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SUMMARY

Basic quantum mechanical propertles of systems

ccnstltuted by two and three gentlleons are deduced in th1s

paper. As an immediate and ‘natural result of our theoretical

canalysisg, it is shown how fundamental observed properties of
composed hadrons can be rigorously predicted from first prin-

ciples assuming quarks as spin 1/2 gentileons.

1. ‘INTRODUCTION
In a recent paper{1} we have shown rigorously, according
to the postulates of guantum mechanics and to the’principles of’

indistinguishability, that three kinds of particles could exist

‘in nature: bosons, fermlons and gentlleons These results can

be synthesrzed rn terms of the folLowrng statement (Statlstlcal
Prlncrple) "Bosons, ferm;ons and gentlleons are represented by
horizeontal, vertlcal and Lntermedrate Young shapes. resgxxrwﬂy".

Bosonlc and fermronlc systems are descr1bed by one-

.dimensibnal totally symmetrlc (¢ ) and totally ant1 symmetrlc

(¢ ) waJefunctlons, respectlvely For bosons and fermlons the
creatlon and annlhrlatlon_operators obey bl—llnear commutation
relationsr .

Gent1lronlc systems are descrlbed by multlﬂimEMSIOHEl

(spinorial- llke) wavefunctmons (Y) wrth mrxed symmetrres. Since

) they are: represented by 1ntermedrete Young shapes, only three

or more gentlleons can form 2 system of 1ndrst1ngu1shable

partlcles Thrs means that two 1dent1cal gentlleons are

.Erohlbrted to censtltute a system of 1nd1st1ngulshable partlcles

This implies that gentlleons cannot appear freely Indeed if

thls were pOSSLble, two free ldentlcal gentlleons coudeonstnmte

a two- partrcle system in-an occasxonal colilslon. For gaﬁnleons
the creation and annlhllatlon operators obey nmlt1~lnﬁﬁr mm:iclal

commutation relatlons. Frnally, due to very peculzar geometrrc
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properties of the intermediate states, there dppear sélectiocn

EElEE confining the gentileons and prohibiting the coalescence
of gentlllonlc systems. .Twozsystems.like [ggc] aaé [gggg], for
1nstance, cannot coalesce 1nto a. comp051te system of 1ndlst1n~
guisﬁaole partlcles [gggqggg]. Only bound states [ggg] —[gggg]
codld be'possible; The gentiieon confinement appears as a
consequence of the selectlon rule whlch prohlblts the dem:qultlon
OF a system [ggg...gg] into [ggg...g] and [g]

(1)

In our above quoted paper only systems of

ldentlcal gentlleons have been con81dered_ Let us now consider
systems composed of two. dlfferent kinds. of gentxleons, g and
G. ‘ Taklng 1nto account-the statistical principle we must_expect
that systems.like'[gGT,.[gggél;V[QQgGGG] and soron, areaihwmd.
On the other hand, systems like [ggGl, [ggGG];.[gggGG];.c are

(1)

prohlblted because [gg] ahd {ca] are not allowed . Of course,

the coalescence of mlxed systems is also forbldden, as can be
eas1ly verlfled It is 1mportant to note that the commutation
relatlons Eor the creation and annlhllatlon operators for g and

G in [gG] must. he bi- llnear since the state vector of the system

SREN.

.15 one— dlmen510nal Thus, accordlng to the special theory of

(2-4)"

-relat1v1ty they will be taken as commutative or anti-com- -

.mutatlve for g{G) 1f the spln of g[G) is 1nteger or}mlﬁqnuﬂer,_

respectlvely.
The conflnement aud non-~ coalescence are intrinsic

propertles of gentlleons as the total symmetrlsatlon (anti-

symmetrisation} is.intrinsic to bosons (fermions), not depending
on their physical interpretation. Thus, they could be assimilated
to individual real particles or to dynamical eetities as guantum
collective excitations,. However, due to the selection rules
imposed on the gentileons_we tnink that they would beh quite

different from the usual particles and quantum collective states.

