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Abstract ~ Complex angular momentum theory is applied to the problem of
high-frequency critical light scattering by a spherical cavity mear the
éritical angle. The maim contributions to the scattering arise from a criti-
cal domain close to critical incidence. The results are in good agreement

with- the exact Mie solution.

I. INTRODUCTION

The complex angular momentum (CAM) theory of Mie scattering and its
épplication to the problems of the rainbow and the glory have been reviewed

elsewherel

We present here the latest application of CAM theory: the treatment of

ies .2 P : : .
critical scattering . This is a new diffraction effect found in the tran-

sition region around the critical scattering angle for refractive index N
relative to the external medium <1 (e.g., for an air bubble in water). The

1/3 /2 /3

assumptions are (ka) >> 1 and (1-N} " “(ka) 1, where k is the

wavenumber in the external medium and a is the radius of the cavity. The

+Paper presented at The International Symposium on "Optical Particle Sizing:
theory and practice'" (Rouen, France, 12-15 May 1987).
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main contributicns arise from 4 "eritical domain" close to critical dnci-

dence, and they lead to a new kind of diffraction integral.

.. In Mie scattering for N< }, the critically incident ray is reflected
at a critical scattering angle
. i _ ] L _ )
et T 290 m - 2sin N . (1)
According to ray optics, totz]l reflection takes place for angles of

incidence beyond Oc , i.e., for B¢ Gt.

. . S * . . .
In the geometrical optics approximation”, the angular distriburion of
the scattered intensity goes through a cusp at 9==®t. This singularity
arises from the abrupt appreach of the Fresnel reflectivities to unity at

the eritical anglea.

s ., 5 : - : :
Exact Mie calculations”™ show an oscillateory bebavior of the intensity
in the total reflection region near Gt (Gf;@t). These diffraction fringes

have also been observed experimentallys.

A "physical optics approximation" along the lines of classical diffrac—
tion theory has been proposed by Marstone. The contribution from surface
reflection is treated by a procedure similar to Airy's theory of the rainbow:
a Kirchhoff-type approximation is applied to the amplitude distribution
along a virtual reflected wavefront. 1In view of their steep approach to
total reflection, the reflectivities are approximated by step functions.
This “reflectivity edge' gives rise to an angulaf distribution of scattered
intensity similar to a Fresnel straight-edge pattern, which would account

for the diffraction fringes.

The actual angular distribution5 differs from the Fresnel one: the
goscillation amplitude increases as one goes farther away from Gt . This
. . 7 . s ; .
reinforcement was explained’ through interference with directly transmitted

rays due to below-critical incidence.

Superimposed on the "slow" oscillations just discussed, the Mie patterns5
show fine structure, represented by rapid vscillatioms of relatively smaller
amplitude. This arises from interference with "far-side" contributions {in
nuclear scattering terminologys), mainly from rays .that have undergone one

internal reflection. The [ine structure is unrelated with critical scattering,




so that it should be subtracted out or averaged over in order to isolate

pure critical scattering effects.

The physical optics approximation is in reasonable agreement with the
general features of the slow oscillations; however, in the neighborhood of

Bt , the quantitative agreement is poor, specially for © >9t.

The CAM theory applied for N« 1 corrects the deviations shows by the
physical optics approximation mear Gt and its results are in good agreement

with the exact Mie solution.

The critical domain and the dominant contributions to critical scattering

are discussed in Section 2. An outline of the method and the main results

are.presented in Section 3. Fimally, Section & lists the relevant conclusions.

2. THE CRITICAL BOMAIK

To discuss critical scattering in terms of CAM theory it is convenient
to employ the well-known analogy9 with Schrodinger scattering of particles

with energy E=k2 (in units h=m=1, k=wave number) by 2 square potential
Vi) = v l0gr<a), =0(r>a) . : ' ' ()

The associated refractive index is

YL : (3)
50 that N< 1 corresponds to a square barrier (VO >0). The effective po-
tential for radial motion is
v A(r) = ¥(r) + Azlrz . (4)
eff )
where X 1is the complex angular momentum variable, with physical wvalues
A=R+1/2 (2=1,2,3,...) associated with the partial wave terms, and rhe
- - R . A
last term in (4) represents the centrifugal barrier. Therefore, Veff(r)

represents a cusped potential step. The critical. angular momentum

lc = NB = & (B = size parameter = ka (a = sphere tradius)) associated with
critical incidence corresponds to an energy level E at the top of the step.

. P o L 1,9 .
There is a critical domain  (analogue to the edge domain '’ im the N>1

case)

a-0w’ ¢ ¢ eroe’ . (s)

1/3, the

For incident rays in the lower critical domain 0 g lc Az
radial turning poimt within the sphere lies very close to the surface, cor-

responding to rays in a boundary layer that underge near-total internal re-

flection. In the upper critical domain 0 ¢ A-—AC < ailB,

~

the penetration

depth for -tunnelling into the sphere is still much larger than the wave-
length; correspondingly, the evanescent waves genergted by total reflection

become inner surface waves, travelling internally along the surface (whis—

pering gallery modes).

In the A plane, whispering gallery modes are associated with Regge

9,10

poles of S(A,B) near l=lc=a. At 9=@t, Ac is an accumulation point

of saddle points associated with different terms of the Debye multiple re-
10-

flection expansion]’9 For ©<©_ and sufficiently far from Gt’ Ludwig

llh) llh)

proposed including O(B saddle point contributions and O(B

Regge
pole contributions; such a representation would be very difficult to
evaluate in practice. The critical scattering region was excluded from his

treatment.

