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ABSTRACT

We systematically derive the bosonized form of the
chiral QCD2 Lagrangean exhibiting explicitely tﬁe anomalous
breaking of gauge invariance, and quantize it using Dirac's
algorithm for constrained systems. As a side product we also
discuss the Hamiltonean formalism for the principal sigma
model, and derive the commutation relations of the chiral

currents in both models.
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1. INTRODUCTION

There has been mﬁch'iﬁtérgst ;ecenfly in fhe
guantization of chirai gauge theorieé with anomalous breakiné.
of gauge invariance [11. Following_?addeev and Shatashvili's
work f2] there have been recent proposals [3]1 for cancelllng
such anomalies via Wess-— Zumlno [4] terms They lead to a non-—
anomalous gauge theory which c01n01des with the orlglnal one
only in the gauge invariant sector. Tbe phy91cal relevance of
this new theory appears questionable [5]; especially in view of

the fact, that gauge anomalles do not necessarily prevent a

~consistent guantization. ThlS was flrst lllustrated by Facklw

and Rajaraman [6] for the case of the “chzral Schw1nger model".
They exploited the lack of gauge invariance as guiding principle
in the renormalization procedure, in corder tco demonstrate the
existence of a non-trivial solution for a whole one parameter
family of “"chiral Schwinger models". A'daﬁohical'quantization
of the corresponding "Wess-Zumino" Lagrangean [7,8] via Dirac's
algorithm [2] for constrained systems shéwed 7] that, depending
on the value of the parameter, there.exiéfed.two types of
theories, invelving either two or four constféinfs. The exteﬁsion
to the non-abelian case wasrfirst considered by Rajaraman [10],
who based his discussion on Witten's work on the bosonization

of free, flavor carrying fermions [11] aﬁd Coleman's type of

arguments for coupling the gauge field to the fermionic currents,
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In this paper we systematically study the quantization
of chiral QCD2 , closely following the discussion of ref. [7].
A "first principle" derivation of the corresponding effective
bosonic action.is given in section 2. It involves a Wess-Zumino
term. We first discuss the canonical guantization of the
associated principal sigma modél in section 3. We then turn to
the quantization of the model of actual interest in section 4,
where we coﬁpute the constraints and Dirac brackets,. As in the
abelian case [7] we shall have to distinguish between two
possible types of theories, involving éither two or four
constraints. In the first case we compute the Dirac brackets.

We conclude in section 5 with a discussion of the results.

2. PHE EFFECTIVE BOSONIZED ACTION

In this section we derive the eguivalent bosonic

Lagrangean of chiral QCD2 with left~handed coupling of the

_fermions, defined by

_ 1 =(: -
Lch__Etr Fyv +¢[1H+e}2(—(~1——27—)]¢ ’ (2.1)

where Fuv and Au are the Lie algebra valued chromoelectric

field tensor and gauge potential [12] respectively

F - Z Fa a
v v
A = ZA £
W
Fuv = auAv - avAu - le[Au’Av] .

(2.2)

The Lagrangean (2.1) is invariant under the local transformation,

v+ g b , v+ Pg

A A+ =
TR 93,9
where
5
g = exp[is (T_-ZY__))
g = expil$

with § a Lie-algebra valued field.
As is well known, the bosonic Lagrangean L,
aquivalent to Lch above, 'is obtained by performing the

fermionic integration in the partition function associated
with Lch'

_ L, (3,49 il

with

(2.3a)

(2.3h)

(2.4)

(2.5}
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= -1 AV n(R) o
Legg = ~ 7 0 BP0 7 f [a] : : .o (2.8)
(1-y
iP(R}[A] = zndet (iﬂ + ieX _~7?§f] {2ﬂ7)

and representing exp(iP(B?[A]) &s a functional integral over
a group valued Lorentz scalar field. To this end we conéider
F(R)EA] as defined by (2.7). For a regularization respecting
the chiral structure of the coupling in (2;1), one obtain

F(R)[A] from the corresponding functional of QCD, ,

iT[A] : &n det(ijf + eX} {2.8)

by simply setting A, = 0:
r®a) = riall, _, | (2.9)
s :