In section 2 we present a detailed study of the

symmetry properties of the three gentileons state véctor Y(123)f“

We have emphasized the simplest non-trivial case of three par-
ticles aiming to apply the theory to the description of SU(3}
models of strong 1nteractlons(5 6)

In sectlon 3 we show that the SU(3} represen-

color

tation‘can be naturally'incotporated into tﬁe S3 gentilionic
symmetry.

In sectlon 4 our theoretical results are applied to
1nvestlgatec some aspects of the hadronic phys;cs Assuming
quarks as spin 1/2 gentileons we see that fundamental observed
features of compoged hadrons can be predicted from first principles.

in section 5 a modified ﬁuantum chromodynamics is
suggested where,'insteaa of fermions, gluons interact with
gentileons. We verify that this approach and the usual QCD give

identical predictions for hadrenic properties when the Drell-Yan

model is applied.



2. SYMMETRY PROPERTIES OF THE GENTILIONIC STATE VECTCR . ¥(123)

We present in this section a detailed study of the

symmetry properties of the state vector Y(123) of a system

- composed by three indistinguishable gentileons. This simplest

three particles case (N=3) has been emphasized in order to apply"

the theory to the description of 5U{3) ‘models for strong
interactions. Of course, it is possible to extend our results,
concerning the structure of ¥, for N=>3, at the expenses of

unnecessary labour and non essential complications for our

immediate purposes. Thus, accordiﬁg to our general }esults(1},

the symmetry properties of Y({123) is Eompletely described in
terms of the three quantum states o, B and y. In analogy

with the electromagnetic color theory these states will be named

"primary colors". In terms.offtbe:golors a, B8 and vy, ¥{123) =
(1, S '

=Y{aBfy) - is written. as

YE(IZB)}
;123 Y, _
Y(aBy) = ¥(123) = — = | (2.1)
: Va | Y3 (123) Y_
7,0123)
whére}
¥,0123) = (|aBy> + |Bay> - |yaB> - [yBex)E ,
¥,(123) = ([oBy>+2]oyB> ~ |Bay> + |yad> - 2{Bya> - [yBa>) /12

(- |aBy> + 2|ay8> - |.Suy> - fyeB> + 2|Bya> - |yBa> A2

Y3(123)

" theory differs drastically from parastatistics

6. -
and ¥,(123) = (JoBy>~ |Bay> - iyag> + |yBa>) /¥4 . The state ¥
b4

is decomposed into two parts, Y = [§+J, where Y, = [Y1] and .

. _ N 2 .

Y
Y_ = [YBJ « corresponding to the duplication of the states,
4 ) -

implied by the reducibility of our representation in the

(1,5)

intermediace gentilionic states We shall show, in

what foilows, that Y  and Y_' have a spinorial character{s),
resulting a "bi-spinorial® character in Dirac's sense for
Y(123) . The ﬁrobabilitf density function for ¥{123) is

{13 + 2

given by the permutation invariant function Y-¥ = |¥Y|° =

= (fY1|2 + ]Y2|2 + [Y3]2 + LY4J2)/4.' The bi-spinocrial character

of ¥(123} 1is responsible for selection rules{1)

predicting:
(1) gentileon confinement and {2} non-coalescence of gentilionic
sys{ems. It is worthwhile to note that, in this conégxf, ou}
{7-11} and
fermionic tﬁebfies. In the case of fermions, the three parti-
cles state function ¢(123) wéuld be given by $Af123)'=
= {|aBy> - |ovB>- |Bay>+ |yaB> + |8yu> - |yBa>) /6  and for para-
particles (123} Would.be-written'55; ¢é(123) = a Y?4—b Y, +
teY,tay,, where ‘&, Q; c and d ;re‘afbitrafy constants. For
these theorieés the wavéfunction ¥(123) i one-dimensiocnal,
from which the Seléction.rﬁiéé (1# and (23, ébove mehtiohe&,
cannot be deduced.

