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ABSTRACT

We present an analytical study of the bifurcations
of periocdic solutions observed numerically in a twe-dimensional

non-integrable Hamiltonian system with two-degrees of freedom.

1. INTRODUCTICN

In this work we present the results of an extensive-
numerical investigation of the periodic solutions of a two-
dimensional non-integrable Hamiltonian system with two degrees
of freedom. We also present an analytic study of the types of
bifuréations that a periodic trajectory may undergo and which
were "experimentally" observed.

Qur desire to understand the problem of qﬁantization
was our main motivation. The problem of guantization arises
naturally when one deals with many-body problems, as there are
easy to obtain approximate solutions of the many-body Schrodinger
equation which consist of wave-packets evolving in time along
classical—like trajectories. All the time dependent mean field
approximations1 are of this type, the time-dependent Hartree-
Fock being the best known case.

As is well knowng, the periodic trajectories form
one-parameter families. The energy E or the period 1 are two
convenient labelling parameters for a particular trajectory
within .its family. Most of our data are presented. in the form
of E-~1 plots, each pericdic family- being rep;esented by a
continuous line in the E-1 plane. .This set of lines is
characteristic of the Hamiltonian B, and its branchings
determine the topology of the. E-1. plot. -We shall see that the

symmetries of H have an important effect on what kinds of




branchings occur.

2 very useful way of characterizing a periodic
trajectory is by its monodromy3 matrix M (also called Liapunov
matrix). For two dimensions this is a 4 x4 matrix describing
the dependence on the initial conditions of the trajectory after
one periecd, It is a symplectic matrixg, always with two unit
eigenvalues. The two other eigenvalues can be either complex

conjugates (of the form et® ,e-la) or real {(of the form

teB . te_s) , corresponding to stable and unstable trajectories
respectively. We shall show in section 2 how these well-known
groperties of the monodromy matrix are modified by the
discretizarion of thg time-axis which is necessary to perform
numerical calculations.

In this work we shall consider the following

Hamiltonian

hﬂQUN

Our code name for this particuiar system is MARTA. The detailed
numerical investigation presented here was made possible by the
development of a new computaticnal method4 which is especially
adapted to the search for periodic trajectories and which works
egqually well for stable and unstable solutions. This is
important since periodic families exhibit more than one region-

of stability and this property allows us to follow completely
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the families generated by the normal modes at the minimum of
the potential. To date, four different two—dimensioﬁal potential
systéms have been investigated thoroughly by this method5. Three
of these, including the present one (1.1), are symmetric under
the reflection x- -x. Since all feur Hamiltonians also
possess time-reversal symmetry, we have in these three systems
a doubly symmetric situation, which turns out to have important
cénsequences for the kinds of branchings to be expected.

We have calculated roughly 2,000 periodic trajectories
cqmprising roughly 50 families for the MARTA Hamiltonian. Some

of these results are presented in section 3. Section 4 contains

a complete summary of the possible types of bifurcations in the

‘families of pericdic trajectories, for Hamiltonians which may

have 0, 1,_or 2 symmetries, as revealed by our numerical
studies and those of references 5 and 6. An analytical study

of this subject was carried out by Meyer7, but he confined
himself to the "generic" case of Hamiltonians without symmetry.
In section 5 we extend the work of Meyer teo include Hamiltonians
with time-reversal symmetry and space-reflexion symmetry, and

we find that these two symmetries are responsible for the |
additional types of bifurcations which show up in the numerical

work.



2, THE DISCRETIZED MONCDROMY MATRIX

We shall study the discretized. monodromy matrix

for a two-dimensional Hamiltonian of the form

2 2
P, P
H(x,Py/¥/B,) = =+ o+ Vixy) . (2.1}

Extension to higher dimensionality is immediate.
Extension to other types of Hamiltonians is possible.

Newton's eqgquations of motion for (2.%) are

¥ = - E!%Efll = —Vx(x,y)

e - Vix,y)

3y -Vy(Xfy) ra

a aot meaning derivative with réspect to time.

The monodromy (or Liapunov} matrix’ gives the
change in the solution of (2.2) after evne period, in terms of
the change in the initial conditions. it is therefore quite
suitablé for an iterative numerical procedure“that produces a
periodi¢ solution of (2.2) starting from a periocdic approximation
to it. Such a procedure is deséribéd in reférencé 4, Here we
shall confine Qufselves to studying the monodromy matrix of a
periodic trajectory which is already an exact solution.

Sintce we are doing numerical work, however, we must

12.2)

6.

discretize egs. (2.2). Let us specify the. trajectory by N
points equally spaced in time (xn,yn), n=0,1,2,,.. NQT.
Let e be the time step and T=Ne the period. Periodicity

is expressed by

(xo,yo) = (xg.yyt o (x1 .y1) = (xN+1 . yNH) . (2.3}
We use the simplest discretization éf (2.2), namely
Y (x ) = 0
n+1 n n=1 x *n'¥n _ ’ .
' (2,4)
Ly -2y * v vy = 0 . '
©¥ner T T ¥ ¥ n'ynr _ "

Therapélication of our numericai'method yields an

: exact'periodic solution (xn,yn) of egs. (2.4} for a given =,

and in the following we shall aésume that this has been done,

Suppose now that we want to look for another

.solution (xn+6xn ,yn+6yn} of (2.%} in the vicinity of the
first. This solution will generally be non-periodic. To

‘obtain it, we lLinearize {2.4) in the vicinity of the original

solution, assuming Gxn and Syn small:
8x_. . - 28%_ + 8x__ . + 2V (x.,y )8x + €2V (x ,y My =0
n+1 n n~1 - % Fn¥n’ %¥n ®xy ‘n'fn n
(2.5}

L LT 2 o
8yn4q ~ 28y, *+ 8y, +¢ vyx(xﬂ,yn)axn +-,€__Vyy‘Xn"'Yn"5Yn =0




Defining the vector

(2.6)
n-1

Zn+1 = U n (2.7
where Un is a 4x4 matrix which,:written in terms of 2x2
blocks, looks as follows

oo -k
U = B (2.8)
n
: ' 3 -0
with
2-€V, (x ,y ) 2V (x. y.)
xx''n'*n € Vay'*nr¥y _
Pn = ) - (2.9)
T E va{xn'yn{ 2-¢ vyy(xn’yn)

Using {2.7) recurrently we get

where M1

The inverse of Un

preperty

and it can be immediately verified that U

T , -1
n = ht% A
where A is the 4x4 matrix
Q 1
A =
-1 B}

and the superscript T denotes transposition.

satisfies the relations

(2.10)

{2.11)

is easily seen to be

(2.12)

has the symplectic

{2.13)

(2.14)

The matrix A

{2.15)
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By inverting-both sides of eg. (2.11) and using (2.13}, we
find that the monodromy matrix possesses the symplectic

property as well, i.e.