The dominant contributions to ecritical scattering in the CAM theory2
arise from the critical domain (5). ‘"he dominant terms from the lower

critical domain ave the direct reflection and direct transmission Debye

terms. The main new effects are contained in the above-critical total re-
flection term, arising from the upper critical domain. The far-side once
internally reflected contribution, which is maivly responsible for the fine-

3,1

structure oscillations, is given by the WKB approximation and it need

not be considered any further.

3. RESULTS

A. Preliminary Considerations

The critical region, where our solution is supposed to be valid, is

defined as:



€>0:¢=0(8"/3

2y _ _ - (6)

where @ is the scattering angle.

The Debye expansion is used for below-critical incidence. For above-
critical incidence we use expressions without making this expansion. After
deforming judiciously2 the paths in the A-plane, the dominant contributions
to the critical scattering are obtained as integrafs on the real axis of the
CAM plane. In the below-critical (above-critical) terms Ac is taken as the
upper (lower) limit in the integrals, as a comsequence, only the part of the
range of the saddle point which is in the lower (upper)-critical domain is
considered in each term. The dominant contributions are obtained in lowest

order approximation.

B. The Dominant Contributions

The below-critical direct Etransmission term is the interference term

included in the physical optics approximation7, where it was evaluated by
the stationary phase (WKB) method. S$inee the eritical scattering regionm is
a Fock transition region between 1-ray and O-ray domaims for this term, the
WKB approximation is not valid: the evaluation leadsg’li to

. . —% . .. | N;/Z nj
Sj](B,G) o e [mJ exp {— 2ip (M-EN)}-'"ﬁ;f—

, T
w0 “'% e
exp [2 e —_ x
X dx . {(j=1,20 , {(7)
2im 2 '
o ()]
where M = (] —Nz)wz, ¥' = (2/(!)”3 s Ty =1, n2=N_2, Al is the Airy

"function, and j=1 (j=2) is associated with perpendicular {parallel)
polarization. The contribution (7) is given by an incomplete generalized
Fock function, containing only part of the range of the direct transmisszion

saddle point,

.The below critical reflection term was not taken. into account in.the

physical optics approximation. It is givenz’g’]] by
< } 3im Nsin(%) v 9
(B,8) = e e | Bexp{—2iBsin(-—2-)}
z=0 _ : :
XJ [:fﬁ]e"l’('iv2>dv s =12y , (8)
haad+ ]

where

) 1/2
Z = ¥ [(B sin (%)) v + Bcos (%) - OI:I R

2 1/2 8
v = [m] (A = Bcos (E)] s {(9)
-iT N'n, 2im
A = e ' ——;;—l fn' Aile 3 oz

(&n' denotes the logarithmic derivative). The contribution (B} is given
by an incomplete Fresmel-Fock integral, containing onmly part of the range

of the direct reflection saddle point.

The above critical total reflection term, containing the new diffrac-

. i : L A -2
tion effects associated with critical scaktering, is given by

;I 1/2 .
> '.-12; MN s = . L
Sj(B,e) L [m] Bexp |: 216(.1'[ E_N)]. PF(X,Y) s (.]0)
(j=1,2) ,
where . T
AR V&
P (x,y) = | expd - i [uz - %xu - Eﬁ&]
F 2
o )
v (413 _u o L '
X nj fn' Al [2 y2/3]] du o _ {11}




is a new type of diffractiom integral, y depends onty on W and B, and x

is ,proportional to 9-—9t.

Ef we neglect the variation of the last term in the exponent, replacing
it by a constant, we get a Fresnel integral, as im the physical optics ap-
proximations. Since ¥y B_lla , the argument of the Airy function is >>1
for B >>1, except near u=0, so that one may employ the asymptotic approxi-

mation
En' Ai(z) = -z , z > 1 . (12)

This corresponds to the "“plane surface limit", inm whick the effects spherical

curvature are neglected., In this limit, setting wu= tz, {11} with j=1

becomes
o3 E
Lo b 2
PF(x,y) s 2 | expl-i(e -xt"+yt)|tdr . ] (13)
Q

s 1 . : . .
Pearcey's integral 2, associated with the cusp diffraction catastro-

phe]3, is given by

Plx,y) = exp [i (lta +_xt2 +yt):| dt . (14)

Thus, dP/dy. is related with EF(x,y) given by (13).

Ia this plane surface limik, the y term in the exponent gives rise to

a shifted Fresnel-like pattern.. For each above-critical ray, this shift

corresponds to the Goos-Hanchen lateral shift]#.'

In the present case, we have the spherical analogue of this shift which

is a Goos—Hanchen angular displacement A% . A ray with angle of incidence

above BC tunnels along the surface thorugh an extra angle A% as an inner

surface wave (evanescent wave) before reemerging at the angle of reflection.

To obtain A%, one may employ the concept of angular displacement in a
16,17
¥

scattering processls, which is analogous to the Wigner time delay

applied to the conjugate pair angular momentum and angle. For an angular

momentum wave packet" centered around AO’ the angular displacement ¢ 1is

given by
§ = 2dnlk,r) /ar T (15)

where n(k,A) is the scattering phase shift as a function of the (con-
tinuous) angular momentum A . The Goss-Hanchen effect appears as an addi-

tional angular displacement arising from the last term in (11).

We propose to call the new diffraction integral (i11) the Pearcey-Fock

half-range integral, because of its connection both with generalized Fock

functions and with Pearcey's integral.

4. CONCLUSIONS

The combined effect of the dominant CAM terms (below-critical direct
reflection and transmission terms and above-critical total reflection term)
was compared with the exact Mie solution within the critical scattering
region, for B= 103 and $= 104. The results2 are in good agreement with
the "slow" component of the Mie solution, which, as explained before, repre-
sents the critical scattering effects (Fine struéture arises from the Far-

side contribution). We conclude that CAM theory also accounts for critical

scattering.
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