Now, T[A] has been calculated by various authors by either
working in the "deccupling gauge" [13] or the light-~cone

gauge [14]. A gauge-invariant caleculation . T[A] was_given in
ref. [15]. A manifest gauge—invarian£ form for T[A} is obtained
by observing that Au' can always be decomposed in the form,

1

_ i vo- i B A
eh = 3 (g +Epu)UB U + 3 (g Ew}va v (2,10}

HV

where U and V are independent grcocup valued fields which may
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be parametrized by twe Lie-algebra valued fields o and @&,

as follows:

Now,

where

- ei{cp+¢)

rlal

rial

From {2.10)

and G{x,r}

G(x)

and

’ V. =
it follows that
. -1
el = 103_0

Jile-e)

(2.11)

(2.12)

can be shown to be given by the functional [16]

il el
]

- = | a? e
e J d%x tr(3,G) (3" G

1

)

1 2 Hv =—1 =1 [ .
- I J dr J' d“x € tr[(G Bu@)(G BvG)(G BrG)}

¢

is a smooth function of

1z

r

(2.13)

(2.14)

interpolating bestween
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G(x,r) = 5_1(x,r) 5{x,r)
Vix,1} = V(ix) . WSX,O) = i (2.15)
G(x,1) = ux) ,  Bix,00 = 1
- Under the gauge transformation (2.3b), one has
U+ gy V+gV . (2.16)

Hence expressicn (2.13) is manifestly gauge invariant. The

1..{R)

same is not true for defined by {(2.9), as becomes

evident, by writing (2.9) as

r’f®ra) = fruj : (2.17)

(R}

BEg. (2.17) shows that T is not invariant under the

transformation (2.16) reflecting the well known gauge-anomaly,

(R)

We define a Wess-Zumino functional W2 [A,g] by

wi®a,91 = Tlgul - Flu) (2.18)

This definition is the analog of the Wess-Zumine functional
introduced by Di Vecchia et al [17] for the case of QCD2.
Using the invariance of the Haar measure under gauge transfor-

maticns, one easily finds

.8.

. {R) iy (R
ST TIRY L onst [ [Dg] e " [acgl - (2.19)

Now, T[AB] has the remarkable property [18]

2 -1 1

Fiap] = T[a] + T[B] —%Jd X tria B+A)(BB_B_ Yoo

(2.20)

Using this property in (2.18), and recalling (2.12), we obtain,

(R) - % ie [;2 -1 v
W% [a,g] = Tlgl] + yv Jd x trlg aug)(guv-%EuV)A .
(2.21)
Combining all these results we finally obtain
is [a,9]
Z = JDA“_Dg e ©Off - {2.22)
with
2 1 uv ae2 : K
Seff[A,g] = d"x [— 7 tr FuUF + T Au A ]
_ gy - de g2 -1 v
Tlg] an J' d_ x tr[g 2 g(guv+€uu) A ] . (2.23)

Following the argumentation of Jackiw and Rajaraman [6]

we have included a term proportional to Aﬁ ¢ With a an arbitrary-



constant, réflécting'the ambiguity one has when calculating
the fermionic determinant, due to the lack of "gauge invariance"
as guiding principle. Note that the result (2.23), obtained
here from first principles. agreéé with that obféihed by
Rajaraman [10] using Coleman's principle of form invariance.

o In order toc develop a canoﬁical Hamiltonian
formalism for the acticn {2.23), we shall need the correspending
Lagrangean. To this end we observe that - Tlgl in (2.23)
ig the sum of the action of the principal non-linear ¢-model

2

_ =1 oM ‘
SPUM ol J a“x tr(aug 1{a"g) (2.24)

and the Wess-Zumino term
i

J dar J a3x e“"tr[c@ aug“nq 3. g ) (g0 c‘;")] ;

0

g0

WZ
(2.25)
Since Sug only contains first order time derivatives

in the fields, it will not contribute to the Hamiltonian.