Tl = A MT oA . (2.16)

-1

This relation says that M and MT have the same eigenvalues.

1 1

1 and M? have the same eigenvalues, it follows

tﬁat M;i and M1 have the same eigenvalues. Therefore the

Since M

eigenvalues of My occur in pairs of inverses, This is a

well-known property of the continuum monodromy matrix3. The
above argumenf shows that it is also an exact property of the
&iscretized one.

. Wé recall that the original trajectory (xn,yn)
was periodic, i.e. it satisfies egs. (2.3}, If we want the
neighbour trajectory (xn+6xn, yn+6yn) to be periodic alsoc, we

must have 3 %. . According to (2,10), this means that 2

I'l+1= 1 1

must be an eigenvector of M, for eigenvalue 1. But we

1

actually know ancther, close-by, periodic seolution of egs. {2.4),
namely that solution in which every (xn,yn) has been replaced

by (x ) or, in other words, the identical trajectory

n+1 " Yo+l

with the points relabelled. The 2 corresponding to this

1

"neighbour” is

.10,
L S
Y, - ¥
2, = L ' (2.17)
x.l - XO
Y-l = yO

This Z1 is not infinitesimal'énd, conseguently, tﬁe préseﬁt
argument is only approximate. Within this approximation,
however, the abovg ZT must be an eigenvector of M1 for
eigenvalue.un;tyi' Ou; Qﬁmérigal work shows that, for small
values of E {for instanﬁg N = 106 in the case of a relatively
simple trajectory}:ﬁore ﬁor complicated ones), the approximation
is actua}ly excellgh£fané thé'monodromy matrix has an eigenvalue
which is very close to ', Therefore, by the theorem of the
previous paragraph, it also héﬁ a second eigenvalue very close
to 1, which is the éxact inverse of the first one. We £ind
alsc that, for both eigenvaluéa, the eigenvector is very close
to (2.17). -

The twb otﬁer eigenvalues of M, must have unit

1

product. And the complex canjugate of every eigenvalue must

also be an eigenvalue; because MT is real, This leads to two

possible cases. In cne case, which we shall call case S, the
; i tie o _-ia, 7. -

eigenvalues are (e 7~ ,e "), i.e. they have unit medulus and

are complex conjugates. In this case, the trace of the monodromy

matrix is

TEM, = 2(i+cosa) . _ (2.18}




L1

and therefore

0< TrM <4 (case §) . (2.19)

In the other case, which we shall call case U, the eigenvalues

are real and can be either (es,e“B) or (—eB,-e-B) . The
traée of “MI is théﬁ | . .
TrM, = 2(1fcoshB) ' {2.20)
which leads .to
._ng > g . or _JifiM f 0 {casg uy . . (2.21}

1. 1

It i# well-gnqwn? that.thgse eigenvalues determine the stability
of ée:iédic trajectofy. According to.the_stability theorem

dge tq Lyapunov3, ﬁost of the trajéptorieé_belonging to case S
are stable, except for a set of measure gzero corresponding to
some values of a which are ratioﬁal multiples of 2w, and all
the trajectories belonging_to case U are unstable. Therefore,
to simpliff matters, we shall refgr to those_regions in which
inequality (2.19) is satisfied as stable regions, and to those
regions in which inequality (2.21) is satisfied as unstable
régiéns. It is verf nice tﬁat one <an détermine the stability
.of iﬁstability, simply by iooking at the trace of the monodromy

matrix, without having to solve any eigenvalue equation. This

.12,

is true only in two dimensions, not in higher dimensionalities.

When M, has an eigenvector 2, with eigenvalue
e:m ¢ where w=2n8/k, 2 and k being non-commensurate

integers with 2<k, it is evident that by propagating ZT

-around the trajectory k times one returns with the initial

value, i.e. one manufactures a periodic trajectory whose period
is k times the period of the original one. Thus, such points
are bifurcation points for period k-upling. We actually find
the period-multiplied trajectories by following this procedure.
These bifurcation points are everywhere dense on the inte;vai
(2.19), but we limit ourselves to the simplest values of k,

k =1 to 6, for obvious reasens. 1In particular we have a

period-tripling when Trbﬂ =1 and a period-quadrupling when

TrM, =2. The period-doubling case, k=2, Tr M1 =0, is

special hecause it corresponds to the edge of the interval of
stability. At the other end of this interval, we have Tr M, =4,
all four eigenvalues equal to 1. This is where one should find
the. isochronsous branchings {"no change of period"}, when two
distinct families, each with its own pair of eigenvalues equal

to 1, coalesce into one. We shall give more discussion of

the various types of branchings in sections 4 and 5.



3. NUMERICAL RESULTS

We present here approximateiy 50 families of
periodic trajectories of the MARTA Hamiltonian (1.1). Its
potential V(x,y) is

%2 4 2

Vix,y) = —2—+11‘5+—Y—~x2y ) o (3.1}

Ias equipetential lines are shown in fig, It was the first
potential to be investigated by our method. We choee'it because
it resembled the Henon—HeilesB poteatia;, and because it had

_less symmetry, which made it easier for ue am'the_mime to find
the low-energy families. The minimum is at the oriéin with
V= 0. There are two saddle points at (x,y§=.(:¢§,1)’ V=-%_
The families issuing from the small oscillations about tﬁe

origin in the horizontal (x) and vertical (yi'directions are

called H and V, respectively. The V famiiffhas.constant
period {t=22/473) since the.potential ie ha;mdnié for x=0,

