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ABSTRACT

We clarify soma aspects-of the rglatioﬁship between
quantum statistical mechanics and scattering. theory, which sth
up in their simélest form in tne behaviour of the second-order
virial coefficient b2. For this pﬁrpose we derive a new
répresentaﬁion for b2. The relationship with «classical
statistical mechaniés-is also illuminated byla recently obtained
formula for the difference Hetween the clasgsical and gquantum
sacond ofder virial coefficients which alliows the determinaticn

of the leading guantum correcticn to b The several approaches

g
represent alternatibe ways of implementing the cancellation of

divergences in b2'
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In a recent letter1)

some paradoxes were discussed,
which bear on thé relationship between scattering theory (s_t.)
and guantum statistical mechanics (é.s.m.). They show up moét
clearly in the bahviour -of the second-ordexr virial coefficient
b2' The sclution proéosed in ref. i) rééuiredrmodificatiﬁns

in some.standard,qumulgs of scattering theory.

The purpose of this letter is two-fold: firstly, to
clarify these issues without any changes in the formal theory of scattering.
This clarification hinges on the scnéwhat subtle cancellation of divergences
occurring in bi. Secondly, we discass_three‘différent approaches to implement
this cancellation, thereby cpmputing b2. The'first one is a new formula for
b2 along the lines of s.t., the second one is more in the spirit of g.s.m.
and invelves a more carerul analysis of the thermodynamic limit. The third
cne is a new formula for the difference between claséical and guantum virial
coefficients in terms of functional integrals, which was derived in a
Hathematically’rigorous way -in ret. 2}, Hére we are less formal as. concerns
nathemafical rigor,.but'emphasize the féct, not déne in ref;.Z), that this
formula is alsc very useful for the eminently practical purpose
of computing the Eirst‘quantum correction teo bz.

Let H=H,+V denote the Hamiltonian of relative

v

motion of two particles, Hy the kinetic energy and V the
interaction potential. The (infinite-volume] second-order virial

coefficient is, up to a constant

b, = b (emngu e f H“) | ()




3.

2}

ig in the trace-class

-BR -8H
whenever (e 8 -e & 0,

Suppose H

has no bound states and let Q be the (unitary) Moller opera-
tor}?. Then

- T
e'ﬁH _ O e/aH°_Q (2)
and hence, by (1} and cyclicity of the trace, it follows that
b2: 0! The solution to this paradox proposed in ref. 1) involved
modifying standard formulas of s.t. such as (2). Nevertheless,
{2} is rigorously true4). However, in spite of this there is no

paradox because the argument relies implicity on the formal

splitting b, =6: e BH _ o ewBHU) which is not allowed because
-gH : -BH .

e {and hence also e if {b,| <®) is not trace-class.

This is easy to.see if one remembers that e BH is a kerpel

operator with the "Poisson kernel®

-1 = — i “‘3/ . [N
B = €7 %) G mems) exp (123 172) o

and tr e_BH°=Sd;:’ PB(x,x) = +o . This is also clear if (improper)

eigenfunctions |i} of Hy (in the notation of ref. 1)} are used

te “"compute" the trace:
tr e BH =AZ e_BE(iIi) but iy =+« 'y if
[ie) = @iy , tr & BH Z e BE Gi+]i4) . but i) = +w
~8H _ _-BH ~BE; ‘
However, er(e™ - ey <V e ™E (a1 - G]i) 1. e mignt
7 o _ .

expect that the last sum is finite due to cancellations in

the expression in brackets, suggested, e.g., if one uses the

3)

Lippman-Schwinger equation. Nevertheless, the rigorcus proof

that {b2| < =, under reasonable conditicns on the potential,
is subtles}. Similariy, divergent diagrams arise in the three-
~body terms in ref. 6)l As the authors of ref. 6) remark on

page 366, such diagrams are manifestly absent if one uses wave-
-packet states, and the proper plane-wave 1imit may be taken in
the firnal formulas after the divergences have heen cancelled.

