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ABSTRACT:

The uniform semiclassical approximation Df. the
elastic scat?ering amplitude is genaralizaed to absorptive
systems. HAn integral equatien is derived which éonne;ts the
absorption modified amplitude to the absorptian free one.
Division of the amplitude into a diffractive and refractiQe

components is then made possible.
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The Uniform SEmiflassicaL'Qpproximafinn (USCA) to

quantal scattering probtems has been employed extensively in

several branches of Physicsty. This approximatiod, basad on B

the important work of Chestar, Frisdman and Urset35,

e

supplies a powerful teol to deal with caustics ﬁrbbiems such-

as encountered in rainbow scattering.
In. applying these ﬁethﬁds ta prub(emé 1nﬁot§iﬁg.

absorption, such as the uasé. in paftiﬁ[e and nuclear

absorption and . accordingly with diffraction. Though

(CﬂMMj, a more direct way, of relating the .absorptive

scatfeﬁiﬁg amplitude to the purely refraction scﬁftefing (no

clearly separate what one may call the diffraction component

of total glastiﬁ amplitude. The__remainingvpiECE'contaiﬁs

the kabsprpt;nﬁ) modified . refracticn . ef[gcgs.; "Suth & -

decomposition seems to bhe of great use in analysing recent
intermediate energy ~heavy-ion elastic Scattering data such

;s the one reported in Ref. 3).

-physics, cne has to cope with the prdblédi of - strong

'treatabte with the powerful complex angubar momenta method

_absurptiani is catled for. In so doing one is then able ‘to

-The purpase of the present tetter is ‘to supply a

general -~theory of the elastic scattering amplitude,

applicable in cases where semiclassical conditions are

simple cases is presented.

satisfied, which enable its - calculation, Agiven the
absorption-free amplitude. The USCH™ “is  then easily
- genafalized to general absarplive medium. Bpplication to




We use below the notation employed by Berrys>.

The elastic gca?tgring ampLLtude.f(Q},
- ? & E { 2[:81 .
Sor= Y&+ %) Isgre 1] R cesam “J
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Eq. (1) differs from the one used by Berry in an important
aspect, namely tha partial wave amplitude, 5 , is allowed to
have a modulus smatLgr than one, .as unitarity requireﬁ.in

absoerptive scattering,
ISl £ 4 7 (2)
We now proceed and decompose f{(8) inte its near and far

cumppnenﬁs.thpuugLy the use of the following asymptotic form

of the Legendre function

PcceseJ
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valeufqr: 1_1(91n7g*: . The near f<+> and far fe®> side

components of f{8) are just obtained  from the e-i<f«1s23g

andte?‘xnfll?FG-brapches .of the cosine function in eq. (37,

respe;tively
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where the factor (-1)  is dropped as it contributes only at

8=0. The above equation can be Foisson-decomposed as

4
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For 51mpL1C1tv we consider the case in which the
deflection function -2(d8§{A)}/dA) never exceeds xn, Than the
m=0 term in the above sum approximates wvery well f=.

Introducing the notatioen {sen® f*{(8)=I=(8), we have

+nr 218 zde
I&l&) J.A, l S e (6)
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where we have extended the lower limits of the integrals to

~w (with |S(A)]|=0 for,lfb].

It i clegar fruﬁ Eq. (B) that I=(8) is simpl*
{aside ‘frnm 7 a constant). the Fourrier traﬁsform _
of 9¢’=IS(AJIE=;S‘A’. 1-(8) is the Fourriar transfurm taken
as a function of (-8} of the same A--funciiuﬂ. We now
introduce the absorption free amplitude 1,(8) as being the
Fourrier transform of A*’*E*Ls Ao

riwly o i Sy ae
(+) 2. 2 8QA)F
I = < j‘plA A e (7

—va . . . . .
In order to obtain an equatlon whlch retates I*(8)

tp 1%,(®) we use a three-step procedure; we first inverse
Fourrier tramsform (6}, divide aver iS(ﬁ_}I and finally
Fourrier. transform back. Denuting‘ the Fourrier
transformation of a function B(x} by Fxépﬁl we have, for the

near-side amplitude
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The operator (ﬁk,,(lstﬂJlﬂlFaall ig an exampla of
a3 class of operators called pseudo-differential=:, AfAs long
as |S5(X ) is represantable as a ﬁoiynumial in A, the
fottowing relatiaon holds .

. d

-y
5(A) : = S 2)
ri-»a ' ! Fo;-u l 48 f

-1 7 (9

A simitar analysis follows for the far-side amplitude, in

which the pseudo~differential operator is

- — 4 .
S(a) = ]s¢ 4 (10)
F;-;—e ISl EO-"{ ' (LJB') | _

We thus find the following important relation
B & Nt )
le'-—)i T(p) = I(®) (N
s °
which formally solves ta
(> = [5‘(1-’1) il 4:3) (12)
d& [z, |

Eq. (12} shows how diffraction comes inﬁa the picture as a
result of the application of |5(i(d/d®)}}| an the otherwise
purely refractive amplitude 1,(8). It seems therefore that

an appropriate  name to be given to our pseudo-differential

o

operator, |5(ildfdB))}, is the. "diffraction’. operator” D.

For convenience, we introduce the notation

e = <01 >
+
I:J(ﬁ) = <9p{ ]fot > o £13)
Thus ‘ SR
+ A AP s s ’ % S
Iy = (> :S\&.a-‘.-‘b-lﬁ->-<ﬂ-l-'.ré- S Gy

Thus
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The matrix element (9[5[9’) :is just ~the  Green function
corresponding to Eg. (11). It is the degree ‘af .non-locality
in 8-8' ‘that determines how diffractive the scatteringis.
In fact, as we Show below, most of the diffractive effects
in I=(8) Vare .contained in “the pfincigat- part: of the:
B'integrat. 7 .

