence in the total enerqgy of the electron
whose source is not of Coulomb crigin but, from the fact that all
lines of the trapped flux are compressed within a vanishing area.
This very peculiar highly energetic closed circular string can
serve as a starting point for many theoretical speculations.

One possibility is te relate this configuration with the

Nambu string assuming that in space-time +the surface. of .

discontinuity can be represented by Mercator's projection as a

rubber band. If there is a meaning to this. analogy, the string
should not be thought of as a mathematical line but as an object
having some thickness. An -specially short string, corresponding

to the compacted torus,: should have about the same length  and .
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thickness.
In recent years, with the resurrection of the famous early

1931 paper of Dirac(14),

the idea cof a magnetic monopole reappears.
The issue can be raised as to whether the existence of a
ﬁerfectly localized magnetic monopole can lead to an effect which

has passed unnoticed until now(15).

There is no basic objection
to the existence of magnetic monopoles; their fields as considered
here were deduced from legitimate Maxwell equations. Nevertheless,
we have not used gquantum mechanics and it has been shown guantum
mechanically that if magnetic monopeles exist, the magﬁitude of
the elementary unit pole would have tc be related to the inverse
of the elementary charge by a constant factor.In the GUT model(16)
the monopole charge is 70 times larger than the el€ctric charge
and this fact should alter our estimates made 1in the electron
case(17)..
To close this.discussion we would like to point out some
features 6f the toroidal configufation which could serve as a
motivation for future investigations.

Consider our toroidal electron as a closed string with flux
@0 passing through the meridians. For the currents in dynamical
equilibrium, a constant magnetic field HO will be cre.ted inside

the string. Each circular meridian has radius b as above. The

flux @D will be given by
p T b : {75)

The magnetic energy stored per unit length is
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g= /2 HyS b* = o,%/2m b2 (76)
For the entire torus we get

'_ 2,2 ,
Tiotal™ 2% /P (77}

Using the results of section 6 we can make an estimate of the
magnetic energy and of the magnetic field flux contained in the

"eompacted" torus:

2 ﬂﬁ
JT --moc = a 5 (78)
b
But a= b = R0/2. Then
5 .
Jo - 2¢O/RO (79}

Thus, from (79) we deduce

0c2 . % e’

2

oy - 3 R,

0

This flux corresponds to the most stable energy within
the limits of classical electromagnetism. Correspondingly, the

maximum possible magnetic field for a toroidal electron is

W2 e .
By= — = (80)
m R0

Obviously, results (79) and {80} are significantly altered in
the guantum framework.

From (77} we see that we can diminish the'energy of a magnetic
toroidal string with a constant flux by spreading out the string.
If our "compacted" torus is the most stable configuration. for the
electron, we can not alter b without altering a and the condition

Ry= a + k. Probably, the spreading does not occur.
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In a type II supercenductor it is the Meissner effect which
prevents the magnetic flux from spreading out. ©Of course, the
magnetic theory of type II superconductors has nothing to do with
our model. Nevertheless, some topological ideas egtracted _from
that theory could be useful for suggesting some possibilities in
our theory.

Here, we only sketch some ideas on type II superconductors.
When we pass a critical applied field strength B, superconductivity
will not be completely destroyed but rather, the magnetic field
will penetrate into the metal in form of thin mggnetic strings,
or vortices. The flux‘being guantized, it is shown that a vortex

string with a multiple flux has

Jn= n JO (81)

It is unstable, meaning that. there can be no exact ground
state. But, as in the sine-Gordon model one can construct approxi
mative ground states consisting of n widely separated Nielsen-

Olesen vortices{ia)

. Nevertheless, a string-like excitation such
as the Nielsen-Olesen vortex cannot itself represent a physical
particle since it has infinite energy due to its infinite length.
So, if the N-O vortex is going to be.physically relevant we must
find a way to terminate it. N-O includes a monopole at an endpoint

of the string and an anti~monopole at the other endpoint. Our

model could cffer an alternative for this approach;: we suggest the

hypothesis of considering an infinite solencid as equivalent to a

toreidal configuration. This configuration can be electron-like
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or monopele-like. The boundary conditions at infinity are replaced

by cyclic conditions.

0f course,. relativistic effects would be taken into
account.

The challenge of the toroidal model for elementary
Vparticles in the future would be to fird new techniques for
relating the above problems with some interesting questions like
the confining potential for quarks and the interacticon between

closed'stringsﬁ19).
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