This program was partially carried out for b2 in

ref. 6), pg. 349, We now present a more complete discussion,
including a new expression for: b2. For this purpose, we use

the following relation, derived and discussed in ref. 7)

B N —p2 ) _ ay)
l;z__ ~ o dze’ tr{g@- G @] (4)
C

{+) 1

(z) = {z-m+ie) , Gylz)

111

{(z-H +it»:}_i and C

Above, G 0

is a contour of integration enclosing the spectrum of B, as

usual in s,t., Since G{z) = GU(Z) + Gb{z)T(z)GO{z) ,  with
T{z) = V-FVGU(z)T(z) , we have .
) -+
| —f32 G)
b =~ —— ld* e" % [§ @& T G (2) 05
z AL 4 o
. C ’



Further reduction of {3) may be accomplished tbrough use of the

following relation, obtained using the manipulations of ref, 8):

. " ]
+) +) ) -9

G @ TGk =[d § @& VAG (6)
o s av) (Av)

where Gii&){z) is the Green function correspbnding-to the

Hamiltonian (HO+AV), which satisfieé the equation

a0 +) oy v G;—q-) (25 _
= ( -
va)(e) G @ +§g @) 2V _ o

We ‘obtain finally the announced formula

b = -~

2
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It is not difficult to show (using, e.g., the methods of ref. 5],

(+) (+)
Ciav) (AV)

z€C, and the function (eﬁgz} provides the necessary decay

Chap. 21) that ([ {(z) VG {z)) 1is trace-class for each

along the spectrum of .. This formula also shows clearly that

in general b2;50 unless V=20. Incidentally, at a purely

formal level, one may, if so wishes now introduce the "Moller

(+) st
(AV) () 2

when no bound states are present,

operator" &

. (+)
(2}, t? rewrite the trace ?S {ﬁéﬂ {(z102 (%0

We now discuss two alternative approaches to

alt) g+

.6.

implement the cancellation of divergences in- b,  'more explicitly

2

‘and thereby computing b2 in certain limiting situations. -In

the first one, we recall that -b2 is the limit of the cor-

. responding quantities in finite wvolume. Our approéch here

differs from the more. recent discussion o)

in an essential way.
In fact, we disagree with some poiﬁts in the "scattering theory
in finite volume" proposed in ref. 18): in-finite volume the -
spectra of H and HU are both entirely_disérete and the Mgller

wave operators doﬁnbt exist!?),

We shall‘use for the puquse of illustration the
one-dimensional system of bosons with repuléive delté function .
interaction soclved by Lieb gnd Linigerg):aﬁd whose therﬁo-_
dynamics was discussed by Yang and Yang10). The N  body

Hamiltenian is

w N o | S | :
H - — Q 2 oy (9)
Lo Z N CZ,ML Xy) '
L= t t>3
in a periodic box of length L.~ Eor the two-body problem the

9,10}

gquasi momenta k, kK, in Bethe's hypothesis satisfy

k, = kfﬂ*_lf. 6 Ck-k,) (102)

h = h(:) + JL—: Bc Ch‘rk;) B . {(10b)

. -1 (0 _p .
where $.(k) = -2tan”’ (k/c) and the k -(2n/L)1k£,_w1th




7. .8.

Ik = nk+% ., with: the nkr integers are the quasi-momenta . where kl’ are arbitrary points in the cells i, andf [resp. ‘fé . )
ot i o . (0) - bl

corresponding to the problem with - c = (impenetrable bosons dencte the densities of the peints k (resp. k ). Clearly

in one dimension'V). Since the,denéity of each of the k'O’ fgk)" yék(i) . where Ak, the "splitting between two successive

equals the free density L/(2m), it may be easily verified that k values around k", depends on k, and

the 2nd order virial coefficient corresponding to the problem

with ¢=w is zero. .We see from (iO)that the total momentum \E C-k) - j; (k)= !
, ittt -
Cko+k, o= k1O (00

11k 1 2 We may therefore consider

, @
2) oy s - o
bz L:‘br (e."ﬁHL,c — € fRue=e (11)

(2} : (2}
d H
HL,C an Ll,c

relative moticn, ‘with energy eigenvalues equal-to k2/2 , where

where °

= — . Q/CE) .. ‘ | : ' ey
T B

are the respective Hamiltonians of

Hence, by (lO);.(]Zi and (137

g0 2z
o - ~pE /2
k = 2 QC () -+ k()_ | ._ 12} b :"—;:[:. dk e

the corresponding "k = k, -k,

satisfy by (6)