This is not true of V(x,0) . The families issuing from the
tr¥ansversal oscillations (in directions of slope_ T 2/4/3) about
the saddle points (£+3,1) are.labellea :éz . When a family ‘F

undergoes a period ﬁ—upling bifurcatian, the new families

branching off are labelled Fna, Fnb and so on, Wmen Fna
undergoes a period m~upling bifurcation, the new families are

labeiled Fnama , Fnamb, and so on. In the case of isochronous

.14,

(n= {) bifurcation tﬁe n is-omitted,

| The H=t plots for the H family and its branchings
and for the V family and its branchings are shown in figures 2
and 3 respectivelj. The E-t plot for the 8, families is shown.
in figure é.f Theﬁsymbol p - .indicates that the family is a
rotation; otherwiae it is_a libratieng. We use heavy lines or

the symbol § to ﬁndiqate-the regions -of stability of a family

and thin lines or-the symbol U to indicate the regions of

instability, Tﬁetpbints corfeéponding te the limiting values of

trM, 4 and éefo ( n;are alsc marked in the E-1. plots., The

symbol z° s used. when Tr'M=0 and dg; Mo 0,7 is used
when TrM=4 and’ @- -0 a 2 ‘:Whén' trM=4 and- E_GT%M =0

{see Elgure 5). e

The saddle 901nt famllles'is; are always unstable

and, therefore, do not exhlblt any perlod n—upllng blfurcatlon

{some values-of Tz‘M are Lndlcated in flgure 4) As for the
H and V fam111es, they exhlbxt more than one interval of
stability: H has- 2 1ntervals and \r has several, which get
smaller and smaller as energy ancreases

In flgure 2 1t lS ‘séen that the families V2a, V2B
and V2aa form a: loop showxng that V2a- _and V2b ‘are in fact
the same famlly. ThlS 15 shown ln detall in figure 6 where we
have intentionally enlaxged ;he‘w;dth'pf the dycles to show
the topology of the curve. 'The'rotatieﬁ V2aa acts like a

bridge connectlng the two stable reglons of the libration.
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The first period tripling of vV has a complicated
tepology  shown separately in figure: 7.

We found that the horizontal and vertical families
are conneéted by a rotation, Va =Hb , which bifurcates
isochrencusly at both ends, as shown in figure 8.

- For an integrable system, all families of periodic
trajectories branch off one of the two basic families, which
are obtained by setting one of the two actions egual to zero,
This is not true in a non-integrable system. In fact, in our
case, we found families which are isolated on the Ej} plot and
do not connect with the horizontal or the vertical families.

The E-1 plots for these isolated families have
the shape of an eight as shown in figure 9 {intenticnally
enlarged). These families have regions of stability starting
(or ending} at the maximum and minimum of the energy. A group
of these families is- shown in figure 10. Notice that most of
them have a rotation connecting, by isochronons branching, the
two regions of stability at the maximum and minimum of the
curve. In figure 11 we display a seguence of trajectories
(proﬁected ocn the x~y- plane) for such a rotation, namely
family Fa, which branches off the isolated family F. We shall
see in section 4 that the existence of this isochronous bridgé
requires at least one symmetry for the original trajectory,
either time-reversal or x-reversal symmetry. In other words,

the trajectory must be either a libration or-an X-symmetric -

rotationg.
Figure 12 shows an isolated family of asymmetric
rotations which_dces not have such an isochronous connection.
Figure 13 is an x-y plot of some member trajectories
of the H family at low energy superimposed over the equipotential
lines of V(x,y). Figure 14 is the same thing for some members
of the family 5,. In figure 15 we show the x-y plot of the
trajectories generated at several bifurcation points of the H family. Figure
16 shcwsr# detail of the ExTt plot of the period tripled families Ha3a, Ha3b.
Our numerical study has shown that the bifurcations
of a periodic family can be classified in a few definite
categories. These categories remain the same for all the
Hémiltonian systems which have been investigated5 ({detailed
results for one of them are given in reference 6). The findings

are summarized below in the next section.

4. BIFURCATIONS OF PERYODIC TRAJECTORIES: SUMMARY OF NUMERICAL
RESULTS

It is important for this discussion to realize tha£
the pericdic trajectories we are considering may'have one or
both of two different symmetries. One is time~-reversail symmetry
or t-symmetry: a libration is t-symmetric, a rotation is notg.

For a time-reversal-invariant Hamiltonian, which is the case
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here, every periodic solution which is a rotation has a companion

‘solution which is the time-reversed of the first, and which
consists of the same x-y trajectory deseribedlin the opposite
direction. For present purposes, we consider these two rotations
as two different periodic trajectories belonging to two different
families. A libraticn, on the éther hand, is its own time
reversed and constitutes a single entity from the point of view
of t-symmetry.

. The other possible symmetry is x-symmetry, which
is péssible for the_present potential bescause V(-x,y} =Vix,y}.

A trajectery which is x-symmetric will simply be called "symmetric"
from now on, since we have appropriate words élready, namely
"libration" and "rotation", to describe t-symmetry. Thus we
have four kinds of trajector;‘.es: symmetric librations (2 symretries),
asymmetric librations and symmetric fotations (1 symmetrf),
asymmetric rotations (0 symmetry). Again, every asymmetric
trajectory has a companion asymmetric trajectory thch is the
x-reflection and/or the t-reflexion of the first. Thus, an
asymmetric rotation always belongs to a quartet.

An analytic study of the bifurcations of periodic
‘trajectories was madé by Meyer7 in the case of Hamiltonian
systems without symmetries ("generic case"). Therefore we had
to extend his work to include the two symmetries menticned
above. " This extension is presented in section 5 of this paper.

The results agree exactly with our empirical findings. It is

.18,

interésting'that k-symmetry ahd t-symmetry play exactly the
same role in these results, as one might expect from the
interchangeability of coordinates and momenta in the canonical
formalism; the enly thing that matters is the total number of
symmecries, NS , which can be 2, 1, or ¢ . Bifurcations with
'preservatian of symmetry correspond tc the generic caseT. Other
types of bifurcation result from loss of one symmetry, ANS==—1.

The case ANS= -2 is forbidden because the Poincaré imkm101mmt

be conserved and, as menticned before, in this case we would

have 4 trajectories with the same stability.