Our intention, in this section, is torﬂxw:aqﬂicﬁfly
the épinorial charactef of ¥(123) and to establish fundamental

properties of the gentilionic System that can be deduced frqm
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this spinorial character, In this way we must remember that,

due to tHe six perliutation operators of the symmetric group 53,

the ¥(123) is transformed to(1):

3 I I )

where ny (y=1,2,...,6) axe 2x2 matrices given by:

1 0
Mg Foe ) = I
1 ¢ 1 -

f-—1/2 -¥3/2).
£ L/E/z-- ~1/2

[—1/2_ /?/2]_ -1/2 —#3/2}
L and e = .
V32 1/2) ~V/3/2 1/2

a1,

S lgz Ya2Y
n, = D
-/3/2 =172

n

From the”point;of v;ew of group representation
theq;g,_Eq% (2.2} i@meﬁ%étgly_suggests the reducibility of the
inte;méqiate_;egrgsgntation. Due to the separation pf ¥ into
two'comppnépts, Y, and Y_', an interpretation of these objects
is ciaimed.

. ) Lét'us_show that it is possible-to interpret the
.transfermations: of: Y. and; ¥_ in terms of rotations of an

.equilateral triangle in.a particular Euclidean space E That

3

. [1.' o] .
n, = ;o Tooo(2.3),
oo -

is, we assume E, as a space where the color states are defined
by three orthogonal coordinates (X,Y,2). Due to this assumption,
this space will be named "color space". It is also assumed
that, in this color space, the colors o, B -and y occupy the
vertices of an equilateral triangle taken in the (X,Z} plane,

as seea in Fig. 1. The unit vectors along the X, ¥ and Z éxes
are indicéted, as usually, by T} 3 and k. 1In Fig. 1, the unit.

+

vectors ﬁ4, M. and m, are given by, 54 . Mg =-(/3/211 + (1/2)%

5 6

and 56 ={{3/2)§-+(1/2}i , respectively.

( INSERT FIGURE 1)

We répresent by v{i23) the state whose particles-
j,'2‘and 3 occupy the vertices «, B and Y respectiveiy.
Thus, we see that tﬁe true permﬁtations,ﬂ(312) and {231), are
obtained from {123) ﬁnde; rotations by angles =% 2n/3.
around'the_unit_vectdr 3 .. As one can easily verify, the

matrices and N4 , that correspond to these permutations

My

are represented by:

n, = -1/2+ i{fi/z)oy = expfid.E(8/2)] and -
(2.4)
ny = - L/2- i3/ 0, = explil.G(s/2)]
where the g cy. and o, are_Pauli magrices.
Similarly, the transpositicns (213}, (132) and (321}
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are obtained under rotations by angles ®'=fm arcund the akis

m, ES and EG . respectively. The corresponding matrices are

given by:
n, = o, = liexplim,.d(e/2)] .
ng = (/3/2)0, - (1/2)0, = iexplifh, .3(8/2)] and (2.5)
ng =~ /3I/2)a - (1/2)a, =_iexp[i“£6.‘6(¢/2}]

According to our preceding paper(S)

_ algebraic invariant, KE%’]} , with a zero eigenvalue, associated
. i -’ . .

, there is an.

with the 83 gentilionic states., In analogy with continuous

groups, this ihvariaat will be named "color Casimir"{s).