N . : :
b (k) . 15y
L * -

. — 0

We now split one*diﬁensional configuraﬁion k-space

note that there is a cancellation of length factors in (9).
(0} )

12)

into cells i of length Zﬁi.LkL equal to the splitting Ak Since O (k) is essentially a phase shift
r -

k(D)'

» (10} equivalent

= {2n)/1 between successive values (the lengths need to 13,14)

to the well-known formula of ‘Beth and Uhlenbeck in higher
(o). : " "
be equal, nor exactly equal to k ’ bgt just of that "order"}. dimensions, and indeed the method in refs. 13,14) is similar:’

Th : :
en there the system is enclosed in a "sphere of large radius". The
— 2 -
k) /e —TQ k. /Gz . only differance is that in higher dimensions a series involving all phase-shifts
* - S — - ‘ . } )
gy = i — : : . . .
2yl L--} © Z € [;]Z(kL) ] ‘f;:@g hﬁ‘):[;Ac)Lk . Sm(k)-occurs {£=0,1,2,...). The bounds on éz{k) in ref. 15) may be used to study

T

(13} convergence or asymptotic character or this series,

The volume @ivergences in the gquantum virial



difference b between b

seriesiG) are disposéd cf by the linked clustér'cheoreﬁl4?16?.
Nevertheless, convergence of the series‘itself may be expected
only in the "classical liﬁit" where the thermal:w;ve—length is
much smaller than the average particle distance and of a "typical
length of the pctential"]?). This question was studied in-a
mathematically rigorous way in ref. 2}, where some of these

statements were made precise. There.a new formula for the

5 2 and its classical analogue b2

was proved for V  sufficiently smooth and of rapid decréase at

inEinityzlz

Ak’l = b, —-bc‘e
fd “ﬁ\/() O:X/g X i—EXF[ﬂ-jds([/(w(;)) V(x) (16)

where EO.x-t.x denotes expectation with respect to the measure
correspending to "Brownian brldge“z'S}, i.e., essentially, to
Brownian paths "which leave x at time zero and return to X

at time . We may write wi{s) = x+bi(s), whefe bi{s) is a
Brownian path which leaves the origin at zero time and returns
to the origin at time B, and expand v(x+b(s))-—V}x) in {16)

in a Taglor series. .This leads teo a divergeﬁtz), but prchably

asymptotic series, which may be used to estimate the leading

contribution to Abz(B)

. ‘., . s ._—. - 2 . L P [
Bb, (py = - [dk € BV L 53 2%y fts E(lo{S) +

'BHL 3 s 2 _
o - — dX'z _‘?.\_/. B _'__(17)

for B small.
Above, we used the explicit covariance formilae

(see, e.g., ref. 5, pp. 40,41}.

)KJﬁJX§ b(f)} ‘G'és F) (18
o,x,/;, {bcnb H:)} SLﬂ [s¢p-t)] 0£5£t4p8

where 1i,j = 1,2,3. Notice that (],2) holds only for smooth

i/\

potentials: if the potential is sufficiently singular, at the

2,17}

origin, a different behaviour is expected and even the

2,17)

sign changes In formula {16)}.a volume divergence was

et K =2V
cancelled, by the volume term -!E Edgx in bz (F):EIJXGHeF )
{(see ref. 2)) and hence in a.way quite different from the

previous appreach. We should mention at this peint that a

different approach to calculation of the semiclassical limit to

: : - . 20)
b2 can be easily found using the formulation of Nussenzvelig .

He related b to the ensemble averaged time-delay, and

2




1.

corréspondingly classical scattering theory comes into the
pictu:é in a very naﬁurai waj. Détails of fhis alternative
approach will be puﬁiishéd elsewhére21{.

In cohé}usioh,'we clarified some conceptual issues
reéarding thé relépianéﬂié between quaﬁtﬁm statistical mechanics,
scattering theory and classical statistical mechanics, on the
bases.of the behaviour of the second order virial coefficient.

It would be interesﬁingﬂﬁo find a unified_treatment of these
issues which is alsb applicable to the higher order cﬁeffhﬂents.
Part of this program {concerning the relationship of q-Sem. to

s,t.) has been achieved in ref. 6}.
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