In the following, we describe the topology of the

Ext plot in the vicinity of a bifurcation. We also describe

the fixed points of the so calle@d Poincaré map2 which is used
in the above mentioned analytic study. For a fixed energy,

the Poincaré map P is the map of a plane X =const (or

y = const? 6n itself @efined by the consecétive intersections,

with p, >0 (py >0), of this plane and the phase space
tréjectories lying in the wvicinity of the periodic trajectory
undergoing bifurcation. The point where this pericdic trajectory
intersects the plane is a fixed peint of the map P, A period
n~upling trajectory corresponds te 'n  fixed points of the:

map " . The Poincaré map is an area preserving map and the
jacobian of its linear approximation is the monodromy matrix.
A stable (unstable} periocdic trajectory.corresponds to an

eliptic (hyperbolic)2 fixed point,
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We call E, the energy of the bifurcation point and 5. BIFURCATIONS OF SYMMETRIC PERIODIC TRAJECTORIES: ANALYTIC
STUDY

T the corresponding period. We set E =_Eb+e and £ is the

b

parameter which is varied as we cross the bifurcation point.
As already mentioned, we follow the method of
We shall consider only the case of the bifurcated trajectories 7
’ i ’ ) Meyer®' extending it to take symmetries inte account.
appearing for - € >0 'as the situation for e<0 ' is completely )
. o : S The Poincaré map introduced in section 4 is
analogous.. A full {(dashed) line is here used to indicate a . _ .
’ ) ) N generated by a reduced Hamiltonian defined as follows. Let
stable (unstable} family.  Thick lines {full or dashed) indicate
: . ’ R I‘I be the projection of a perieodic trajectory on the (x,p.)
that-there are two.degenerate families branching off the : ®
: : : ' plane (figure 17a). We define the action angle variables

bifurcation point. : i
: ' L I, ¢, so that

In table 1 we present the. Ext plot in the vicinity

of an isochronous-bifgrqatidn {TrM=4) together with ﬁhg Eixed
.. L L L I, = 2r p, dx (5.1)
points-of P . We indicate the number of symmetries Ny .of r x
the bifurcating trajectory-and the variation ﬁNS" In tables
2 to 5 we present the Ex 1t plot and the fixed points of p" . : and 9y 48 such that ¢1 = 2n/t v is tbe period of the

for period n-upling (n »2) bifurcations. trajectory). Using energy conservation

The period n-upling bifurcations of the V family,
) e , : . Hix,p ,y,p ) = HI,e..p,,y) = E (5.2}
n odd >3,are different therefore we display them separately ¥ ¥
in table 6. The period 2n-upling bifurcations of the V family the reduced Hamiltonian is defined as
are generic, the bifurcated trajectories being symmetric

librations {the V-family does not have Z° or 4° branching hig',p',t} = 11(E-Y:Pyr'¢1) ; (5.3)

points}.

. ‘ ” where we have set g'=y, p' =py and t = 9y . The eguations
Remarks - 1} We did not £ind any 4 branching for the MARTA
—_— of moticn are ‘
potential but it was found in some of the other potentials5
. . 3h
therefore, for completeness, we present this bifurcation here. 4 ap’ '
. (5.4)
2} The numerical results do not go beyond pericd 6-upling. ' p' = - ELN
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with
h(qlrplrt) = h(q'.P' LE+2T) ' . (5.5}

and the Poincaré map P is the mapping of the (g',p'} plane

ont itself defined as
P (g'{t),p'{t)) —+ (g'(t+2m),p'(t+27}} P (5.6)

‘with g'(t),p'(t) solutions of (5.4}. It is an area preserving
map pessessing all the symmetrigs of the reduced Hamiltonian.
And the Jacobian of its linear approximation is the monodromy
matrix.,

Of course, we could have used the projection r,

of éhe periodic trajectory onto the plane (y,py) (figure 17b)

and defined the reduced Hamiltonian IZ(E,x,p ¢2). The

y'
choice of a particular reduced Hamiltonian is in general a

matter of convenience, In the case of the vertical harmonic

oscillation (family V) we must use the projection 'Fz as the

projection . T1 is a point.

The intersectioﬁ of the periocdic trajectory with
the'plane (q',pf) is a.fixed poin; of Pk , k21 . At period
k=<upling bifurcation points.(ﬂb,Tb) néw fixed peints of ?k
will appear corresponding to the bifurcated trajectories.

It is convenient tco change from coordinates (g',p')

to coordinates {g,p) so that for any given periodic family the

.22,

origin (0,0) will be the fixed point corresponding to the

. trajectory of energy Eb and period Ty - In terms of (qg,p)

the reduced Hamiltonian (5.3) can be written}i as

2 By 3 4
hig,p,t) = ho +% (pz+q2) + z Z K ! 2 e]'mt

... P q . (5.7
3y 3m

M=o j1j2=3

where h, =censtant is the reduced energy of the fixed point
trajectory and w = a/27 ({see (2.28)) is a rational numbef as
discussed in the end of section 2.

The method of Meyer7 consists of obtaining the
fixed points of Pk at-a period k-upling bifurcation point
using in its vicinity the lowest order terms of the expansion
of P. PFor k3x3 the normal form11 expﬁnsion for P is used
while for k=1,2 1is used the expansion in powers of p and
g . We use the same technique of Meyer7 imposing the existing
reflekion symmetries. If R is a reflexion symmetry {(i.e.

R2 =1) of F, then

.

P = RPR . ’ ; {5.8)

This is illustrated in figure 18,

If a cancnical transformation ‘U is performed

(p,a) -+ (p.g) l.
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the_ﬁranéformed Eoinéaré_map_;s
- SR

B o« ultpu’

which will have the generalized reflexion symmetry

Therefore,. canonical transformations conserve the number of

reflexion synnétries-of the Poincaré map. Moreover, R+R at the fixed point.,

We shall first consider the case of a single
reflexion symmetry and the the basg of two reflexion symmetries.
In the end'wa.ccnsider.the.geriod_k;upling bifurcaticns, . k23,
of the wvertical (harmeonic)} family which is a special case.

. Given .the map .

[,i]_._; p[-“] o C ele
Py Bos

if we take as reflexion symmetry

the invariance condition (5.8} can be written as

q q -' ' h
P[ '] [ 0] Lo ‘ (5.10)
Py “Pp) ' .