It will be convenient to imagineé the.r—integration

as having been carried out, and to make the Ansatz

- A 2 . S S .
Suz = A% J ad°x tr (A(g)aog) (2.26)

with " A(g) some unknown matrix valued function of g . Fortunately
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we shall not need to know- A(g) itself, but only the anti-

symmetric tensor

T )
ijrke aggk agji

F

(2.27)

This tensor is explicitely calculable by coﬁparing the
variational derivative of SWZ with respect to g as
calculated from (2.25) and (2.26) respectively. From (2.25)

one finds after some-calcﬁlation'[il]

g)

o L 3. uv.' . . X -1
5gswz = 4“.J a“xe"Vtr(g Sg)au(g 3,

{2.28a)
whereas from (2.26) one obtains,

= 1 42 . y
8% = I [d 2B (®18g 955 8ggp -0 (2.28D)

Comparison of the two results {Z;ZQf'yielas the ioc&l expression
F (x) = (3,97 x0) gl tx) - gTl (e, gntx)) ,  (2.29
ijike 1712 kj ig 17%3 f -

Hence, the theory to be guantized canconically is desciihéd by

the Lagrangean density

L= Lo 4 L. o+ L. 4L (2.30)




where

Lyg = - % tr Fqu‘” + % A, ak (2.31a)
Lpou %tr(au§‘1)(a“g) (2.31b)
L = i% fr Alg) 36; {(2.31c}
L, = - %%Itr&fTBHg(guu-+éuv)Av] (2.314)

As a preliminary step we sha

11 proceed to first develop the

Hamiltonian formalism for the principal non-linear sigma

model (PoM).

3. CANONICAL QUANTIZATION OF PRINCIPAL o-MODEL .

Consider the Lagrangean density {2.31b}. The

mementum conjugate to gij’

respectively by {19]

~1
i

5 1
iy = w39

H = J'dx1 {— 27 tr 0 gt

and the Hamiltonian are given

(3.1)

1 - L
9 - 5 tlr(g 7.819)(‘} 1319')} . (3.2}

The Hamilton equations

brackets, are

80,955

Using the properties

{gij(x)

-1 « 3
{siie0 gy} -

12,

of motion, written in terms of Poissons

{3.3a)

RO
= {ﬁ..,s} . (3.3b)
1]
T, (y)b = 8., 6., 6(x'=y ) (3.4a)
r gty ik %32 Y .
- g7y (%) gatx)a(x—y) {3.4b)

eq. {3.3a) just reduces to (3.1), while eq. (3.3b) becomes

Boﬂij =

Substitution of (3.1)

moticn,

-1
Bu(g 9

expressing the conservation of the Noether-current.

=T =T -1 -1
4 (I~ gl )ji e [31(9 819)9 } .

! {3.5)

ji

into {3.5) then leads toc the eguation of

Mgy = o (3.6)

Eq. (3.6}

coincides with the Lagrange equations of moticn following from

(2.3tb).
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As is well known there exists another conserved

1

current, —-f; gaug_ Motivated by Witten's work [11] we

define the currents

. i -1 . «T i -1
i, = —ﬁg B+g = il 9 - 37 9 319 {3.7a)
i = —ﬁga_g_.l = —igﬁT+ﬁga1g_1 . (3.7b)

It will be instructive to compare the Poisson brackets of the

corresponding adjoint currents

m

i trij, t) (3.8)

with the obtained for a theory of free fermions [11]. One
"finds
6ab

{jf(x),jf(y)}t = fabcjf §(x-y) + é% 5 (x-y)

i

a1 “abc

1 .ab

;! .b _ .C _‘ ~ 1 ca e
{j_(x},j_(y)}t = fabcj- §{x-y) 77 §°Y 8" (x-v)
- 25 fabe F193,97 £ Slxy) - (3.9D)
.a b A - a _-1.b
(3060, 30yl = g7 Slz-y)d, tr(t7g "t g) . (3.9c)

-he gt gt slxy) (39w

.14,

We see that the Poisson bracket of j+ and j_ does not vanish
‘in the PSM, in contrast to case of a free fermion theory [11];
The transition to the quéntum theory of the PSM is
trivial, as there are no constraints involved, and is achieved
by the usual substitution rule {a,8} - -i[A,B]. éhis is not

true for chiral QCD2, as we shall seerin the following.