We present now an -3dnalysis of  the angle Green
function <SIEIB)EGLB-S'J. Owing -to the wnitarity limit of
1S 1, namely lSL {=1 for § » £, where £r characterizes the
extantion of the scatterer, it is safer to express G{(6-8')
as a Fourrier traﬁsfurm of (didA YIS ). This - invalves
explicitly extracting a pole term, (8-8'+i€l-* with the
small imaginary part used to .guarantee convergence. We
obtain (this relation was originally obta}ned by Fraha and

Gross«* in 2 slightly different manner?
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The Fourrier transform Fa_\,&r_a((dld)\)IS(A)l)
measures the contribution of the surfacéj' - Sharp surfaces
ara characterized by &-like behavioar “of  (d/d ) ilf(a}l,

resulting in a constant §-Llike behavxour - of

ﬁﬁ&f_,,#ﬂ'f(.‘n[ D1ffused surfaces give rise ta a wider .

distribution in 6'-6. For the ‘purpose of illustration we
take (S| to be a  Fermi  function
IS(AH:[EXQ{(\H—AJIA #11-2 ¥}, ‘A here measures the extent of
the surface region in angular momentum space,
Semictassicaly, it - is approximataly fgi;en by k a with a
being - the diffuseness of the density profile of .the

scatterer,

TA(D- 81
AiuhTa9d)

= F(acete)y exp[idp (8-01]
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Thus, very diffused systems ( 3>30) are characterized by a -

small non-locality in G(B-8'}, since -ane has. .

,@ R e 29}
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even for &' very close to 8.  The degree of non-locality in

8 and  accordingly the degree of diffraction is measured by

[QUFR - 1N Tha above situation c.represents a  case of weak -

diffraction (the Largeness of A forces G to be dominated by
its’ on-shell parbtl}. _ .
The other extreme, 820 gives
o {  iagezal

G ) an >0 DD +iE

namekly "infinite" non-locality.
From the above discussion it would seem nmatural to
identify the " on-shetl  and of f-shell (ﬁrincipal part)

contributions to G{8'-6) with what we may call, refractive

and diffractive propagation, respectively.  Namely
(+) . p ' ’
q 9- 3) = GR(B-ﬂi + Gbla-ﬂ) (20)

G 18-9 = ;- ocela) l;’_)@,_o,[ﬁqs M)

(9-0" :L'- 1 F SCA) {22).
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We now use the following identity

P_:L._ ;_--4.--04\])(] (23)

X dx

to rewrite £q. (22) as

}

Gov) =L jos oo (%is‘ml)

4 9.

* g’ | e
._.*’ 4 9.183) Fracple) o407
"Tr'(T [T 5D.F£AC_B o) e R

243

Lo



where we have used Eq. (17). When inseerting G.ee in I, ‘and

integrating by parts, we obtain

I (6) = %SJB’LW'_M[% FCAwiaDJ

i s _
.e B In( )

- ..‘..Sde’,ﬁm, j8’-8] F(aceler)
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The second term, containning the singular ,@h[a'-e|.

contributes to the refractive I while the first term 1is

identified with the diffractive piece, since

Dnio'-0)(d/de’ IF(ALB'-8)) is not singular (Pmx{d/dxIF(x1307,
K20

and therefore the non-locality of the integrand (in 8-8"} is

predominant. Thus we have finally fof 1.(83 and 1,(8)

. . C . '
IR('B):.E&.‘.?.!wz-}r do L. [0-8] F(acold)) -
+ .4 ezl?»g(ef.aj

4
I I_D(e )) _

(28)

I 00 = — LJ‘ 49’ In [8-0] 4 Feacolon.
aw do9’

1N (658)
. e r I‘,(.ﬂ’) (27)

{Ae(028) _ |
d (e R Io(a’))- (25)

.10

the on-shell piece of I(G),‘némely ane half #he_absurptiunw

free I,{(8) plus a correction-arising from absorptian. This

" cogrrecticn depends. on the Eabénrption profile function. F{

{8'-8), and the first derivatiuh'iof 'io{e') tin = the

integrand). "The diffractive ;dmponEntaIDLBJ'cnntaihQ_IO(B')

~ The expression we have obtasined for IQ(B)}¢E§; (25)‘cOhtains'

inside the integrand multiplied by 4the. non-singular -

function

. R . : :
ﬁmie’-el(ddeJF {(A({B’-8)). A reasonable approximation would:

be to  take Bm|B'-8|(d/d@’ IF(A{B'-6)) oulside the integrand

and set ©7:=8, with 8, being . the' stationary puiﬁt angie

o iy A o :
obtazined f{rom the condition . (d/d8')fet AR 5”’10(6f)%=0,

. . . - =%,
8'=0H,.

Equations (2B and (27}, are Ehe.principa{ résults.

of éhisi paper. Given 1I,(8'3], the absorption moadified
amptiéude -immediaéeLy follows. In 'parficﬁtar the
modification of the ueli—known uniferm semickassical
appraximation to 1,{(8), which is mormally used to deat with
cases invoiving rainrbow scattering, 'is now clear. 1(83
would then involve absorption modified Airy function and its
first deri?aiiue*’, through Egs. (15) and {16) or, if the

situation reguires,. Eqs. (2B} and (271, Further

developments and applications of our theoryhin progresss’.
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With a Fermt shape |5(1(dld9)]!, Egq. (1%} takes the
appealing simple: form e®a1(8- 1IA)+I(BJ Is(8), which «can
be sotved-for I{(8) as 1(8)= E fo (9+&1ks))e~"¢6 {(-In., We
“have opted™ for the’ lntegrat equation approach to aveid
~“dealing with complex angles.
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