.24,

The area preserving condition for {5.9) is

- — 1 = ] . (5.11)

The linear part of P will be denoted by Pg (its

Jacobian is the monodromy matrix3) and we now prove

Proposition 5.1 - Let P be a Poincaré map possessing one

reflexion symmetry. If PE has only unit eigenvalues, the

bifurcations are of types (a) and (b} in Table 1.

Proeof - Up to second order, (5.9) can be written as
q, = g, +Ap, +te{a,+a q.ta,p,) +a q2-+a PG, + & p2
1 “0 0 0 7170 "2%0 11730 12%070 2270

_ 2 2
Py = P * Bay + elby+b qy+b,pg) + by +byypyg) +bypy

{(5.12)

where ¢ is the energy parameter introduced in section 4

(E=Eb+€)._

Area preservation condition (5.11) implies that
AB =10 . This will be satisfied if either (i) A=0 or
{ii) B=0. As the parameter ¢ is varied, case {ii) gives

rise to the generic isochronous bifurcation (Z) and (i} to

bifurcacions of type (b} in Table 1.
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(i) A=0, B#0

In this case, the symmetry condition (5.10}

- 3y 3128
together with area preservation imply that a, = = + 5 .
b= b.I = a2/2, a;q = - b22 = 312/2 , 6:122=];~12=b.H =0, Without

any loss of generality we set B=1 and b1= 1/2 and the map

(5.12) is then given by

- £ ; 2
q; = 9, + (e-+a12q0)(p0-+q0/2) + > b0 a, qo + 0(e”}

(5.13)
£ 12 2 2
P1=P0+q0+§(90+q0+2b0)———2 PO"'O(E) .
We loock for nontrivial fixed points of P
{gfe},ple)}) such that
tgte),pter) =224 (0,0
So we make in (5.13) the following substitution
p; = Vet
: . (5.14)
q; = er; ’ i=0,1 ",
obtaining
- 3
r, =rg+ Ve (a,, Tty + a5ty +Eg) + 0le)
{5.15)

242 .2
tO + V/E (IO-T t0+b0) + 0(g)

ct
[}

In the above expressicon the term in '33 has been included

because it is of order e .

Defining the functions

I

f(r,t,ei

gl{r,t,g)

the fixed points of (5.15) are solutions of

fir,t,e}

glr.,t,e}

L]
(=]

]
[}
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(5.16)

The implicit function3 theorem applied to functions £ and g

guarantees the existence of functions

that
fir(e),t{e),e)
glele),tle), e
with
r(0) = -l:o0
(o) = .0
or

It

such

(5.17)
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. -
r(0) = (a12-b0(a12-+2q}}/2n

(5.18)
w0y = = /mA
where
n = _{a12+23.33)/2 r
E = 1 -a,,b

Thus (r{0},t{0)) are the fixed points of (5.15) with (5.17)
corresponding té_the bifurcating trajectory and (5.18) to the
bifurcated trajectories, Correspondingly, the fixed points

of (5.13) are

ale) = -bye
(5.19)
pie} = 0 P
and
2
qle) = s(aiz-—bo(a12+2n)[/2n "
(5.20)
ple) = & (eb/m'/? .

The eigenvalues of the Jacobian of (5.13) calculated at.the

fixed point (5.19) are

A = 1 % /Ee + 0(g) . o (5.21)

.28

and at the fixed points (5.20). are
X = 1 :yT2e +0le) . L. (5.22)

Now, assuming § >0, if n>0, for  €4 0 only
the fixed point (5,19} exists and it is stable (see (5.21));
for €>0 there exist the fixed point.(5.19).now unstable
(sée (5.21)) and the two fixed peints (5.20) that are stable.
(see (5.22)).

“For E£<0, if n<0, for €< 0 only the Fixed
point (5.19) exists and it is unstable; for e3>0 Ehere exist
the fixed point (5.]9), stable, and the two fixed points (5.20),
unstabkle.

These bifurcétions correspond to case (b) presented

in Table 1 and the second part of the proposition is proved,

Remark - For E>0, n<0 and £<0, n>0 we obtain the same
type of bifurcations with the bifurcated trajectories existing

for <0,

(ii) B=0, AFO

In thig'case, the reflexion symmetry comdition (5,10)

together with area preservation imply that b1 = 2a1—230(a12—a}?},
b = - = = = w - .

2 T PyTAps by = by =23y, 8y, = day, s by, tag -2y,
and a, = b0/2. Without any loss of generality we set A= i

cand a, =1 and the map (5.12) is given by
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. : 2
a, = g5 + P, + €lg, +a,p, +b,/2) + da P gyt a9, F _
1 ) 0 0 250 0 227070 1170 qt(e) = t(-tb0/2a11)1/2 .. . .
2 2 ' . : : (5.26)
+ a,,p, + 0(e”) ' . . . . . : ]
2250 : ple} = 0 '
{5.23)
P, =D +.(bq+b"p+b)+2a galps +9,1 + ; .
1 0 120 250 0 112670 0 The eigenvalues of the Jacobian of (5.23) at
2 ‘
+ tay, ~2a22)p§ + 0le”) . . (g, (e}, 0} are
' e ' _ .78
We now make the substitution A, = 1% 2(-ea by 2) ' _ {5.27)
q; = e r, , . : and at {q;(e),ﬂ) are
(5.24) ' _
- Ty ' _ . 4 -
p; = ve £ i=0,1 A_ o= 1o i2(-ea; by/2) . {5.28)
obtaining ‘ ' Thus, if aiibo < 0 (311b0 > 0} 'no fixed:point exists for
b ' T _ £<0 (2>0) while for -€ >0 (€< 0} there exist two fixed points:.
= 0 2 2
ryEp = tg * Ve [ 3 t42%0% * 211 %o +a22to] +ote) one unstable (5.27) and one stable (5.28). The case a, b, <0
{(5.25) corresponds to a minimum in-the :ex7T plot -at .e=0 and
t1-t0 - /E(b0-+23 ()to"'2a o +(":‘11-2‘3' 2)t0) + Oﬁe) a”b0 >0 corresponds to a maximum. ~This is the generic type

" of blfurcation_(Z)-corresponding to case {(a) in Table.1.. And

From the -implieit function theorem the fixed points of (5.24} the proof of proposition 5. 1 is completed‘

are We now consider the perlod doubllng bifurcation.

o C o . In fact, if the bifurcating trajectory has onlyaone reflexion
o 2. . ifu rajector n

2, (0) =7t (~by/2a, ) , : s _ L

- ) _ symmetry, the generic type of bifurcation is pbtained. . This

£y = 0 . is the content of

. Correspondingly, the fixed points of (5.23) are (see (5.24))
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Proposition 5.2 - Let P be a Poincaré map 'havj.ng one reflexion

éyﬁmetry. Xf P2 has eigenvalues -j the bifurcations are of

type (a) presented in Table 2 {generic or symmetry preserving}.