For -
permutations, that are represented by matrices with det =41,
the invariant is given by Krot = n?.+r|2 f“3 .- For transpo-

sitions, which matrices have det=-1, it is defined by Kin =

v
=, e Taking int ‘ m,, m a m i
n4 ns n6. a {ng‘ln ? agcount m4, ms anr m6 ap Eqs..
(2.5} we see that, Kinw = Ng+ng+ng _-(m4'fm5'km6) L0 =0,
~ This means that the invariant K, can be réprésented

inv
geometrically, in the plane (X,Y} of the célor.space, by

= -+

of the 53 representatiqn is an intrihsic . property of Kinv = .0,

Egs. {2.4) and (2.5) suggeét a spinorial interpretation

for ¥, and Y_. Here, starting from.a .general standpoint,

‘the projective group ésaéciaﬁed with the special group SL

M = E4-+ﬁ5;+m6 = 0, and that the equilate;al-triahgle symmetry

.10,

we show the correctness of this contention. It is well known ~~
that the non~relativistic spinor can be introduced in several

o (12)
ways .

The interrelation of the various approacheésiis ‘not
obvious and can lead to misconceptions. In order to .overcome -”

the necessity of enumerating several approaches,'lét us ‘stick

on a geometrical image, recalling the very fundamental fesdlt "

on group'isomorphism(13): _S3 ~'PSL2(F2) ' whe:é'_ESLé(Fz};'is ’
5
defined‘o?e@_a field F, with only two elements. Obviousiy,'”

PSLz(Fz) ~;SL2(F2)/SL2(F2) nZ2 .- Wwhere the group in 'the "denofmi- -

‘nator is the centre of 5L, and_cérrespohds to the central

homotheties, since 2, is the intersection of the collineation — -

group with SL, ..

If we consider the matrices {2.3) as representing

transformations in a two-dimensional complex épaaetharaﬂxiﬁzeﬁ; '

and Y

by homogeneous coordinates 'Y1

2’ } CoC .
oYy ‘a - bY(¥,) .. - ST
where p 1is an arbitrary complex constant and the latin letters
substitute the coefficients taken from (2.3}, 4t is-clear that
(2.3} constitute a homographic (or projective) group.

Making use of definition (2,6) we can see from.

(2.3) that, apart from the identity  n.,.the two matrices .

1 N2
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and Ny which have det= +i, are elliptic homographies with

fixed_points. ti. If we translate these values for the variables
of 83 . We.see that . Tty and Ny correspond to f£inite rotations
around-the- 3 axisnby-an angle & = * 2n/3, agreeing thus with’

Eqs. A2, 4}“ The remaining mat;ices Ty ns_and. Ng are elliptip

i 1nvolutxe s, WLth det-J—1 ... They correspond to space inversions

'cons;dered,as-sotat;ons.of--tn ‘around the three axis_

4',nﬂ

the axls oE 1nvers1on and the angle-+ﬁ ’ as 1s seen from Eqs

-(2L5)._ It is an elementary task to establlsh the correspondence,-

via stereographlc pro;ectlon, between the transformatlons in the

two spaces,‘rijz_):_and. E}H,-

- & topological image can- help us to see the 4n
_invari&nce“oF. Y% and Y . If we consider the rotation angle

&(@) as the_varlable descrlbxng an. Euclldean disc, the coverlng

"space assoc1ated to thls dlsc is a Moeblus strlp{1%). Adjustlng

:tly the pQSlthﬂ of - the,trlangles we can have a VlVld .

: plcture of the rotatlon propertles for each axis. This construct

'_1n,_53_and 15 a conv1n01ng demonstratlon of the splnorlal

,Eﬁﬁé?U-E and Y

Erom thxs.analysis.we-conclude that ‘¥, and ¥Y_

{15}

" are spinors. ' As one ¢an easily verify by using the projec—

trvéfqéémetrYf_thé?four—dimenéional'state function Y = [:f)

.is:a:"birspiner" in Dirac's-sense. Since E3_is'a "color space",

and m6 . respectlvely.,; These mat:iceS'completeiy define -

12,

Y, and Y_, in analogy with the isospinor in the isospace, will

+
be named. "colorspinor".