4. CANONXICAL QUANTIZATION OF CHIRAL QCD,

The Lagrange equations corresponding to (2.30) are

given by
Bv _ uv -1 . _ _; B VAY RIRY o
{g € )BJQ‘ avg} = ie(g" " + € )VuAv
{4.1)
ab pv. aéz av_ ie v . v, . o1 ué -
Du Fb_+4_11A —4—11(9 -€°7) tri{g Bug.t_} = 0

where we have used (2.29), Anﬁ where  Vu -is the covariant

derivative defined by
vHo= et v lg e, 1. : (4.2}
The momenta conjugate to ak énd gij are, réspectively,

Iy = 0 _ - T t4.34)
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= 2 > ' (4.3b)

1 1 1 ie 1

U.. = - 80 g.. + =— Aji(g) - E;'(AL g

34 yem Yo - {4.3c)

ji
Since, as we have already remarked in section 2, the Hamiltonian
will not depend on the unknown function A(g), it is convenient
to define a new momentum variable by

1

Hij = Hij—-HAji(g} . (4.4)

It then follows from the Poissons bracket

1

{éij(x),ﬁkg(y)}£ = 6ik6j£ dix -y } {4.5)

that ﬁij does not commute with itself,

T _ 1 1
{éij(x),ﬂkg(y)}t = 5ik_aj2§(x -y ). (4.6a)

n < B __l; 1.1
{Hij(x)’ﬁkz(y)}£ liatry- Fji;zk(x) §{x -y ). {4.6bL)
where Fji-lk is given by (2.27) and (2.29). ©Note that in the
absence of the gauge field coupling, the difference between the

principal sigma model and Witten's formulation [11] of the free

fermion theory resides entirely in the non-vanishing Poisson

.16,

bracket (4.6b). The cancnical Hamiltonean corresponding td

{2.31) is found to be [203.

H = J x| {— Ll Agnfbﬁb - 2ntrfitgfitq

2 1
1 ' -1 o ie . -1, .
Afg? tr31ga1g ietrI"gA_ + 41T_trg_.a]gA_
e2‘ z - e2 -
+ﬁ-trA“—a~§~EA+A_} _ (4.7)

which represents the non-abelian ggneralization_of eq.(2.4b)
in ref. [7].

Now, as eq. (4.3a) shows, we are dealing with a
constrained system, which we shall quantize followiﬁg Dirac's
procedure [9]. The brimary constraint is given by the weak

equality

QF = 0 {4.8a)

o

with

9, = Ty - (4.8b)

Py

The requirement that the constraint (3.8a) be conserved in time,

leads to "Gauss's law" as a secondary constraint

g, = ¢ ' ' ‘ o e9a)

with
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a _ _nabcb o, T .a, _ ie
92 = D1 lI1 +ietr{l - gt™) T

e2 a e2 a

+ H (a~1) AO + H’ A]

Since
ﬂa(x) Qb( ) _ 93 Gab
] rip Y ¢ T Arn

we have - as in the abelian case [7] - a second-class system

provided a#1. We thus need to distinguish two cases:

Case a#1

In order tec compute the Dirac brackets we need to

find the inverse of the matrix

aa 8b {b (x),9 (y)}

with matrix elements given by

{é?(x),gf(y)}

2

a b _ c e G _ . 1_1
{Rz(x),ﬁz(y)} = efabc [92 I (A1 (a 1)A0)} S{x ~y'}

and (4.10a). The inverse of (4.11) is given by

.18,

a : 0 2fiela, ¢ £ - tamtiag)| - AR Q2
T gt . Zjiep i, gy (A - {2 0 an :
0 My = |— sex'y")
{(1-a)e 1-a e2 0
4w
4.9b
( ) (4.12)
where 2 = Rctc R tsb = ifacb . etc..