Proof - Up to second order the map P is given by

' . 2
9 = - 4, + Apn + s(a0-+a1q0-+azpo) + 311qa +

+

+ ..

2
t 8P

212%Pp
{5.29}

R - _ 2
P; = = Py + Bgy + elbg +byqy +b,pg) +°by gy +

+

b + b +

2
12 %P0 22P0 T -em .
Again, area preservation implies A.B=0. We shall
considerfonly-caselé¥=0 .as” B=0 gives the same results.
The symmetry condition [5.10) together with area
p;ese;vatlon J_.mply..'_ b, = a, = 2a,, b2 = —a-z_/_z P T ‘,bT
SEisagy =‘-2b22 = 4b11..and- b0 = -a0/2.--witﬁout,loss ofﬁ

2-=

geaeralitg we ch.opse“_a2 =B=1 -and-(5.29%) reduces to

o _ _._. | . o o,
© Ay = .qo .;+! f:.(_po - .‘1-0/“2'+-q_°'). + _a..1_2_,(;p.ugq 9 +pg) + Q(e .)__.

Py = - Pg * 9 * 3 (_qu - Pq-jao_) .+ a71.2.(.pqu - qy/4 * _po'/2_) rog

. ‘::14.6(82!';?_:1_;:__—. ;,  :_}3- ;'__ . :E'T"gs;joi

L32a

Making the substitutiocn

{5.31}

we obtain

= - _ 2 3
r, = - xy + lag-ay, ty) +,/E(t0+a Tgtg +tagaty) +0le}

127070 " %3
a a s
= - Jdz4.2_ 0
t, = t0+/E[ro+_2 ty 2]+O(e_} . - {5.32)

And the map

is then'giveh.by:

e e 2 _.22 .
Ty = Fg = 2/E gyl vayty-a,r, 812t t 3y ) ¥ Ole),

ct
fl

2 =t -"2_/E[rd + =t - T] + 0(e) . (5.33)

From thefimplicit-fuﬂctian theorem3 thé-ﬁixéd points of . P2

(5.34)

It
<
-
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" and

- _ .2 /
r{®) = _[aota” a12} + au]/s .
{5.35)
£0) = 2 (-20/8) 72 ,
. where
§ = 2a33 - aj, R
s 1 4a, a0/2~ .

The fixed point given by (5.34) is also a fixed
‘point of (5.32) therefore it corresponds to a periodic

trajeqtory'that has half the period of the tfajectdry_

»a{corresponding;td the.fixed point (5.35}.

The exgenvalues of the Jacobian . of (5.32), aﬂculﬁkﬁ_

at the flxed poxnt (5 34) are”

R = - 1’:_'(&;‘&)"_/2 + Ole) , ' '3(5“:3_:6:')""

'ues of the Jaceblan of (5.33), calculated at ..

T - 1';-2(—zce}1/2_+_oke) O 5.3

Thus, if ; >0 {L < 0) the fixed point (5.34) will

sw1tch from stahle to unstable as € varies ffom negative

.34,

{positive) to'posinive (negetivei neiues (see (5!36}).'Moreoﬁer
if S;< 0 the fixed point (5.35) will exisn only for e > 0'
(see (5.31)) and it is stable if £ >0 and uné;able if z<0.
This 1s the generic period doubling bifufcation correspending

to cases (a) in Table 2. And proposifion 5.2 is demonstrated.

_Remark - If &z >0 we obtain the same kind of bifurcation with

the period doubled ‘solution existing only for_-eé 0.

In ordef to &xamine the perlod k- upllng blﬁucatlons,_A

X33 ;- wWe have to express the reduced Hamlltonlan (5:7)" in ltS

2,11

_normal form . ThlS 1s ach1eved by maklng succ9551ve time

dependent canonlcal transformat;ens whlch elxmlnate the time

dependence of (S 7) up to an order N.o The perlod k-upllng
bifurcations occur at ratlonal values of therefore we have

to use the resonant “Eorm. ‘Ttréducing the vétiableéﬂ..“

. (5.38)

and ‘writing

w = g + € -, -4 and k. non-commensirate intégers

.-(5.39)

the resonant normal form2’' GF '(5.7) is obtained from the
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resonancé condition % (j1- j2) =m (see Appgndix). The
result is
k/2 i
n(3,8,8) = €3+ ) o 33 ad?sinks) + b IY? cos(kd) +
=2

+ oo . ] {5.40)

the time dependence lying in higher order terms (we have set

h0= 0.
' The equations of motion, up to crder k/2, are
§=- 8 ak 3% cos(k8) + bkI’? sinks) |
{5.41})
, k2 . X, >
s _ dh _ =1 k.3 )
8 = 57 = € + . Z Cj jJ + az‘I osin(ke) +
i=2
L9
+ b%J2 cos (k&)

“And the map, . ) DR - S N -
LS 2 : S .

Cis obtalned by lntegratlng {5 41) ‘from 0 to 21 in the

approxlmatlon J=J 4= 8

o’

.36,
_ k/2 /2
3, = 35 - 2mka 3% cos(kg,) + anbag sin(kdy)
k (5.43)
27! k
) 5 L
31 = 80 + 2me + z 2ﬂ(]+1)Cj J0 +-rrka.JU 51n(k30) +
j=1
k
5—1
+ mkb JO cos(k&o)

We now impose one reflexion symmetry on the map.
In the variables (J,%) the reflexion symmetry condition (5.10}

becomes {see (5,38))

3 J
P[ 0} - [ 0 ] , (5.44)
-4 e

which imposed on (5.43) gives a=0 so that (5.43) reduces to

- b 2
.qi = Jy + 2n-kbag sin(k#y)
K _ o . (5.45)
. _ 2 ko, :
! - J 2
51  _80 + Zne + E 2u(j+1)C, J0 +om kb|}0 cqﬁ(kﬂﬂ)
S 3=1

So_wé now state

'Prop051t10n 5.3 -~ Let P be a Polncare map havxng one reflexlon

symmetry. If 1ts llnear approx1mat10n P has-e;genvalues

L
£2miR/k : RN
e ] /', L and k  nohcommensurate integers,. %<k "ang k23,
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then it exhibits pericd k-upling bifurcations of generic type

.'corresponding to cases {a) in Tables 3, 4 and 5.