We observe that the same transformation properties
of ¥, and Y_ can be obtained iff instead of the equilateral
triangle shown in Fig. 1, we consider the triangle' drawn inl'

Fig. 2.
(INSERT FIGURE 2)

In the vertices of the equilateral triangle of the

Fig. 2 we have the colors @, B and Y. The unit vectors

-y -+ - g ; . +y -y = = -r*=_->*
m4. m5 and m6 are g:l.ven_by,_m4 = m4 . m5 .m5 and m6 , mZ.
Thls means that, in this case, K, is represented gaumirically

inv
-

by M* = m4-+m5-+m6 = 0. This two fold possibilities for de-
picting the triangle will be physically interpreted, in the next

sections, in terms of the existence of colors and anti-colors.

3. THE.S3 SYMMETRY AND THE SU(3)oplor EIGENSTATES

In section-z, we have shown that it was'possible to’
interpret the Y(aBy) transformations in tecrms of rotaticons,
in a.color space E3, of .only two equilateral triangles with
vertices occupied by three privileged-color ala), B(E) ana
Y(?}. The ¥ must constitute symmetry adapted kets for 53. in
other words, their dlSpOSltlon in the plane of the triangle
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must agree with the imposition made by the color Casimir. Accoerding

-+

to Fig. 1, these colors are defined by, a =mg = (-¥3/2,1/2),

B = }EG = (¥3/2,1/2) and y = PE4 = (0,=1) , and according to
o — -+ -+ - - - —
Fig. 2, o = mg = -m B = mg = -m, and Y = Ez = ~$4. The

equilateral triangle symmetry for 53 plays a fundamental role
in E3, allowing us to obtain a very simple and beautiful

geometrical interpretation for the invariant Kinv= 0. TIndeed,

since the $, symmetry, according to section 2, implies that

+x

3
- -5
M =m, +m. +m,. = 0 (M* = EZ-Fm5-+EE = 0}, we conclude that the

4 5 6

total color guantity of the system, pictured in E is a constant

3!
of motion, which is null.

At this point we compare our color states o, 8 and

(16)

Y with the sSU(3) eigenstates blue, red and green.

color

These color states are eigenstates of the celor hypercharge ¥
and of the color iscspin T3 , both diagonal generators of the

algebra of the SU(3} The eigenstates blue (b), red (r)

color”
and green (g) are writtem as |b» = |-1/2,1/3> , lr>={1/2,1/3>

and lg> = |0,-2/3>.

Taking into account that the SU(3) and 8 fun-

3
damental symmetries are defined by eguilateral triangles(16’17),

it is gquite apparent that the color states la>, |[B> and |vy>

can be represented by eigenstates of I, and ¥ . Indeed, as-

3

suming that the axes ¥ and 2 (see Fig. 1) correspond to the

axes T3 and Y, respectively, and adopting the units along

(17)

these axes as the side and the height of the triangle we

L1400

verify that |a> ,.[B> and |y> would Bé.giveﬁ by, |u>'=.|55.=

= |-1/2, /3>, [B> = |r> = 11/2,1/3> and [y> = |g> = |0,-2/3> .

Tf we have @onsidéred the states |ao>, f§> and |y», seen in

Fig. 2, we should vérify that tﬁese states would correspdndiéo o

the anti-colors |T>, |B> and |g> of the 3 color répfeseﬁfat'idﬁ. '
7 Thus, if we assume that the states ;d>; [B> and .

[y> correséond to |o>, |r> and |g>, respéctivél?, eaéh .

unit vector ﬁj (j'fég 5 and 6) is represehted, in tﬂe piané.

(TB,?) by the operator & = TB-%?/Z. " This means that the vector

M will be represented by the operator ='qt-¥q2+~q3, where

the indices 1, 2 and 3 refer to the three gehtileons of the

system, Thus, adopting the SU(3) eigenvalues we see that

color

M will have a zero eigenvalue only when Y is given by ¥(brgl.