Using {(4.12) one obtains in the usual way [9] the following

{(equal time)} commutators:

(1-a)stx'-y)  (4.10a)
[A;(x),n?(yJ] = 18 gx-y"
S : 1 1
[gij(X)'Hka(y)] = iéd; ng §(x -y')
T,y 4mi ab 1.1
(x}, (y)] = ———— D" (x) §{x" -y )
[ Ab e2(1—a) 1
| _ an a 1_1 C 4.13
[ (x),g (Y)] eTicay (gt )ij 8{x -y ) { )
(4.11) o
b 41 c 1 1
[Ag(x),n.,(y)} = - 1ia[6a - = fabe I[1]<S(x -y )

0 a _ 1 a -1 Vi) +
(22608, 0] = + e [0 6 ey, o)
a =T i1
- 4m{t I )ji6(x Vi )]

4.10h
{ . ) 1

P ~ 1 =1, o] -
[Hij(X)’HkE(Y)] jﬁl:gjk31gh 99i 39 :]k:| stx' "

i(am?

I:Ag(x),Ag(y)] = + '——-T abc{(A - (a-”I)A ) +ﬂ}6(x -y Y.

{(1-a)” e
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Using these commutators it now a matter of patience to compute

the corresponding commutators for the currents of chiral QCDZ:

_ i -1 _sRT 1 -1 _ e
I, x) == 9 3,9 =1l"g a7 g 319 an B
(4.14}
ooy _ i -1 _ _ . AT & -1 e -1
J_(x) = - E;-ga_g = igli~ + ye gB!g + o (ga g )

The corresponding commutation relations are:

a b _ . 1+a _abec(.c e ¢ _
[J+(xJ,J+(y)] = -1 1-a f [J+(X) + i A_(X}]S(X v)
i a ab o, _
- 37 T-a § §' (x y)
. b 2
+—2>_ £ C[ﬂc(x) + g—»[aAc(x) + (1-a) Ac(x}]] S(x-y)
2 2 oo4m ki —
(1-a)” e . S
' (4.15)
a b _ 1 acd -t.,b .cC d
{J+(x),J_(y)] =35t tr{g t gt )(x)[J+(x)
e a d 1 d .
-~ 47 7= A1(x) -~ 1= Qz(x)] S{x-y) . (4.18)

It is interesting to notice that we do not recover from above the
Kac Moody algebra obtained by Witten [11], in the limit e+ 0
and a-»0. This is due to the non-perturbative structure with

respect to the charge, of the commutation relations (4.13).

.20,

Case a=1

For a=1, the Poisson bracket (4.10a) vanishes,
so we have to look for the existence of further constraints.

To this end it is convenient to write the a=1 Hamiltonean as

H = de1 {% H?H?—Zwtr(ﬁTgf{Tg) +% tr(31ge1g_1)
+A?DTbH1b—AEQ§} i (4.17)
The reguirement that
9, & = 0 {4.18a)

then leads to the new constraint Q? = 0, with

2 3

a _ e ~a _ e _abc,b,c abc . b .C
9f = S+ 5 £70%a0a0 + e 7% 80 af (4.18b)
Although
P, Pl = - e (€ e, oc (4.19)
RIS Y = am M T e .

the system is not second class, since the determinant of the
corresponding Q-matrix (4.11) is found to vanish. Hence we need

to carry the algorithm ore step further, which leads to a Ffourth

constraint ﬂ: = G, with
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2 2. 3
a e a e a e abe  b.cd_d
94 T (D1H1) * an A - am £ AGI% AO
2e abc b .c e2 a abc b ~C )
+-:i-"— f AO H1 T In 92 + ef AO 93 . (4.20)

There are no further constraints.

5. CONCLUSION

We have presented the canonical quantization of
chiral QCD2 incorporating the anomalous breakdown of gauge
invariance. Because of this ancmaly, the Hamiltonean turned
out to describe a second class constrained system. We computed
the corresponding commutator algebra consistent with the
constraints. It is interesting to note that this algebra is
local, despite the presence of the Wess-Zumino term (2.25) in
the action (2.23), From the current-comutators (4.15, 16) one sees,
that the commutation relations do not reduce to the Kac Moody
algebra obtained by Witten in the limit a-+0 and e~ (. This
is a result of the non-perturbative character of the commutator

algebra {(4.13).
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