Proof - We shall omit it because it follows the proof of
proposition 5.4 given below for the case of two reflexion
symmetries,

We now consider the case of two refle#ion symretries,

i.e.,, the bifurcations of symmetric librations.

Remark - We have not obtained the fixed points of the isochronous
_and period doubling bifurcations when the trajectory is a
symmetric libration (42 and Zz). In this case it may or may
not loose one of its réflexioﬁs _symmetries when undergoing an
isochreonous bifurcation but it always loose one of them when
undergoiné a period-doubling bifurcation (cases b and ¢ in
Table 1 and b in Table 2}. . |

| We shall analyse the period k—upiing'bifurcations,
k23, of symmetric libratioﬁs. FPor the reduced Eamiltonian

“{5.7), the symmetry x--x is imposed by replaging m by 2m

since thisisymmetry corresponds to invariance of hi{g,p,t} when

BN - K

. plig? 3 & o I 3o iome
hiq,p,t) = +Z E K . plg? '
q.p [ 3 ..3132‘“p q- e .

m=—e  §,+3,%3
(5.46)

Now, the resonant normal form of (5.46) depends on

-38.

s s .. .
k being even or odd as thé rescnance condition 1s E[]1-32)= 2m.
If k is odd, the lowest order normal form expansion

for the reduced Hamiltonian is

k/2

h{J,$,£) = eJ + Z Cij + kafzcos(k&) + ... {5.47)
j=2
or
N k . . ) k "
R{J,B,t) = €T + Z chJ + bJ* cos(zke) + ... . (5.48)
=2

If 'k is eveh only form (5.48) is possible.

The map (5.42) is obtained as previously, by

integrating the equétﬁdnéfofimotion in the approximation

IEEE AR 8,7 “The reduced ‘Hamiltonian given by (5.47),

valid for _k_:odd,-wgll p;ddubé the map given by (5.45)
possessing oﬁe_refiéxiﬁﬁ*symmétry. and the reduced Hamiltonian

given by (S;QBJ_ieads to the map (valid for k even or odd)

3, = 3y + 20 kb I osin(2kd)

I =% b
el (5.49)
S L k= S N
R P o SN [ k=1
8y 8y + 2me & z am(3+1)¢; 33 + akb o' cosi2kyy)

A=

'We'shallfnow:pfbve.
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Proposition 5.4 - Let P given by {5.42) be a Poincaré map

posseééfng two réflexibn'symmetfies (corresponding to a symmetric
libration}. If the eigenvalues of the monodromy matrix are
given by ethiR/k , k»3, 2 <k (2 and k noncommensurate
integers) then it exhibits ﬁeriod k-upling bifurcations. If

k is even it is of type (b) in Tablé 5 and if k is odd it

may be either of type (a} (genreric case) or type (b) of Tables

3 and 5,

EEEEE - If kx is odd, Bné of the possible lowest order normal
form expression for the map is (5.45) therefore, from propositon
5.3 it follows that the'biEUrcationsAaré of the generic type
(case (a) in Tables 3 and 5).  In the case of expansion (5.49)
(which is valid for k evéen or odd) in order to find the non-

trivial fixed points-of Pk‘we‘make-the substitution

J = Re o L o (5.50)
so that -
R -Ry, = 2rkbe ! RE sin(2x8) + oeX)
: (5.51}
&1—30 = 2ne(1+2C1R0) + 0(52-) ,:
and
Re-Ry = 21kPb ! ak sin(2k8)) + 0ie®)
_ (5.52)
-8 = 2me(1+2kC Ry} + 0(c?)

.40.

And from the implicit function theorem the fixed points of Pk

{5.52) are

R{(0O} = =~ 5?67 '

sit) - (za-1) £,
87V = el I,
3;;11 = (2n-—%} % .

with n = 1,2,..,,k.

Therefore at =0, besides the point (9,0),

has four sets of k fixed points given in (5.53), each set

cerresponding to a periodic trajectory of period ka

(5.53)

.

P

Their

stability is obtained calculating the trace of the Jacobian. of

{5.52) at the fixed points, imposing area preservation:

3R, 8 )
tr kT K T
] . c
0 (%) r(0)) ‘

Therefore if the sets of fixed points (R(D),&é+)),
: n

(=)

2n—

(+) - - '
(R(0),85 1) are stable, then (R(0),8!")) ana (2(0),8

: K
4
3R, 5,7 = 2+ (2nk) bC1sk[— ! J +oe .

(5.54)

1)
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are unstable and vice-versa. This corresponds to the type [(b)
of bifureation presented in Tables 3 and 5. And the proposition
ie proved.

We now analyse the bifurcations of the harmonic V
family. As already menticned, in this case we have to use the
reduced Hamiltonian 12 which will then map_the plane (x,px)
on itself (see figure 17a). Therefore, the Poincaré map in
this case is obtained by imposing the symﬁetry' g-+-g {(x-+~x)
on (5.45) which already has the symmetry p= -é. In terms of

variable 9 this symmetry condition is

I I, o '
P[ ! ] = [ 0 } . S (5.55)
ln-s, m-%,) S . :

And Qe-muét consider two casesfu k:evee.enauk odd.

If k is even the map is givén by {(5.45) which.'
already.éétisfies-conditien'(5 553 o

If k is odd condltlon {5 55) lsmsatisfied only if
b= Q so that higher order terms must be c0n51dered in the

reduced Hamiltonian, -Up to-terms of order_ k it is glven by

.k e o
‘h{I,%,t) = €3 + Z CjEJ_+ ka‘eos(Zka) . {5.56)
. o o .

_and the map in the lowest order approximation is given by (5.49})

which automatically satisfies condition (5.55).