That is, the wavefunctions Y{nnm), where na,m=b, r and gy, with

(]’S}, are prohibited.

{3)

twe particles cccupying the same color state
It is important to note that, in our previcus paper

since the SU(3) scheme was not adopted,'we have assumed

color

that two gentileons could cccupy the same color state. This is
a point that remains to be analysed: the existence of another

kind of color representation, besides the SU(3)color’ which

would be able to describe consistently the gentilionic approach.
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4. THE GENTILIQNIC.HADRQNS.

Since gentileons are confined entities and their

systeﬁs!are non-coalescent it seems natural to think quarks as |
' {1,5) ' ' '

spin 1/2 gentileons
(5) '

With this hypothesis it can be shown

that the baryons [qgq], that are formed by three indistin-

guishable gentileqps in a coler space, are represented by wave-

functions Y = @.Y(wBy). The one-dimensional state vector g = -

= (SU(6)>(03) corresponds, according to the symmetric

(16)

symmetric
quark model of baryons ., to a.totally symmetric stafe.'”The
four;diﬁens;onal state function YkaBY) , that depends on three
quantum color étates [a>, [> and |¥>, corresponds to the
inte:mgdié;e representatiqnlof the 53 group. The colorspinor
_Y{éBY) is written explicitely in section 2.

It will be assqmed, in_what follows, that the color

states |a>, |B8> and |y> are the S5U(3) eigenstates

_ colér
blue, red and green, respectively. Under these assumptions V¥
_will.bg given by ¥ = ¢.Y(brg) . If quarks are taken as fermions
¥ is g;vgn by ¥ = ¢.$A(brg) , where.'ﬁA(brg} corresponds to
the totally anti-symmetric fermiopic color function. Thus, we
see that in our theory:the sU{(3), flavor and color, continuous
symmefry.is maintained. Only fhe 8, fermionic symmétry is
substituted by the S3 Qentilionic'symmetry} both discrete. We
must also remark that, with the above results and following

section 2 and 3, the SU(3)Elavor x 5U(3) representation,

color

where éé = Iyt Y2 refers to flavour chérge,_qc = (%

.16.

both 3 and 3, is naturally incorporated in our .scheme. With this
in mind and observing section 2 we see.that in the gentilionic -
formalism one possibility is to define the individual,quarkf;j

charge as:
q = g+, = (I3 +Y¥/2) + AI,; +¥/2} _ (4.1)

(T, eT/2)
refers to color charge and - A ~is an arbitrary constant thaﬁ.
cannot be determined in the framework of the théo;y} With this
definition, the total color baryon charge { is given by

0= A<l Rememberiﬂg that tﬁe expected yaluer<ﬁ> isra consfantf.
of motion'équal to zero, théﬁ is, <M =_c;nstaht ﬁ\q_; for the
states-‘Y(brg) ,.as shown-ih éection 3,_we see:thattié gﬂer&ﬁzed.
Gelthann—Nishijima relation is automatically satisfiedts)
independently of the A value. Putting A=-1 we obtain integer
quark charges, according to Han-Nambu,'and if A =0. we have the

(16). Note. that the

fractional charges adopted by Gell—&ann
result é = constant = 0 can be interpreted as a selection
rule fqr quark confinement in baryoné.

In our approach(1'5)_mesons are composed by a quark—
antiquark pair [gg]. According to the statistical principle,
systems like [ql}, [gql, lggq] and lgegg), for instance, are
prohibited {it could exist only bound states lag] - [qq] of the -

mesons [ggl). Since q and g are different particles in color
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space and both are spin 1/2 particles we can conclude, in agree-
ment with section 1, that: (ad mesons are represented by one-
dimensional state functions and (b) g and & in the system
[ag] ecan be taken as fermions from the algebraic point of view.
This permit ‘us to conclude that mesons are represented by the
same state vector in fermienic and gentilionic theories. .