A2,

It is now easy to prove the

Lemma - Given a vertical periecdic trajectory, if its monodromy

o
matrix has eigenvalues e"zﬂll/k,

k»3, 2<k (& and k
noncommensurate integers) then it exhibits peried R—upling
bifﬁrcation. If k is even the bifurcation is generic (types

{a) of Tables 4 and 5). If k is odd then the bifurcatiocns

-~ are of the type given in Table 6 {which is the same as type (b)

in Tables 3—5);'-

‘The proof is immediate since if k. is even the map

is'given by (5}45) and from proposition 5.3 the bifurcation is

of the generlc type Now, if k.is odéd, the map is given by

'(5 49) an& from prop051tlon 5 4- the blfurcations are of the

.'type shown 1n Table 6.
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APPENDIX
We give here a sketchy derivation of the normal form
expansionz'11 for the Hamiltonian given in (5.7}. In terms of

N
n

p+ig

LY
it

p-ig '

the reduced Hamiltonian expansion {5.7) is

i =3, i
17 z_elmt .

[+-]

-2ih{z,5,t) = -iwzz + Z K. .
| +3 P

m=-—cw ]1+]2=3

with X, . = -K, .

to ensure reality of h {we have set
Through the time dependent canonical transformation

generated by

- — '_jz imt

5(2 = + L . J
(Z,2) 7Z Z s3132m S3132m Z-Z %e ,
m=—co : :

']1 +32=3

the Hamiltonian in the new variables is given by

-2in(2,%,t) = - iwil + z R, . +
& JpIm

31+:|2=3

: .. 3123y 4
+ 1|:m(;|1—32) - m]sj1 jsz 7713772 1Mt + Higher order terms (HOT)
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Thus, 1f w(j’-jz)-m #0 (i.e., w irrational), the time

' dependence in" the lower order terms may be eliminated by dxxﬁlng

5 £3,3,m
j1j2m m — m(j1-j2)

The only term that éould remain for irraticnal w
is the term m=90 and j1= j2. Therefore, for irrational w,
through successive time dependent canonical transformation the

reduced Hamiltonian can be cast in the form

/ ) .
-2ih(z,Z,t) = - iweZ + ) (zz)3 + HOT (2,Z,8)

to any desired order N. In the original variables it is

B PSP V- SPRRE S ._
hig,p,t) = m[E—iila + Z -Cjﬁl—ijLJg-+ HOT{qg,p:%)

S50 we have

i 7 RPN ' =3 k _ift
- 21h(Z,th) = - 1w27 + ijo(ZZ). + Kkﬂl Z7e +

WK @ + HOT(2,%,t} .

The resonant terms cannot be eliminated but its

time dependence may be eliminated. We set w = %-ﬁe‘ and make

the cancnical transformation

obtaining

fk/é
- 2ih(g,L,t) = '

In terms ©of the feal cgordinates.J,$- in (5.38)

the expansion is -

h{J,8,t) = EJ+ Z

+ HOT . ,-

with Ksz = a-+1b ThlS expan51on is; valld at £=0 .-
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TABLE CAPTIONS

Table 1 -

Isochronous bifurcations: a) Generic case, the

trajectory simply switches from stable to unstable

or vicewversa (it occurs at points denoted by 4 for

and as 0};

which TrM =4 =
dt

b} bifurcations with loss

of one symmetry and change of stability of the

Table 2 -

Table'3 -

Table 4 -

pifurcating trajectory (they occur at points denoted
by 4};

the bifurcating trajéctory remaining stable (it occurs

arTrM

where TrM =4 and aF

at points 42 =0).

Period-doubling bifurcations: a) Generic case
(symmetry preserving bifurcation occuring at points

denoted by Z); b) bifurcation at Zz

points, each
set of alternating fixed points corresponding to one

periodic trajectory-

Period-tripling bifurcations: a) Generic case;
b) bifurcaticn with loss of one symmetry, each set

of alternating fixed points corresponding to one

‘periodic trajectory.

Peridd-quadrupling bifurcations: a):Generic casé

(hotice that a symmetric libration does not exhibit
the generic period-quadrupling); “b) bifurceation with
loss of one symmetry, each set of alternating fixed

points corresponding to one trajectory.

¢} bifurcations with loss of onre symmetry with

Table 5 -

Table 6 -

Period n-upling bifurcation, n ;5:..a) Géneric cﬁéé
(notiée that n even does not exhibit the generic
case if the bifurcating trajectory is a symmetric
libration):; b) bifurcation with loss of one symmetry,

each set of alternating fixed points corresponding

to one periodic trajectory.

v family period n-upling, n >3 odd: the bifurcated
trajectories have 1 symmetry (each set of alternating

fixed points corresponas to one periodic trajectory).
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I2-Ex1 plot of an isolated family of ‘asymmetric rotations

BEquipotential. lines of. the MARTA potential.
Ex Tt plot of the horizontal families.

ExT plot of the vertical families.

Ex 1 plot for the saddle poiﬁt families._

TrMx E illustrating the points denoted by 4, 42, Z
and ZZ.

Detail of the loop V2a, V2b and VZaa {intenticnally

enlarged ocut of scale) in figure 3.

Ex 1t plot of the first period-tripling families of

the V-family.

Detail of the ceonnection of the horizontal and the

vertical families by a rotation, Va=Hb.

Detail of the Ex Tt plot of an isolated family

showing the shape of an eight (intentionally

enlarged out of scale),
Ex 1t plot of a group of isolated families.

x-y plot of a member of the irregular family F
and a sequence of members of the bifurcated fémily

Fa .

{it does not have an isochronous bridge).
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x-y plot of some trajectories of the H family

superimposed over the eguipotential lines of Vi(x,y).

x-y plot of some trajectories of the 3 family

+
superimposed over the equipotential lines of Vix,y}.
x~y plot of member trajectories of the families
generated at several bifurcation points of the H

family.

Detail of the Ex T plot of the period tripled

families Ha3a and Ha3b .

(a) Projection onto (x,px) plane of a periodic
trajectory having x and t reflexion syrmetries,
(b} Projection onto (y,py} plane of a periodic

trajectory having t reflexion symmetry.

Illustrating the effect of a reflexion symmetry R

on the map P,
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TABLE 4
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TABLE 5
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