We are now in condipion to make a summary of the
fuﬁdamental properties that must be observed for composed hadrons
.if guarks are spin 1/2 gentileons: {1) quarks are confined,

(2) baryons and mesons cannot coalesce, (3) baryonic number is
conserved, (4) the hadron color charge.is a ¢onstant of motion
equal to zero and '(5).on1y color singlet nadrons can exist.

- The above mentioned hadronic properties have been
predicted independently of the intrinsic nature of the gentileons;
they could be particles, quantum collective excitations or
something else. Consequently, no dynamical hypothesis, phenome-
.nological'or approximate arguments have been used to prove them.
They have been deduced from £irst principles: from the statistical
principle or by using the symmetries of the S, jhtermediate
repfésgntation. Thus, if qﬁarks are gentileons, even though we
uphold the intrinsic geometrical nature of confinement, we cannct
exclude the possibility that there may be hidden or explicit a
confining mechanism in the dynamical laws. After all, we cannot
reduce all the concepts, which enter into a dynamical law, toc

geometrical noticns. The confining mechanism could be produced

.18,

by a very peculiar interaction betwgen quarks, by an impermeable
bag as propesed by the bag model or something else. At the
moment these mechanisms are unknown. It is not our intention,
in this paper, to study this problem.

In spite of ocur stimulating general results, there -

remains the crucial probiem of determining the -intrinsic nature

‘of the quarks and their dynamical properties. According toc the

current theoretical ideas, guarks are fermiohic elémentary par-
ticles. The mathematical formulatiea of the fermionic model,
the QCD, is a successful modern Eigld theory Sincg it is_able

to expiain many p;operties of the.haﬂqus.. In ngxt sgction,
taking -quarks as spin 1/2 gentileons, a guantum chromodynamics
is proposed where, instead of fermions, gentileéns interact with
gluons. This formalism {QCDG) will be compared with the usual
pCD, It will be shown that adoptiﬁg the Drell¥¥an mcdel the QCD
and the QCDG will give identical predictions for the hadronic

properties.

5. A QUANTUM CHROMODYNAMICS FOR GENTILIONIC QUARKS

In this section a guantum chromodynami¢s using
gentilicnic quarks is proposed. This approach, indicatea by
oCDG, will be compared with the standard QCB. In this way,

remembering that gquarks have spin 1/2 and taking into account
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the SU(3) symmetry (color and flavecr), the following Lagrangian
density for gentilionic guarks interacting with gluons is

suggested:

o
N

Y ety g + i +
5o z [l 9a v 7 9a T 99, 4 [ J b.'Ap A = Mg qa] +
: Fos B} 3 ab

' i i ' S - . .
3A 3a . _ : S Co
_% __"_..__% + g E L A; Ai‘_ . : (5.1)
’ axM ax _;J - _
where the éummation is over the flavors f % u,4d,s,¢... . The

summation over repeated indiées_'a,b,;.., ‘referring to color
is understood. The Ai/2 are the 3 x3 matrix representation -

of  the SU{B)color algebra generators, satisfying the commutation

relations gl = if

i ikj.Ak/z' where f Vare the _Sp(3)

ijk
structure constants. The flavor symmetry is only broken by the
lack of degeneracy in the quark masses. Fiﬁally, the quark free

fields g(x) are expanded in terms of positivé and negative

frequency solutions, ¢k+(x)_ and @k_(x) . of Dirac's equation,

. .
gi{x) = Z {ék¥ P ylxd + oa - Qk_(x)}_ .
k : )

It is important to. remark that, with the above
assumptions, both thecries, QCD and QCDG, will have the same
gluens and the same Lagrangian densities. Howeve}, the creation .

and annihilation quark operators obey different commutation
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relations in these theories: in QCD they are bi-linear fermionic

and in QCDG they are matricial gentiliqnic(1). This difference

will be analysed in what follows.
. , + ,
In QCD, guarks being fermions, a, and &, , .obey the
well known bi-linear relations, independently.of the hadronic

system:
+ =
R DTEA RN R
N o T [P IR
A I a8y S

Considering now the gentilionic hadrons; lét us seé' 

L (5.2)

first the mesons {ggl. According to section J,fthe_cdmmutétidn:
relations for g énd a ére—determined only.bf theif spins.
Since these are equal to 1/2, .q and g can be taken as fermions.
from the.algebraic point of view. .Coﬁsequentlf, fqr-progessgs_
invelving only mesons, the QCDG-and the QCD would give exactly
the same predictions.. -

For baryons the guantum field calbulationsp.in tﬁe 
general case, would be more complicated since the création and
annihilation operators obey gentilionic matricial relations(1);_
However, a simplification is introduced when the color. states.

are taken as the eigenstates of the SU{3) ; blue, red ang

color

green, In this case Y(oBy) must necessarily be composéd by

these three different colors, resulting for the baryon wave-
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functions, ¥ =¢.Y{brg) . Inrthese conditions, the guarks in [qﬁq]
that, according to o and Y(brg), have disponible an infinite
number of quantum states, cannot assume the same color in the
color spécé. In other words, two quarks in [ggg] cannot cccupy
the same guantum state. With this fermionic characteristic it

(1

is not difficult to verify that the number of independent
gentilionic commutation relations are reduced, remaining only

"a few ones:

+ _+ ¥ aBy, _+

+
a; aj 8 = G(ijk) Ay a.B aY and (5.3)
: ’ _ kiji
a; aj_ak = Gf } a_a,a ’

B a BTy

where the indices 1, ] and k can assume the values o, B and Y

and G(...) are 4x4 matrices given elsewhere(1).

From the
trilinear relations we can obtain, for instance, the following

transpositions, considered as bi-linear relation

" _ aBy + _+
aga, = G(BaY) éa a, )
and (5.4)
= yoB '
ag a, = G(YBG) a,ag

In spite of the great simplifications that have been

introduced, it is evident from Egs. (5.3} and (5.4) that
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'gehtilionic guatrks cannot rigorously be taken as fermions since

i : . + _ . U
enly the first three relatlons,r[aﬂ ,a8]+ = GGB ¢ @;a; = a a =
= 0 are bi-linear fermionic.. However, the bi=linear relationsj:

+ _+ ; . . - R
aga, and g, s and the tri-linear relations need -to ‘he--
employed only if we intend to take into account properties-which™

are common to pairs of particles or-to thiée particle’in the”

[gag] system. Thus, if we assume, in a first approximétion,FthaEV

in the baryonic processes only cne guark participaﬁes,.and the

remaining two are spectators {Drell-Yan model(16)

1, the bi—}inear
and.the tri-linear feature of the commutation relations.will.be.:
irrelevant in cross section calculations. Under these .cir-
cumstances only the bi-linear fermionic cthutation'relations
need to be used and, conseguently, gentileons can bé takeh3és ~
fermions frém the algebraic point of view.

Thus, we see from the above analysis that, Whén thé
Drell-Yan modél is, applied, the QCD and the QCDG will give
identical predictions for the hadronic properties. In both
approaches the following additional conditions are éssuhed:
{a) quark confinement, (b) non-coalescence of hadrons; (c} baqmmf
number conservation, (d) only color singlet hadrons exist and
{e) the hadron color charge is a constant of motion equal to
zero, In spite of this we must note that the fermionic and the
gentilionic theories are not equivalent. Indeed, in the QCDG
these fundamental additional conditions appear naturally, deduced

rigorousiy from first principles, whereas in the QCD they are
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Fig. 1 - The eguilateral triaﬁéie in'thé color space (X,¥,2}

with vertices occupied by thé'Cblors a, B &nd y.

Fig. 2 - The equilateral triangle'ingﬁhe color space (X,Y,2}

‘vertices occupied by the colors a, 8 and Y.
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